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Program Co-Chairs

Welcome to the 2011 USENIX Annual Technical Conference!

This year continues the USENIX Annual Tech tradition of papers and presentations reflecting some of the finest 
practical research in computer systems today. The program committee put together an excellent program of 27 full 
papers and 9 short papers, selected from 180 submissions. These papers reflect a broad range of work, including 
novel twists on core areas such as scheduling, storage, distributed systems, and virtualization, a renewed emphasis 
on important problems in debugging, diagnosis, security, and privacy, and new contributions in emerging areas 
such as cloud computing and personal devices.

It was our privilege to work with a great program committee of 28 members, from a range of industrial and 
academic research institutions. Program committee members were allowed to submit papers, but as program co-
chairs, we did not submit any ourselves, to minimize complications and conflicts of interest. Every paper submit-
ted to the conference received at least three reviews from program committee members, and every paper accepted 
to the conference received at least four reviews from program committee members. Overall, program committee 
members completed more than 700 reviews—roughly 25 reviews each. In addition, we benefited from the expertise 
of external reviewers who completed a number of additional reviews. The committee met at Columbia University 
on March 14, 2011, for an all-day discussion to decide the final program. Every program committee member except 
one attended the meeting. Nearly all of the accepted papers were then shepherded by a program committee mem-
ber to deliver the final camera-ready version. Poster submissions were handled by Ajay Gulati, who served as the 
poster chair for the conference.

Many people deserve credit and thanks for their hard work in helping to make the conference successful. Without 
the many authors who submitted high-quality and thought-provoking papers, USENIX Annual Tech as a venue, 
event, and community of researchers would not exist. The program committee and our external reviewers devoted 
much time and diligence to reviewing and shepherding, in some cases on short notice. Eddie Kohler’s HotCRP con-
ference management software enabled the reviewing process and program committee meeting to run smoothly, and 
Tony Del Porto kept the USENIX servers up and running throughout the process. We are also grateful to Columbia 
University for hosting the program committee meeting, and to VMware, Yahoo!, and IBM for helping to sponsor 
the meeting. Finally, the USENIX staff—especially Ellie Young, Jane-Ellen Long, Casey Henderson, Camille Mul-
ligan, Anne Dickison, Jessica Horst, and Andrew Gustafson—have worked tirelessly behind the scenes to make the 
conference a success.

We would like to thank our industry sponsors for their support in making the 2011 USENIX Annual Technical 
Conference possible and enjoyable. In particular, we thank our Silver Sponsors EMC, Facebook, and VMware, 
and our Bronze Sponsors Google, Microsoft Research, and NetApp, as well as our Media Sponsors and Industry 
Partners. Thanks also to NSF for providing student travel support for the conference.

We hope you enjoy the program and the conference!

Jason Nieh, Columbia University 
Carl Waldspurger
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A Case for NUMA-aware Contention Management on Multicore Systems

Sergey Blagodurov
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Simon Fraser University

Mohammad Dashti
Simon Fraser University

Alexandra Fedorova
Simon Fraser University

Abstract

On multicore systems, contention for shared resources
occurs when memory-intensive threads are co-scheduled
on cores that share parts of the memory hierarchy, such
as last-level caches and memory controllers. Previous
work investigated how contention could be addressed
via scheduling. A contention-aware scheduler separates
competing threads onto separate memory hierarchy do-
mains to eliminate resource sharing and, as a conse-
quence, to mitigate contention. However, all previous
work on contention-aware scheduling assumed that the
underlying system is UMA (uniform memory access la-
tencies, single memory controller). Modern multicore
systems, however, are NUMA, which means that they
feature non-uniform memory access latencies and multi-
ple memory controllers.

We discovered that state-of-the-art contention man-
agement algorithms fail to be effective on NUMA sys-
tems and may even hurt performance relative to a default
OS scheduler. In this paper we investigate the causes for
this behavior and design the first contention-aware algo-
rithm for NUMA systems.

1 Introduction

Contention for shared resources on multicore proces-
sors is a well-known problem. Consider a typical mul-
ticore system, schematically depicted in Figure 1, where
cores share parts of the memory hierarchy, which we
term memory domains, and compete for resources such
as last-level caches (LLC), system request queues and
memory controllers. Several studies investigated ways of
reducing resource contention and one of the promising
approaches that emerged recently is contention-aware
scheduling [23, 10, 16]. A contention-aware scheduler
identifies threads that compete for shared resources of a
memory domain and places them into different domains.
In doing so the scheduler can improve the worst-case

performance of individual applications or threads by as
much as 80% and the overall workload performance by
as much as 12% [23].

