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Abstract

The increasing complexity of both tele and data commu-
nication networks yields new demands concerning net-
work security. Especially the task of detecting, repulsing
and preventing abuse by in- and outsiders is becoming
more and more difficult. This paper deals with a new
technique that appears to be suitable for solving these
issues, i.e. anomaly detection based on the specification
of transactions. The traditional transaction and serializa-
tion concepts are discussed, and a new model of anomaly
detection, based on the concept of transactions, is intro-
duced. Applying this model to known attacks gives a
first insight concerning the feasibility of our approach.

1 Introduction

Modern tele and data communication networks provide
users with all kinds of services. In the future, the vari-
ety of available services will increase, ultimately offer-
ing any service anytime and anywhere. Yet, the grow-
ing range of available services also increases the com-
plexity of the underlying networks. Therefore, it is be-
coming increasingly difficult to detect, repulse and pre-
vent abuse by both in- and outsiders. Classical secu-
rity mechanisms, i.e. authentication and encryption, and
infrastructure components like firewalls cannot provide
perfect security. Therefore,intrusion detection systems
(IDS) have been introduced as a third line of defense.

The techniques classically applied within IDS can be

subdivided into two main categories [20]:

� Misuse Detection, and

� Anomaly Detection.

Misuse detection (see e.g. [7, 11, 13]) tries to detect
patterns of known attacks within the audit stream of a
system, i.e. it identifies attacks directly. The main disad-
vantage of this approach is that the underlying database
of attack patterns must be kept up-to-date and consis-
tent. Because misuse detection techniques depend on
the knowledge of recognized attack patterns, they can-
not detect new attacks.

Explicitly describing the sequence of actions an attacker
takes, misuse detection is based on the specification of
the undesirable ornegative behaviorof users and pro-
cesses. The opposite approach would be the specifica-
tion of the desired orpositive behaviorof users and pro-
cesses. Based on this normative specification of posi-
tive behavior attacks are identified by observing deriva-
tions from the norm. Therefore, this technique is called
Anomaly Detection.

The main problem with anomaly detection techniques
is to determine the positive behavior. Two general ap-
proaches exist:

1. Learning user and process behavior, and

2. Specification of user and process behavior.



Figure 1: Anomaly Detection Approaches.

The former approach is often based on statistical meth-
ods like the calculation of means, variations and multi-
variate statistics [9]. Other methods use learning algo-
rithms like e.g. neural networks or Bayesian classifiers
[2]. This approach is particular popular for the profiling
of users.

The latter approach, specification-based anomaly detec-
tion, was first proposed in [10]. In this paper we describe
a new model called transaction-based anomaly detec-
tion and its application in communication networks. In
general the transaction-based approach is similar to the
specification-based approach as it formally describes
positive behavior. In contrast to the specification-based
approach it specifies the desired actions and sequence of
actions by the definition of transactions. This explicit
definition of allowed transactions becomes an integral
part of the local security policy.

Figure 1 summarizes the different approaches to
anomaly detection and their possible application. On
the one hand, the expected behavior of the network pro-
tocol stack is well defined. This allows the applica-
tion of non-intelligent techniques to monitor it. On the
other hand, users are less predictable in their behavior
and therefore intelligent techniques must be applied. It
would be theoretically possible to formally define pro-
cess behavior, but in many cases their complexity makes
this approach impossible. Nonetheless, from our point
of view non-intelligent monitoring techniques should be
preferred over intelligent ones whenever possible. Al-
though intelligent techniques can improve the security of
a system, they rarely give a clear picture of the level of
security they can guarantee. In contrast non-intelligent
techniques like e.g. specification-based approaches ex-
tend the general security policy, and clearly define their
guaranteed level of security.

The paper is subdivided into six main parts. Following
this introduction we first define the requirements on a
formal specification of positive behavior. Subsequently
we introduce our transaction-based approach, briefly re-
viewing the general transaction model known from the
database systems domain and adapting it to the IDS sce-
nario. In section 4 we introduce sample applications of
our model. After comparing the transaction-based con-
cept with other approaches in section 5, we finally draw
some conclusions and finish with an outlook on future
work.

2 Specification Requirements

Any misuse or anomaly detection component should ad-
here to some basic design principles. These design prin-
ciples also define the common criteria for the compari-
son of individual techniques. In the following we will
review them briefly.