Unfortunately studies of contention-aware algorithms
focused primarily on UMA (Uniform Memory Access)
systems, where there are multiple shared LLCs, but only
a single memory node equipped with the single memory
controller, and memory can be accessed with the same
latency from any core. However, new multicore sys-
tems increasingly use the Non-Uniform Memory Access
(NUMA) architecture, due to its decentralized and scal-
able nature. In modern NUMA systems, there are mul-
tiple memory nodes, one per memory domain (see Fig-
ure 1). Local nodes can be accessed in less time than re-
mote ones, and each node has its own memory controller.
When we ran the best known contention-aware sched-
ulers on a NUMA system, we discovered that not only do
they not manage contention effectively, but they some-
times even hurt performance when compared to a de-
fault contention-unaware scheduler (on our experimental
setup we observed as much as 30% performance degra-
dation caused by a NUMA-agnostic contention-aware al-
gorithm relative to the default Linux scheduler). The
focus of our study is to investigate (1) why contention-
management schedulers that targeted UMA systems fail
to work on NUMA systems and (2) devise an algorithm
that would work effectively on NUMA systems.

Why existing contention-aware algorithms may hurt
performance on NUMA systems: Existing state-of-
the-art contention-aware algorithms work as follows on
NUMA systems. They identify threads that are sharing
a memory domain and hurting each other’s performance
and migrate one of the threads to a different domain. This
may lead to a situation where a thread’s memory is lo-
cated in a different domain than that in which the thread
is running. (E.g., consider a thread being migrated from
core C1 to core C5 in Figure 1, with its memory being lo-
cated in Memory Node #1). We refer to migrations that
may place a thread into a domain remote from its mem-
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Figure 1: A schematic view of a system with four mem-
ory domains and four cores per domain. There are 16
cores in total, and a shared L3 cache per domain.

ory NUMA-agnostic migrations.
NUMA-agnostic migrations create several problems,

an obvious one being that the thread now incurs a higher
latency when accessing its memory. However, contrary
to a commonly held belief that remote access latency –
i.e., the higher latency incurred when accessing a remote
domain relative to accessing a local one – would be the
key concern in this scenario, we discovered that NUMA-
agnostic migrations create other problems, which are far
more serious than remote access latency. In particular,
NUMA-agnostic migrations fail to eliminate contention
for some of the key hardware resources on multicore
systems and create contention for additional resources.
That is why existing contention-aware algorithms that
perform NUMA-agnostic migrations not only fail to be
effective, but can substantially hurt performance on mod-
ern multicore systems.

Challenges in designing contention-aware algo-
rithms for NUMA systems: To address this problem, a
contention-aware algorithm on a NUMA system must
migrate the memory of the thread to the same domain
where it migrates the thread itself. However, the need to
move memory along with the thread makes thread mi-
grations costly. So the algorithm must minimize thread
migrations, performing them only when they are likely to
significantly increase performance, and when migrating
memory it must carefully decide which pages are most
profitable to migrate. Our work addresses these chal-
lenges.

The contributions of our work can be summarized as
follows:

• We discover that contention-aware algorithms

known to work well on UMA systems may actually
hurt performance on NUMA systems.

• We identify NUMA-agnostic migration as the cause
for this phenomenon and identify the reasons why
performance degrades. We also show that remote
access latency is not the key reason why NUMA-
agnostic migration hurt performance.

• We design and implement Distributed Intensity
NUMA Online (DINO), a new contention-aware al-
gorithm for NUMA systems. DINO prevents super-
fluous thread migrations, but when it does perform
migrations, it moves the memory of the threads
along with the threads themselves. DINO performs
up to 20% better than the default Linux scheduler
and up to 50% better than Distributed Intensity,
which is the best contention-aware scheduler known
to us [23].

• We devise a page migration strategy that works on-
line, uses Instruction-Based Sampling, and elimi-
nates on average 75% of remote accesses.

Our algorithms were implemented at user-level, since
modern operating systems typically export the interfaces
for implementing the desired functionality. If needed, the
algorithms can also be moved into the kernel itself.

The rest of this paper is organized as follows. Sec-
tion 2 demonstrates why existing contention-aware al-
gorithms fail to work on NUMA systems. Section 3
presents and evaluates DINO. Section 4 analyzes mem-
ory migration strategies. Section 5 provides the exper-
imental results. Section 6 discusses related work, and
Section 7 summarizes our findings.

2 Why existing algorithms do not work on
NUMA systems

As we explained in the introduction, existing contention-
aware algorithms perform NUMA-agnostic migration,
and so a thread may end up running on a node remote
from its memory. This creates additional problems be-
sides introducing remote latency overhead. In particu-
lar, NUMA-agnostic migrations fail to eliminate memory
controller contention, and create additional interconnect
contention. The focus of this section is to experimentally
demonstrate why this is the case.

To this end, in Section 2.1, we quantify how con-
tention for various shared resources contributes to per-
formance degradation that an application may experi-
ence as it shares the hardware with other applications.
We show that memory controller contention and inter-
connect contention are the most important causes of per-
formance degradation when an application is running re-
motely from its memory. Then, in Section 2.2 we use
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Figure 2: A schematic view of a system used in this
study. A single domain is shown.
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Figure 3: Placement of threads and memory in all exper-
imental configurations.

this finding to explain why NUMA-agnostic migrations
can be detrimental to performance.

2.1 Quantifying causes of contention

In this section we quantify the effects of performance
degradation on multicore NUMA systems depending on
how threads and their memory are placed in memory do-
mains. For this part of the study, we use benchmarks
from the SPEC CPU2006 benchmark suite. We perform
experiments on a Dell PowerEdge server equipped with

four AMD Barcelona processors running at 2.3GHz, and
64GB of RAM, 16GB per domain. The operating system
is Linux 2.6.29.6. Figure 2 schematically represents the
architecture of each processor in this system.

We identify four sources of performance degradation
that can occur on modern NUMA systems, such as those
shown in Figures 1 and 2:

• Contention for the shared last-level cache (CA).
This also includes contention for the system request
queue and the crossbar.

• Contention for the memory controller (MC). This
also includes contention for the DRAM prefetching
unit.

• Contention for the inter-domain interconnect (IC).

• Remote access latency, occurring when a thread’s
memory is placed in a remote node (RL).

To quantify the effects of performance degradation
caused by these factors we use the methodology depicted
in Figure 3. We run a target application, denoted as
T with a set of three competing applications, denoted
as C. The memory of the target application is denoted
MT , and the memory of the competing applications is
denoted MC. We vary (1) how the target application is
placed with respect to its memory, (2) how it is placed
with respect to the competing applications, and (3) how
the memory of the target is placed with respect to the
memory of the competing applications. Exploring per-
formance in these various scenarios allows us to quantify
the effects of NUMA-agnostic thread placement.

Figure 3 summarizes the relative placement of mem-
ory and applications that we used in our experiments.
Next to each scenario we show factors affecting the
performance of the target application: CA, IC, MC or
RL. For example, in Scenario 0, an application runs
contention-free with its memory on a local node, so no
performance-degrading factors are present. We term this
the base case and compare to it the performance in other
cases. The scenarios where there is cache contention are
shown on the right and the scenarios where there is no
cache contention are shown on the left.

We used two types of target and competing appli-
cations, classified according to their memory intensity:
devil and turtle. The terminology is borrowed from an
earlier study on application classification [21]. Devils
are memory intensive: they generate a large number of
memory requests. We classify an application as a devil
if it generates more than two misses per 1000 instruc-
tions (MPI). Otherwise, an application is deemed a turtle.
We further divide devils into two subcategories: regular
devils and soft-devils. Regular devils have a miss rate
that exceeds 15 misses per 1000 instructions. Soft-devils
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have an MPI between two and 15. Solo miss rates, ob-
tained when an application runs on a machine alone, are
used for classification.

We experimented with nine different target applica-
tions: three devils (mcf, omnetpp and milc), three soft-
devils, (gcc, bwaves and bzip) and three turtles (povray,
calculix and h264).

Figure 4 shows how an application’s performance de-
grades in Scenarios 1-7 from Figure 3 relative to Sce-
nario 0. Performance degradation, shown on the y-axis,
is measured as the increase in completion time relative
to Scenario 0. The x-axis shows the type of competing
applications that were running concurrently to generate
contention: devil, soft-devil, or turtle.

These results demonstrate a very important point ex-
hibited in Scenario 3: when a thread runs alone on a
memory node (i.e., there is no contention for cache),
but its memory is remote and is in the same domain as
the memory of another memory-intensive thread, perfor-
mance degradation can be very severe, reaching 110%
(see MILC, Scenario 3). One of the reasons is that the
threads are still competing for the memory controller of
the node that holds their memory. But this is exactly
the scenario that can be created by a NUMA-agnostic
migration, which migrates a thread to a different node
without migrating its memory. This is the first piece of
evidence showing why NUMA-agnostic migrations will
cause problems.

We now present further evidence. Using the data in
these experiments, we are able to estimate how much
each of the four factors (CA, MC, IC, and RL) con-
tributes to the overall performance degradation in Sce-
nario 7 – the one where performance degradation is the
worst. For that, we compare experiments that differ from
each other precisely by one degradation factor involved.
This allows us to single out the influence of this differ-
entiating factor on the application performance. Figure 5
shows the breakdown for the devil and soft-devil applica-
tions. Turtles are not shown, because their performance
degradation is negligible. The overall degradation for
each application relative to the base case is shown at the
top of the corresponding bar. The y-axis shows the frac-
tion of the total performance degradation that each factor
causes. Since contention causing factors on a real system
overlap in complex and integrated ways, it is not possi-
ble to obtain a precise separation. These results are an
approximation that is intended to direct attention to the
true bottlenecks in the system.