Obviously, the specification of positive behavior re-
quires some formalism. Although formalisms are often
very expressive and powerful, they also involve the dan-
ger of being too complicated. Complicated mechanisms
tend to introduce errors, and errors open new security
holes.

An appropriate formalism should therefore provide at
least for the following properties:

1. ease of specification,

2. ease of monitoring,

3. completeness (no false negatives),

4. soundness (no false positives),

5. efficiency, and

6. universal validity.

As the first five desired properties in this list are well-
known, we will only briefly elaborate on the requirement
of universal validity to motivate our approach. Current
IDS still mainly focus on the monitoring of operating
system environments like UNIX or NT. Only recently
the first papers dealing with the monitoring of network
infrastructures [1, 3, 14, 16, 19] have been published.



However, future communication platforms like middle-
ware (CORBA), electronic commerce, intelligent net-
work or mobile phone (UMTS) architectures will also
be vulnerable to attacks.

Misuse detection techniques can obviously not yet be
studied in this context, as these systems are not in place
and therefore no attacks have been identified. Anomaly
detection techniques have the advantage that they can
be applied right from the start of such systems. As an
additional advantage, they can provide the administra-
tors not only with information concerning potential at-
tacks, but also with general information concerning sys-
tem activity, faults and performance. Following this ap-
proach anomaly detection components establish an es-
sential part of general network management platforms.

From our point of view two general observations hold
for present and future communication platforms:

� Communication protocols can generally be speci-
fied as state transition systems.

� The protocols can be considered as defining valid
transactions.

Therefore, our approach tries to maximize its universal
validity by utilizing the transaction model, which is typ-
ical for many processes and especially communication
processes.

3 Transaction-based approach

Transactions are a well known concept, originating from
the field of database managing systems(DBMS) and
now widely applied in other environments like dis-
tributed systems [4]. Before we will discuss their ap-
plication in the context of intrusion detection we will
briefly review the general concept.

3.1 The Classical Transaction Concept

Transactions generally consist of a sequence of read and
write operations. If several transactions concurrently
read from and write to a database, the following prob-
lems can arise:

1. Lost Update Problem

Process1 Time Process2

read(x) 1
2 read(x)

update(x) 3
4 update(x)

write(x) 5
6 write(x)

Table 1: Lost update problem.

2. Dirty Read

3. Phantom Updates

The Lost Update Problem is depicted in Table 1.
Process1 reads the variable x. Immediately after
process1 process2 also reads x. Subsequently both pro-
cesses update x and write it back to the database. Obvi-
ously the update from process1 is lost.

To avoid these problems transactions describe atomic
operations. The provision of an atomic operation [4]
means that the effect of performing any operation on
behalf of one client is free from interference with op-
erations being performed on behalf of other concurrent
clients; and either an operation must be completed suc-
cessfully or it must have no effect at all. Atomic transac-
tions are often characterized by the ACID principle [6]:

1. Atomicity: All operations of a transaction must be
completed, i.e. a transaction is treated as a single,
indivisible unit.

2. Consistency: A transaction takes the system from
one consistent state to another.

3. Isolation: Each transaction must be performed
without interference with other transactions.

4. Durability: After a transaction has successfully
been completed all its results are saved in perma-
nent storage.

Obviously, the simple serial execution of transactions
preserves the ACID properties, but is not efficient.
Therefore, the task of ascheduleris to maximize con-
currency and to execute transactions interlocked. The
scheduler ensures that the transactions are executed in
a serially equivalentway. Schedulers usually belong to
one of the following categories:

1. Blocking scheduler



Operation Return value Comment

BeginTransaction TransId Starts a new transac-
tion

EndTransac-
tion(TransId)

Commit_ Abort Ends a transaction

Commit(TransId) Commits a transac-
tion

Abort(TransId) Aborts a transaction

Table 2: Transaction commands.

2. Non-blocking scheduler

A blocking scheduler applies read/write-locks in order
to serialize transactions. A non-blocking scheduler does
not use such locks. Instead, it coordinates the transac-
tions using e.g. timestamps. A non-blocking technique
of particular interest in the context of intrusion detection
is the optimistic concurrency control. This technique is
based on the assumption that the likelihood of conflicts
(attacks) is low. Therefore, the transactions simply pro-
ceed and after termination the scheduler checks them for
any conflicts.