The results show that of all performance-degrading
factors contention for cache constitutes only a very small
part, contributing at most 20% to the overall degrada-
tion. And yet, NUMA-agnostic migrations eliminate
only contention for the shared cache (CA), leaving the
more important factors (MC, IC, RL) unaddressed! Since

the memory is not migrated with the thread, several
memory-intensive threads could still have their mem-
ory placed in the same memory node and so they would
compete for the memory controller when accessing their
memory. Furthermore, a migrated thread could be sub-
ject to the remote access latency, and because a thread
would use the inter-node interconnect to access its mem-
ory, it would be subject to the interconnect contention.
In summary, NUMA-agnostic migrations fail to elimi-
nate or even exacerbate the most crucial performance-
degrading factors: MC, IC, RL.

2.2 Why existing contention management
algorithms hurt performance

Now that we are familiar with causes of performance
degradation on NUMA systems, we are ready to explain
why existing contention management algorithms fail to
work on NUMA systems. Consider the following ex-
ample. Suppose that two competing threads A and B
run on cores C1 and C2 on a system shown in Figure 1.
A contention-aware scheduler would detect that A and
B compete and migrate one of the threads, for example
thread B, to a core in a different memory domain, for ex-
ample core C5. Now A and B are not competing for the
last-level (L3) cache, and on UMA systems this would be
sufficient to eliminate contention. But on a NUMA sys-
tem shown in Figure 1, A and B are still competing for
the memory controller at Memory Node #1 (MC in Fig-
ure 5), assuming that their memory is physically located
in Node #1. So by simply migrating thread B to another
memory domain, the scheduler does not eliminate one of
the most significant sources of contention – contention
for the memory controller.

Furthermore, the migration of thread B to a different
memory domain creates two additional problems, which
degrade thread B’s performance. Assuming that thread
B’s memory is physically located in Memory Node #1
(all operating systems of which we are aware would al-
locate B’s memory on Node #1 if B is running on a core
attached to Node #1 and then leave the memory on Node
#1 even after thread migration), B is now suffering from
two additional sources of overhead: interconnect con-
tention and remote latency (labeled IC and RL respec-
tively in Figure 5). Although remote latency is not a
crucially important factor, interconnect contention could
hurt performance quite significantly.

To summarize, NUMA-agnostic migrations in the ex-
isting contention management algorithms cause the fol-
lowing problems, listed in the order of severity according
to their effect on performance: (1) They fail to eliminate
memory-controller contention; (2) They may create ad-
ditional interconnect contention; (3) They introduce re-
mote latency overhead.
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Figure 4: Performance degradation due to contention, cases 1-7 from Figure 3 relative to running contention free (case
0).
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performance degradation.

3 A Contention-Aware Scheduling Algo-
rithm for NUMA Systems

We design a new contention-aware scheduling algo-
rithm for NUMA systems. We borrow the contention-
modeling heuristic from the Distributed Intensity (DI)
algorithm, because it was shown to perform within 3%
percent of optimal on non-NUMA systems1 [23]. Other
contention aware algorithms use similar principles as
DI [10, 16].

We begin by explaining how the original DI algorithm
works (Section 3.1). For clarity we will refer to it from
now on as DI-Plain. We proceed to show that simply
extending DI-Plain to migrate memory – this version of
the algorithm is called DI-Migrate – is not sufficient to
achieve good performance on NUMA systems. We con-
clude with the description of our new DI-NUMA Online,

1Although some experiments with DI reported in [23] were per-
formed on a NUMA machine, the experimental environment was con-
figured so as to eliminate any effects of NUMA.

or DINO, that in addition to migrating thread memory
along with the thread eliminates superfluous migrations
and unlike other algorithms improves performance on
NUMA systems.

3.1 DI-Plain

DI-Plain works by predicting which threads will inter-
fere if co-scheduled on the same memory domain and
placing those threads on separate domains. Prediction
is performed online, based on performance characteris-
tics of threads measured via hardware counters. To pre-
dict interference, DI uses the miss-rate heuristic – a mea-
sure of last-level cache misses per thousand instructions,
which includes the misses resulting from hardware pre-
fetch requests. As we and other researchers showed in
earlier work the miss-rate heuristic is a good approxima-
tion of contention: if two threads have a high LLC miss
rate they are likely to compete for shared CPU resources
and degrade each other’s performance [23, 2, 10, 16].

Even though the miss rate does not capture the full
complexity of thread interactions on modern multicore
systems, it is an excellent predictor of contention for
memory controllers and interconnects – key resource
bottlenecks on these systems – because it reflects how
intensely threads use these resources. Detailed study
showing why the miss rate heuristic works well and
how it compares to other modeling heuristics is reported
in [23, 2].

DI-Plain continuously monitors the miss rates of run-
ning threads. Once in a while (every second in the orig-
inal implementation), it sorts the threads according to
their miss rates, and assigns them to memory domains so
as to co-schedule low-miss-rate threads with high-miss-
rate threads. It does so by first iterating over the sorted
threads starting from the most memory-intensive (the one

5
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with the highest miss rate) and placing each thread in a
separate domain, iterating over domains consecutively.
This way it separates memory-intensive threads. Then it
iterates over the array from the other end, starting from
the least memory-intensive thread, placing each on an
unused core in consecutive domains. Then it iterates
from the other end of the array again, and continues alter-
nating iterations until all threads have been placed. This
strategy results in balancing the memory intensity across
domains. DI-Plain performs no memory migration when
it migrates the threads.

Existing operating systems (Linux, Solaris) would not
move the thread’s memory to another node when a thread
is moved to a new domain. Linux performs new memory
allocations in the new domain, but will leave the mem-
ory allocated before migration in the old one. Solaris
will act similarly2. So on either of these systems, if the
thread after migration keeps accessing the memory that
was allocated on another domain, it will cause negative
performance effects described in Section 2.

3.2 DI-Migrate

Our first (and obvious) attempt to make DI-Plain
NUMA-aware was to make it migrate the thread’s mem-
ory along with the thread. We refer to this “intermedi-
ate” algorithm in our design exploration as DI-Migrate.
The description of the memory migration algorithm is
deferred until Section 4, but the general idea is that it
detects which pages are actively accessed and migrates
them to the new node along with a chunk of surrounding
pages. For now we present a few experiments comparing
DI-Plain with DI-Migrate. Our experiments will reveal
that memory migration is insufficient to make DI-Plain
work well on NUMA systems, and this will motivate the
design of DINO.

Our experiments were performed on the same system
as described in Section 2.1.

The benchmarks shown in this section are scientific
applications from SPEC CPU2006 and SPEC MPI2007
suites with reference sets in both cases. (In a later
section we also show results for the multithreaded
Apache/MySQL workload.) We evaluated scientific ap-
plications for two reasons. First, they are CPU-intensive
and often suffer from contention. Second, they were
of interest for our partner Western Canadian Research
Grid (WestGrid) – a network of compute clusters used
by scientists at Canadian universities and in particular

2Solaris will perform new allocations in the new domain if a
thread’s home lgroup – a representation of a thread’s home memory
domain – is reassigned upon migration, but will not move the mem-
ory allocated prior to home lgroup reassignment. If the lgroup is un-
changed, even new memory allocations will be performed in the old
domain.

by physicists involved in ATLAS, an international par-
ticle physics experiment at the Large Hadron Collider
at CERN. The WestGrid site at our university is inter-
ested in deploying contention management algorithms on
their clusters. Prospect of adoption of contention man-
agement algorithms in a real setting also motivated their
user-level implementation – not requiring a custom ker-
nel makes the adoption less risky. Our algorithms are im-
plemented on Linux as user-level daemons that measure
threads’ miss rates using perfmon, migrate threads us-
ing scheduling affinity system calls, and move memory
using the numa migrate pages system call.

For SPEC CPU we show one workload for brevity;
complete results are presented in Section 5. All bench-
marks in the workload are launched simultaneously and
if one benchmark terminates it is restarted until each
benchmark completes three times. We use the result of
the second execution for each benchmark, and perform
the experiment ten times, reporting the average of these
runs.

For SPEC MPI we show results for eleven different
MPI jobs. In each experiment we run a single job, each
comprised of 16 processes. We perform ten runs of each
job and present the average completion times.

We compare performance under DI-Plain and DI-
Migrate relative to the default Linux Completely Fair
Scheduler, to which we refer as Default. Standard de-
viation across the runs is under 6% for the DI algo-
rithms. Deviation under Default is necessarily high, be-
cause being unaware of resource contention it may force
a low-contention thread placement in one run and a high-
contention mapping in another. Detailed comparison of
deviations under different schedulers is also presented in
Section 5.

Figures 6 and 7 show the average completion time im-
provement for the SPEC CPU and SPEC MPI workloads
respectively (higher numbers are better) under DI algo-
rithms relative to Default. We draw two important con-
clusions. First of all, DI-Plain often hurts performance
on NUMA systems, sometimes by as much as 36%. Sec-
ond, while DI-Migrate eliminates performance loss and
even improves it for SPEC CPU workloads, it fails to ex-
cel with SPEC MPI workloads, hurting performance by
as much as 25% for GAPgeofem.