What actually has to be considered by the sched-
uler as a transaction must be specified by the clients.
The sequence of operations which should be exe-
cuted according to the ACID principle is grouped by a
BeginTransaction /EndTransaction pair. This
groups several valid commands and defines a single meta
command.

Depending on whether or not the scheduler is able to
execute the transaction without conflicts it is committed
or aborted (see Table 2).

3.2 Transaction-based Anomaly Detection

One common argument concerning the difficulty of de-
tecting intrusive behavior is that attacks normally consist
of single steps, each of which performs a legal opera-
tion. These legal steps are generally used to interfere
with another process also performing legal operations.
Considering the victim’s and the attacker’s sequence of
operations as transactions, an attack will obviously not
be successful if the ACID properties are guaranteed for
the victim’s transaction.

Although it will probably not be efficient to design
transaction-based operating and network systems, the
transaction concept itself can be used to detect intru-
sions. Like an optimistic scheduler, an IDS can check

Figure 2: Layered Transaction Model.

each transaction at its end concerning its serially equiva-
lent execution and its adherence to the ACID properties.
If the check fails, the transaction is trapped. This is the
general idea of transaction-based intrusion detection.

As we focus on communication systems in this paper,
our model is based on the ISO/OSI reference model [5],
which is made up of seven protocol layers1. The proto-
cols of each of these layers can be described bydeter-
ministic finite state machines(DFSM) (Figure 2).

A DFSM A is a 5-tupleA = (Q;�; q0; �; F ) with Q
being the set of states which can occur during a trans-
action, � the union of all inputs,q0 the initial state,
� : Q � � ! Q the transition function, andF the set
of final states. The syntax and semantics of a DFSM are
unambiguously determined by the transition function.

The initial state of the DFSM is considered to be con-
sistent. The DFSM passes through the operations (input
events) that form the transaction. The transaction is suc-
cessful if the final state is also consistent. To ensure this,
atomicity, consistency and isolation properties have to
be checked. The atomicity is checked on the base of the
DFSM. The DFSM defines a languageL(A). By check-
ing whetherw 2 L(A) holds for a trace w extracted
from the audit stream the transaction is tested for the
atomicity property.

Subsequently the assertions (consistency property) are
checked, which are expressed with the help of first order
logic (FOL). Each DFSM can include assertions. Asser-
tions can be valid only for a specific transaction (local
assertions) or, on a more global level, for a certain layer
(layer assertions, see Figure 2).

Finally the serially equivalent execution (isolation) of
the transaction is checked (only if necessary).

1However, for concrete examples we use the TCP/IP protocol
stack.



Figure 3: General architecture.

The overall architecture is shown in Figure 3 and de-
scribed in more detail in the following subsections.

3.2.1 The Splitter

The audit stream contains all events received from the
different sources. As we focus on network protocols
in this paper the audit stream consists of packets re-
ceived from the network. The task of the splitter is to
distribute these single events to the corresponding state
machines. The assignment of events to a state machine
is straightforward, as it follows the rules of the corre-
sponding communication protocols. A TCP session, for
instance, is uniquely identified by the 4-tuple(source ad-
dress, source port, destination address, address port),
whereas a UDP packet is identified by its socket address.
For a fragmented IP packet the 16-bit identification field,
in combination with themore fragments bit of the
flags field, the source address, the destination address
and the protocol type allows the splitter to feed the cor-
responding audit data into the appropriate state machine.

The splitter is also responsible for the scheduling of the
isolation tester. The scheduler monitors the event stream
for any potential conflicts and feeds the isolation tester
with the necessary information.

3.2.2 Template State Machine

As mentioned above, the theory of DFSMs is in gen-
eral sufficient to represent the protocol state machines.
Nonetheless, a major disadvantage of the DFSM theory
is the nonexistence of variables. Therefore, a separate
transition has to exist for each possible value of a vari-
able during a protocol run. This blows up the state ma-
chines substantially.