Our investigation revealed DI-Migrate migrated pro-
cesses a lot more frequently in the SPEC MPI work-
load than in the SPEC CPU workload. While fewer than
50 migrations per process per hour were performed for
SPEC CPU workloads, but as many as 400 (per process)
were performed for SPEC MPI! DI-Migrate will migrate
a thread to a different core any time its miss rate (and its
position in the array sorted by miss rates) changes. For
the dynamic SPEC MPI workload this happened rather
frequently and led to frequent migrations.
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Figure 6: Improvement of completion time under DI-
Plain and DI-Migrate relative to the Default for a SPEC
CPU 2006 workload.
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Figure 7: Improvement of completion time under DI-
Plain and DI-Migrate relative to Default for eleven SPEC
MPI 2007 jobs.

Unlike on UMA systems, thread migrations are not
cheap on NUMA systems, because you also have to
move the memory of the thread. No matter how efficient
memory migrations are, they will never be completely
free, so it is always worth reducing the number of migra-
tions to the minimum, performing them only when they
are likely to result in improved performance. Our analy-
sis of DI-Migrate behaviour for the SPEC MPI workload
revealed that oftentimes migrations resulted in a thread
placement that was not better in terms of contention than
the placement prior to migration. This invited opportuni-
ties for improvement, which we used in design of DINO.

3.3 DINO
3.3.1 Motivation

DINO’s key novelty is in eliminating superfluous thread
migrations – those that are not likely to reduce con-
tention. Recall that DI-Plain (Section 3.1) triggers mi-
grations when threads change their miss rates and their
relative positions in the sorted array. Miss rates may
change rather often, but we found that it is not necessary
to respond to every change in order to reduce contention.

This insight comes from the observation that while
the miss rate is an excellent heuristic for predicting rel-

ative contention at coarse granularity (and that is why it
was shown to perform within 3% of the optimal oracular
scheduler in DI) it does not perfectly predict how con-
tention is affected by small changes in the miss rate.

Figure 8 illustrates this point. It shows on the x-axis
SPEC CPU 2006 applications sorted in the decreasing or-
der by their performance degradation when co-scheduled
on the same domain with three instances of itself, relative
to running solo. The bars show the miss rates and the line
shows the degradations3. In general, with the exception
of one outlier mcf, if one application has a much higher
miss rate than another, it will have a much higher degra-
dation. But if the difference in the miss rates is small, it is
difficult to predict the relative difference in degradations.

What this means is that it is not necessary for the
scheduler to migrate threads upon small changes in the
miss rate, only upon the large ones.
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Figure 8: Performance degradation due to contention and
miss rates for SPEC CPU2006 applications.

3.3.2 Thread classification in DINO and multi-
threaded support

To build upon this insight, we design DINO to organize
threads into broad classes according to their miss rates,
and to perform migrations only when threads change
their class, while trying to preserve thread-core affinities
whenever possible. Classes are defined as follows (again,
we borrow the animalistic classification from previous
work):

Class 1: turtles – fewer than two LLC misses per 1000
instructions.
Class 2: devils – 2-100 LLC misses per 1000 instruc-
tions.
Class 3: super-devils – more than 100 LLC misses per
1000 instructions.

Threshold values for classes were chosen for our tar-
get architecture. Values for other architectures should be

3We omit several benchmarks whose counters failed to record dur-
ing the experiment.

7



8 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

chosen by examining the relationship between the miss
rates and degradations on that architecture.

Before we describe DINO in detail, we explain the
special new features in DINO to deal with multithreaded
applications.

First of all, DINO tries to co-schedule threads of the
same application on the same memory domain, provided
that this does not conflict with DINO’s contention-aware
assignment (described below). This assumes that per-
formance improvement from co-operative data sharing
when threads are co-scheduled on the same domain are
much smaller than the negative effects of contention.
This is true for many applications [22]. However, when
this assumption does not hold, DINO can be extended to
predict when co-scheduling threads on the same domain
is more beneficial than separating them, using techniques
described in [9] or [19].

When it is not possible to co-schedule all threads in an
application on the same domain, and if threads actively
share data, they will put pressure on memory controller
and interconnects. While there is not much the sched-
uler can do in this situation (re-designing the application
is the best alternative), it must at least avoid migrating
the memory back and forth, so as not to make the perfor-
mance worse. Therefore, DINO detects when the mem-
ory is being “ping-ponged” between nodes and discon-
tinues memory migration in that case.

3.3.3 DINO algorithm description

We now explain how DINO works using an example.
In every rebalancing interval, set to one second in our

implementation, DINO reads the miss rate of each thread
from hardware counters. It then determines each thread’s
class based on its miss rate. To reduce the influence
of sudden spikes, the thread only changes the class if it
spent at least 7 out of the last 10 intervals with the mis-
srate from the new class. Otherwise, the thread’s class
remains the same. We save this data as an array of tuples
<new class, new processID, new threadID>, sorted by
memory-intensity of the class (e.g., super-devils, fol-
lowed by devils and followed by turtles). Suppose we
have a workload of eight threads containing two super-
devils (D), three devils (d) and three turtles (t). Threads
numbered <0, 3, 4, 5> are part of process 0. The re-
maining threads, numbered 1, 2, 6 and 7 each belong to
a separate process, numbered 1, 2, 3 and 4 respectively
4. Then the sorted tuple array will look like this:

new_class: D D d d d t t t
new_processID: 0 4 0 2 3 0 0 1
new_threadID: 0 7 4 2 6 3 5 1

4DINO assigns a unique thread ID to each thread in the workload.

DINO then proceeds with the computation of the
placement layout for the next interval. The placement
layout defines how threads are placed on cores. It is
computed by taking the most aggressive class instance
(a super devil in our example) and placing it on a core in
the first memory domain dom0, then the second aggres-
sive (also a super devil) – on a core in the second domain
and so on until we reach the last domain. Then we iter-
ate from the opposite end of the array (starting with the
least memory-intensive instance) and spread them across
domains starting with dom3. We continue alternating be-
tween two ends of the array until all class instances have
been placed on cores. In our example, for the NUMA
machine with four memory domains and two cores per
domain, the layout will be computed as follows:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
layout: D t D t d t d d

Although this example assumes that the number of
threads equals the number of cores, the algorithm gen-
eralizes for scenarios when the number of threads is
smaller or greater than the number of cores. In the lat-
ter case, each core will have T “slots” that can be filled
with threads, where T = num threads/num cores,
and instead of taking one class-instance from the array
at a time, DINO will take T .

Now that we determined the layout for class-instances,
we are yet to decide which thread will fill each core-class
slot – any thread of the given class can potentially fill
the slot corresponding to the class. In making this deci-
sion, we would like to match threads to class instances
so as to minimize the number of migrations. And to
achieve that, we refer to the matching solution for the
old rebalancing interval, saved in the form of a tuple ar-
ray: <old domain, old core, old class, old processID,
old threadID> for each thread.

Migrations are deemed superfluous if they change
thread-core assignment, while not changing the place-
ment of class-instances on cores. For example, if a thread
that happens to be a devil (d) runs on a core that has
been assigned the (d)-slot in the new assignment, it is
not necessary to migrate this thread to another core with
a (d)-slot. DI-Plain did not take this into considera-
tion and thus performed a lot of superfluous migrations.
To avoid them in DINO we first decide the thread as-
signment for any tuple that preserves core-class place-
ment according to the new layout. So, if for a given
thread old core = new core and old class =
new class, then the corresponding tuple in the new
solution for that thread will be <new core, new class,
old processID, old threadID>.

For example, if the old solution were:

domain: dom0 dom1 dom2 dom3

8
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old_core: 0 1 2 3 4 5 6 7
old_class: D t d t d t d t
old_processID: 0 1 2 0 0 0 3 4
old_threadID: 0 1 2 3 4 5 6 7

then the initial shape of the new solution would be:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
new_class: D t D t d t d d
new_processID: 0 1 0 0 0 3
new_threadID: 0 1 3 4 5 6

Then, the threads whose placement was not deter-
mined in the previous step – i.e., those whose old class is
not the same as their current core’s new class, as deter-
mined by the new placement, will fill the unused cores
according to their new class:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
new_class: D t D t d t d d
new_processID: 0 1 4 0 0 0 3 2
new_threadID: 0 1 7 3 4 5 6 2

Now that the thread placement is determined, DINO
makes the final pass over the thread tuples to take
care of multithreaded applications. For each thread
A it checks if there is another thread B of the same
multithreaded application (new processID(A) =
new processID(B)) among the thread tuples not
yet iterated so that B is not placed in the same memory
domain with A. If there is one, we check the threads
that are placed in the same memory domain with A. If
there is a thread C in the same domain with A, such that
new processID(A) != new processID(C)
and new class(B) = new class(C) then we
switch tuples B and C in the new solution. In our
example this would result in the following assignment:

domain: dom0 dom1 dom2 dom3
new_core: 0 1 2 3 4 5 6 7
new_class: D t D t d t d d
new_processID: 0 0 4 1 0 0 3 2
new_threadID: 0 3 7 1 4 5 6 2

DINO has complexity of O(N) in the number of
threads. Since the algorithm runs at most once a sec-
ond, this has little overhead even for a large number of
threads. We found that more frequent thread rebalanc-
ing did not yield better performance. Relatively infre-
quent changes of thread affinities mean that the algo-
rithm is best suited for long-lived applications, such as
the scientific applications we target in our study, data
analytics (e.g., MapReduce), or servers. When there’s
more threads than cores coarse-grained rebalancing is
performed by DINO, but fine-grained time sharing of
cores between threads is performed by the kernel sched-
uler. If threads are I/O- or synchronization-intensive and
have unequal sleep-awake periods, any resulting load im-
balance must be corrected, e.g., as in [16].