To keep the state machines small we introduce the con-
cept of aTemplate State Machine(TSM). A TSM rep-
resents a protocol in a value independent way. The ac-
tual instance of the protocol template, i.e. the concrete
DFSM, is derived during run time from the audit data.

A TSM A is a 6-tuple(Q;�; V; q0; �; F ) with

� Q - set of states which can occur during a transac-
tion,

� � - the union of all inputs,

� V - set of variables,

� q0 - initial state,

� � - transition function, and

� F - set of final states.

The transition function� is defined as follows:

� : Q� (AExp(�; V ))+�! Q

AExp(�; V ) is defined by

e ::= z j x j e1 + e2j e1 � e2 2 AExp(�; V )

with z 2 �; and

x 2 V:

The semantics of the TSM, i.e. the derivation relation
), is defined by:

) �
�
Q��+ � (V ! �?)

�
� (Q� (V ! �?))

with

(q; (z1; : : :); �)) (q0; �0), if
ex. (e1; : : :) 2 (AExp(�; V ))+ with
�(q; (e1; : : :)) = q0 and
8i : [(�(ei) = zi ^ �0 = �)_
(�(ei = ? ^ ei 2 V ^ �0 = �[ei=zi])].



In contrast to the DFSM, the semantics of a TSM is not
determined solely by the transition function, but also by
the instantiation of the variables.

The TSM mechanism serves several purposes:

� It enables the formal and compact specification of a
protocol, which can dynamically be fed into a mon-
itor.

� It prevents state explosions.

� It can be used for the graphical specification of pro-
tocols.

� It can be used for a consistency and correctness
check of the protocol specification.

In this paper we concentrate on the two former points.

3.2.3 Consistency Tester

After the atomicity of a transaction has been checked
with a TSM, the next step is to ensure that the transac-
tion leaves the system in a consistent state. The con-
sistent state itself is defined by so-called assertions. In
general, we distinguish between two kinds of assertions,
local assertions and layer assertions, respectively.

To express the assertions we use first order logic (FOL)
with the restriction that the negation is only allowed for
atomic formulas (FOL+)2.

Local Assertions Local assertions are related to a spe-
cific TSM, and are checked during the execution of tran-
sitions. Therefore, we have to add Boolean expressions
to our TSM concept.

The transition function is adapted as follows:

� : Q� (AExp(�; V ))+ � BExp�! Q

BExp is defined by

b ::= true j false j e

j e1 = e2 j e1 < e2 j e1 6= e2

j b1 ^ b2 j b1 _ b2

2Any formula can be transformed in an equivalent negation-free
formula.

The semantics of a TSM changes in the following way:

) �
�
Q��+ � (V ! �?)

�
� (Q� (V ! �?))

with

(q; (z1; : : :); �)) (q0; �0), if
ex. (e1; : : :) 2 (AExp(�; V ))+, b 2 Bexp(�; V ) with
�(q; (e1; : : :)) = q0 and�(b) = true and
8i : [(�(ei) = zi ^ �0 = �)_
(�(ei) = ? ^ ei 2 V ^ �0 = �[ei=zi])].

Obviously, we do not need the whole expressiveness
of FOL+ for local assertions, as quantifiers do not
necessarily make sense within the context of a TSM.
Each transition is triggered by a single packet, which is
checked for obeying the local assertions. No quantifiers
are necessary in this context.

Layer Assertions Layer assertions are valid for all
TSMs belonging to a single layer. In contrast to local
assertions layer assertions can make use of the complete
FOL+, including universal and existential quantifica-
tion. They can be checked either at the initial state or at
a final state, i.e. before or after checking for atomicity.
In general, a violation of an assertion should be detected
as early as possible. Therefore, layer assertions will be
checked at the initial state of a TSM whenever possible.

As layer assertions can be expected to be more complex
than local assertions, they will not be checked during the
execution of the corresponding TSM. In general, fail-
ure of a check of a layer assertion during run-time is
possible, because intermediary states of the TSM must
not necessarily fulfil the layer assertions. Intermediary
states only describe the transformation process from one
consistent state to another. This does not imply that
all intermediary states have to fulfil the layer assertions,
they only have to fulfil the local assertions. The layer
assertions must hold for the initial state and for the final
state.

3.2.4 Isolation Tester

The isolation tester is responsible for checking the iso-
lation property, i.e. for checking whether a transaction
performed without interference from other transactions.
For general processes running on a single node the ap-
plication of the isolation tester is obvious: it can detect
attacks based on race conditions. To do so, the splitter
has to monitor the audit stream for accesses to critical



objects (e.g. directories and files) and start the isolation
tester, which checks for a violation of the isolation prop-
erty.

With regard to communication processes the use of an
isolation tester is not immediately obvious. Nonetheless,
certain attacks on the protocol level can be interpreted as
a violation of the isolation property. This is especially
true if we take the distributed nature of a communication
process into account, i.e. if we do not only consider the
effects of a protocol run on a single system, but broaden
our transaction concept to include all nodes involved in
the communication process. This results in the so-called
compound transaction concept.

3.3 Compound Transactions

Signaling and communication protocols form the core
of modern tele and data communication networks. They
define the communication between two or more nodes.
Therefore, it is not sufficient to consider only local trans-
actions. Instead, it must also be possible to monitordis-
tributed transactions.

Distributed transactions describe the parallel execution
of single transactions on different nodes. This is not al-
ways sufficient in our context. Therefore, we enhance
the concept of distributed transactions and also take
the communication between the single transactions into
account, i.e. the transactions communicate with each
other, and the progress of one transaction depends on
the progress of the other. The communication itself can
also be considered as a transaction. Together with the
local protocol actions of the sender and the receiver the
communication forms acompound transaction.

Compound transactions cannot only be used to describe
the horizontal communication between peer layers, but
also the vertical communication between different layers
within a protocol stack.

Whether a communication process is monitored as a dis-
tributed or a compound transaction depends on the level
of granularity demanded by the IDS. We use the fol-
lowing syntax to distinguish between these two kinds of
transactions:

1. Distributed Transactions:A k B

2. Compound Transactions:A$ B

In order to describe the communication process between

Figure 4: MSC for TCP’s three-way handshake.

the involved components, we useMessage Sequence
Charts(MSCs).

MSCs [8] are a well-known technique for the visualiza-
tion of communicating processes. A single MSC con-
sists of different instances, which can communicate with
each other. Each instance represents a DFSM, which
is additionally allowed to communicate with another
DFSM. Figure 4 shows the MSC for TCP’s three-way
handshake protocol in graphical notation.

An MSC is not a description of the complete behavior
of a system. Rather it expresses one execution trace.
To specify a system more detailed a collection of MSCs
may be used [12].

The concrete textual syntax of the core language of
MSCs [12] is given in Figure 5. The eventsin andout
are used for the communication with other instances and
the environment.

The correspondence between message outputs and mes-
sage inputs has to be uniquely defined by message name
identification. A message input must not be executed
before the corresponding message output has been exe-
cuted [12]. In addition, the activities along one single
instance axis are completely ordered, but no notion of
global time is assumed. Events of different instances are
ordered only via messages, which imposes a partial or-
dering on the set of events being contained.

This partial ordering is checked by the IDS. The com-
munication processes on both sides are identified by a
unique transaction identifier (TransId ). The transac-
tion identifier is composed of the session characteristics
already mentioned in section 3.2.1. For a TCP session,
for example, the pair of socket addresses and the corre-
sponding sequence numbers are used. To check the com-
pound transaction for its correct execution two checks
have to be performed:



msc ::= mscmscid; mscbodyendmsc;
mscbody ::= instdef mscbodyj �
instdef ::= instanceinstid; instbodyendinstance
instbody ::= event instbodyj �
event ::= in msgidfrom instid;

j in msgidfrom env;
j outmsgidfrom instid;
j outmsgidfrom env;
j actionactid;

Figure 5: Basic Message Sequence Charts.

� Check the local transactions for their successful ex-
ecution (aborted or committed?).

� Check the communication between the local trans-
actions according to the MSC.

Step 1 is similar to the general approach taken for dis-
tributed database transactions. Each node involved in the
transactions is polled by a coordinator for the success of
its local transaction. Based on the information gathered
from the nodes the coordinator decides on whether to
commit or abort the transaction and informs the nodes
(two-phase commit protocol).

In our case the coordinator will either be the receiver
or a trusted third party (TTP). Our monitoring of dis-
tributed transactions follows the approach taken by the
two-phase commit protocol. Nonetheless, for compound
transactions the communication between the nodes has
also to be taken into account. Communication between
the nodes is checked to conform with the corresponding
MSC. As we do not assume a global synchronized time,
this check focuses on the partial order of the events de-
fined by the MSC, particular the message in- and out-
puts. In the sense of the state operator�M defined in
[12] we check that a message input is not executed be-
fore the corresponding message output. The coordinator
therefore requests the input and output events from the
participating nodes and performs this check.

Compound transactions can be mapped onto distributed
transaction. The checking of the MSC simply defines
an additional local transaction that leads to a local deci-
sion about committing or aborting the whole transaction
based on its course of communication.

This method will only work if the source of the audit
data is reliable. Otherwise, an attacker could send the
requesting node a faked set of in- and output events. The
IDS components therefore need to communicate in an
authentic way.

4 Examples

To demonstrate the feasibility of our approach, we will
examine two aspects related to our model using prac-
tical examples. On the one hand we will elaborate on
the aspect of how to subdivide a communication process
horizontally and vertically into transactions for monitor-
ing. On the other hand we will have a closer look at
certain attack scenarios and describe how they will lead
to trap events based on violations of the ACID principle.
Regarding the latter we will distinguish between attacks
which are to be considered in the context of local trans-
actions (e.g. Ping of Death) and attacks to be considered
in the context of compound transaction (e.g. IP spoof-
ing).

The typical scenario for these examples is aVirtual Pri-
vate Network(VPN).

4.1 Scenario

Future applications will increasingly involve several dis-
tributed sites, which will typically be interconnected by
a VPN.

VPNs are a well suited scenario for studying IDS and
distributed IDS functionality as they involve two or more
parties belonging to different security domains with dif-
ferent trust relationships. We consider three general sce-
narios for our approach:

1. Local security domain.

2. Cooperation of trusting security domains (e.g. sites
interconnected via a VPN).

3. Cooperation of non-trusting security domains (e.g.
VPN sites and network provider).

The two latter scenarios are of special interest to dis-
tributed and compound transactions.

4.2 Atomicity

The check for atomicity of a transaction helps to detect
various attacks as abnormal behavior. This includesSYN
flooding, adenial of serviceattack.



Figure 6: TSM for the 3-Way-Handshake.

With SYN flooding a server is hit by a large number
of connection requests. The sender address is normally
spoofed.

By defining the TCP connection establishment process
as a transaction it becomes obvious that the correspond-
ing DFSM on the victims side is not completed. The
final stateq4 is not reached, and therefore the atomicity
property is violated.

Figure 6 shows the corresponding TSM of the 3-way-
handshake. The 5-tuple used obeys the following
scheme:

(b0; b1; b2; c0; c1)

with

� b0 - Boolean value, indicating whether a packet was
sent (b0 = 0) or received (b0 = 1);

� b1 - Boolean value, indicating whether or not the
SYN flag was set;

� b2 - Boolean value, indicating whether or not the
ACK flag was set;

� c0 - sequence number of the local node;

� c1 - sequence number of the remote node, incre-
mented by 1 (acknowledgement number).

Obviously, a SYN flooding attack can be detected by the
violation of the atomicity property. The protocol itself
recognizes the incomplete 3-way-handshake through a
timeout. This timeout triggers the receiver to send a re-
set (RST bit set). As a result the next message received
by our monitor is an invalid 5-tuple, which aborts the
transaction.

An example for an attack involving two sides in the de-
tection process (second scenario) isIP-spoofingbased
on sequence numbers. In fact, the SYN flooding at-
tack is part of this attack. If hostC hijacks a con-
nection between senderA and receiverB, the lo-
cal transaction monitored at siteB will end with a
Commit(TransId) . By considering the communica-
tion as a distributed or compound transaction the whole
communication is decomposed into two or three local
transactions. Only if all of these local transactions com-
mit, the distributed or compound transaction also com-
mits. For IP-spoofing the local transaction at senderA
will obviously abort and therefore the whole communi-
cation transaction will be aborted.

Other attacks that can be detected by monitoring the
atomicity of a transaction include e.g.port scanning at-
tacks.

4.3 Consistency

The consistency of a transaction guarantees that the
communication process is error free and adheres to the
protocol specification. This also helps to detect various
attacks.

One example is thePing of death. This attack is based
on the fragmentation of IP packets. According to [17],
IP packets including the header may have a size of up to
65535 octets. Without any option fields the header has a
size of 20 octets. Packets which exceed the size accepted
by layer 2 of the protocol stack3, are fragmented and
reassembled at the receiver side.

An ICMP ECHO request consists of an eight octet ICMP
header [18], which is followed by the request data.
Therefore, the maximum size of the data field is65507
octets.

Nonetheless, it is possible to construct and send an in-
valid packet, in which the data part contains more than
65507 octets. This is based on the fragmentation pro-
cess. The fragmentation is done by specifying an offset
and the size of the fragment. For the last fragment it is
therefore possible to exceed the 65535 octet limit for the
whole packet.

A layer assertions therefore specifies that the total size
of a packet cannot exceed 65535 octets. This layer as-
sertion has to be put into action by the TSM, i.e. the
layer assertion is transformed into a local assertion and

3Defined by the maximum transmission unit (MTU).



Figure 7: TSM for the reassembling of IP fragments.

a corresponding check. In our example the check can be
done when receiving the final fragment, because for this
fragment the sum of the fragment offset and fragment
length has to be less than 65536.

Figure 7 shows the corresponding TSM using the fol-
lowing abbreviations:

� FO (Fragment Offset) - offset (in 8-byte units) of
the fragment from the beginning of the original
datagram;

� MF (More Fragments) - one bit in theflagsfield
turned on for each fragment comprising a datagram
except the final fragment;

� AF - Boolean expression, indicating whether or not
all fragments have been received;

� TL (Total Length) - total length of the IP datagram;

� SourceIP - IP source address of the fragment
sender.

The TSM uses both local and layer assertions. The lo-
cal assertions are part of the inscription of the transi-
tions, the layer assertions are explicitly specified below
the TSM.

The local assertions ensure that the fragment with
MF = 0 is checked if the sum of the fragment off-
set and the fragment length is actually less than 65536
octets. This puts the second layer assertion into action.

The first layer assertion defines the admissible general
conditions of the communication. In this simple exam-
ple the set of valid sources is limited to IP addresses of
the form137:226:� :� or written as aFOL+ expression:

9a3; a4 2 f0; : : : ; 255g : SrcAddr = 137:226:a3:a4

This assertion is checked before the run through the
TSM.

4.4 Isolation

Isolation means that each transaction must be performed
without interference with other transactions, i.e. the in-
termediate effects of a transaction must not be visible
to other transactions [4]. As already stated the viola-
tion of the isolation property is not immediately obvious
in the network context discussed so far, although e.g.
IP-spoofing based on sequence numbers could also be
interpreted as a violation of the isolation property. We
will therefore not elaborate on this topic in this paper.
Nonetheless, as one major design goal of our approach is
universal validity, we will briefly stress its validity in the
context of processes. With processes, monitoring of the
isolation property helps to prevent security failures due
to improper synchronization of processes or race condi-
tions.

An abstract example for improper synchronization is
given in Table 1. A concrete example for such a lost
update problem [10] describes a scenario in which a
user invokes thepasswdprogram to change his password
while an administrator is editing the password file. The
two programs modify the password file simultaneously,
leaving it with an incorrect content.

Following our approach we can consider either one or
both of the accesses to the password file as a transaction.
By doing this, the transaction is monitored for its iso-
lated execution and the password file cannot be left with
an incorrect content. In contrast to the network scenario
the allowed transactions have not already been defined
by any kind of protocol specification. When entering the
process and user level depicted in Figure 1, the allowed
transactions must be explicitly specified in the security
policy. In order to avoid restrictions for the normal user
it is sufficient to define transactions on the basis of valid
action sequences for administrators and security critical
processes.



4.5 Durability

So far, we have not considered in detail the property of
durability. As atomicity, consistency and isolation are
properties which focus on the execution of the transac-
tion, the durability property influences the period after
the successful execution of a transaction. The effects of
a successful transaction have to survive even hard- and
software failures or, in our case, attacks.

What does that mean in the context of an IDS? For
databases the durability property (in combination with
the atomicity) ensures that after a failure the database
state to be reconstructed is well defined. This property
is also useful for systems under attack. After an attack
has been detected it is often difficult to determine the lat-
est safe state. If the administrator cannot determine the
exact time of a successful intrusion, he cannot be sure
that his backups are free from security leaks. There-
fore, an IDS should not only support the detection of
attacks, it should also support the administrator in the
reconstruction of the system and the reestablishment of
a safe state. Nonetheless, the details of this approach
will be discussed elsewhere.

5 Related Works

The approach most similar to ours is described in Calvin
Ko’s paper ”Execution Monitoring of Security-Critical
Programs in a Distributed System: A Specification-
Based Approach” [10]. It follows a specification-based
approach and also describes the meaning of atomic ac-
tions in relation to intrusion detection. However, [10]
does not follow the parallels to the classical transactional
model and therefore, from our point of view, looses
some of its generality. For instance [10] cites the ex-
amples of a super user editing the password file and an
user changing his password in the same file. The given
solution is a specification in the form of a so-calledPar-
allel Environment Grammar(PEG). In the PEG the par-
allel execution of two programs4 is specified as shown
in Figure 8.

Although we focus on communication processes in this
paper it is obvious that the transaction model also applies
to this process centric scenario. Following the transac-
tion model it is sufficient to specify the most high-level

4The concrete and therefore longer PEG for the password file ex-
ample can be found in section 5.4 of [10]. The general structure is the
same as for this simple example.

Environment Variables
1. Int E=0;

Start Expression
2. <progA> || <progB>

Hyperrules
3. <progA> -> <writeA, E>.
4. <writeA, 0> -> <openA> <closeA>{E=E-1;}.
5. <open> -> open_A {E=E+1;}.
6. <close> -> close_A.

7. <progB> -> <writeB, E>.
8. <writeB, 0> -> <openB><closeB>{E=E-1;}.
9. <openB> -> open_B {E=E+1;}.
10. <closeB> -> close_B.

Figure 8: Parallel Environment Grammar (PEG).

(su level) action as a transaction. It is not necessary to
explicitly specify the parallel execution, because of the
check for the serially equivalent execution performed by
the scheduler.

Another system related to ours is the Bro system [15].
The specifications made by Bro can be integrated into
our approach as a part of theAssertion -section of a
transaction or a layer. As we do not yet have specified
the exact data types to be used in our approach, we are
currently considering the reuse of some of the data types
already specified by Bro.

The main limitation of our model is related to the specifi-
cation process. In general, the specification of communi-
cation processes can be extracted immediately from the
protocol specification. Therefore, the specification can
either be provided by the vendor or any other trusted
third party (ease of specification). Any attack based
on an implementation error can be indirectly detected
by our approach because it will be recognized as an
anomaly. Any closer examination and classification (er-
ror or attack) of the anomaly can be done either by a
human operator or a misuse intrusion detection compo-
nent.

Nonetheless, the transaction model cannot deal with
specification or management errors, which form the
other two sources of vulnerabilities. The transaction
model only deals with implementation errors. If the
specification of a communication protocol or its trans-
formation into a specification for the anomaly detection
system itself is faulty, attacks based on these errors will
remain undetected because by definition they follow the
specification and can therefore not be considered to be



anomalies. The same holds for any management errors
of the environment.

6 Conclusions and Outlook

In this paper we have proposed a new technique for
anomaly based intrusion detection. The detection of
anomalies is based on the definition of correct transac-
tional behavior. This definition of correct, desired be-
havior defines the system’s multi-level security policy,
which is monitored during run-time by the IDS. In con-
trast to classical database and other transactional sys-
tems we do not enforce the distinct transactions to be
executed according to the ACID properties. Instead, in
the sense of an optimistic scheduler, we monitor the sys-
tem only for any potential conflicts.

Obviously, it is neither desirable nor feasible to monitor
all host activities and connections. The monitoring will
therefore be performed dynamically, i.e. the different
sensors will be activated and configured on demand by a
control instance being part of the general network man-
agement environment. This is one of the main design
criteria for ourAachener Network Intrusion Detection
Architecture(ANIDA), which forms the broader context
to which the described anomaly detection approach be-
longs.

Our approach is currently under development and first
results of the prototype will be available soon.
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