3.3.4 DINO’s Effect on Migration Frequency

We conclude this section by demonstrating how DINO
is able to reduce migration frequency relative to DI-
Migrate. Table 1 shows the average number of memory
migrations per hour of execution under DI-Migrate and
DINO for different applications from the workloads eval-
uated in Section 3.2. The results for MPI jobs are given
for one of its processes and not for the whole job. Due
to space limitations, we show the numbers for selected
applications that are representative of the overall trend.
The numbers show that DINO significantly reduces the
number of migrations. As will be shown in Section 5,
this results in up to 30% performance improvements for
jobs in the MPI workload.

4 Memory migration

The straightforward solution to implement memory mi-
gration is to migrate the entire resident set of the thread
when the thread is moved to another domain. This does
not work for the following reasons. First of all, for mul-
tithreaded applications, even those where data sharing is
rare, it is difficult to determine how the resident set is
partitioned among the threads. Second, even if the appli-
cation is single-threaded, if its resident set is large it will
not fit into a single memory domain, so it is not possi-
ble to migrate it in its entirety. Finally, we experimen-
tally found that even in cases where it is possible to mi-
grate the entire resident set of a process, this can hurt per-
formance of applications with large memory footprints.
So in this section we describe how we designed and im-
plemented a memory migration strategy that determines
which of the thread’s pages are most profitable to migrate
when the thread is moved to a new core.

4.1 Designing the migration strategy

In order to rapidly evaluate various memory migration
strategies, we designed a simulator based on a widely
used binary instrumentation tool for x86 binaries called
Pin [15]. Using Pin, we collected memory access traces
of all SPEC CPU2006 benchmarks and then used a cache
simulator on top of Pin to determine which of those ac-
cesses would be LLC misses, and so require an access to
memory.

To evaluate memory migration strategies we used a
metric called Saved Remote Accesses (SRA). SRA is the
percent of the remote memory accesses that were elimi-
nated using a particular memory migration strategy (af-
ter the thread was migrated) relative to not migrating
the memory at all. For example, if we detect every re-
mote access and migrate the corresponding page to the
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Table 1: Average number of memory migrations per hour of execution under DI-Migrate and DINO for applications
evaluated in Section 3.2.

SPEC CPU2006 SPEC MPI2007
soplex milc lbm gamess namd leslie lamps GAPgeofem socorro lu

DI-Migrate 36 22 11 47 41 381 135 237 340 256
DINO 8 6 5 7 6 2 1 3 2 1

thread’s new memory node, we are eliminating all re-
mote accesses, so the SRA would be 100%.

Each strategy that we evaluated detects when a thread
is about to perform an access to a remote domain, and
migrates one or more memory pages from the thread’s
virtual address space associated with the requested ad-
dress. We tried the following strategies: sequential-
forward where K pages including and following the
one corresponding to the requested address are mi-
grated; sequential-forward-backward where K/2 pages
sequentially preceding and K/2 pages sequentially fol-
lowing the requested address are migrated; random
where randomly chosen K pages are migrated; pattern-
based where we detect a thread’s memory-access pat-
tern by monitoring its previous accesses, similarly to how
hardware pre-fetchers do this, and migrate K pages that
match the pattern. We found that sequential-forward-
backward was the most effective migration policy in
terms of SRA.

Another challenge in designing a memory migration
strategy is minimizing the overhead of detecting which
of the remote memory addresses are actually being ac-
cessed. Ideally, we want to be able to detect every re-
mote access and migrate the associated pages. However,
on modern hardware this would require unmapping ad-
dress translations on a remote domain and handling a
page fault every time a remote access occurs. This re-
sults in frequent interrupts and is therefore expensive.

After analyzing our options we decided to use hard-
ware counter sampling available on modern x86 systems:
PEBS (Precise Event-Based Sampling) on Intel proces-
sors and IBS (Instruction-Based Sampling) on AMD pro-
cessors. These mechanisms tag a sample of instruction
with various pieces of information; load and store in-
structions are annotated with the memory address.

While hardware-based event sampling has low over-
head, it also provides relatively low sampling accuracy –
on our system it samples less than one percent of instruc-
tions. So we also analysed how SRA is affected depend-
ing on the sampling accuracy as well as the number of
pages that are being migrated. The lower the accuracy,
the higher the value of K (pages to be migrated) needs
to be to achieve a high SRA. For the hardware sampling
accuracy that was acceptable in terms of CPU overhead
(less than 1% per core), we found that migrating 4096

pages enables us to achieve the SRA as high as 74.9%.
We also confirmed experimentally that this was a good
value for K (results shown later).

4.2 Implementation of the memory migra-
tion algorithm

Our memory migration algorithm is implemented for
AMD systems, and so we use IBS, which we access via
Linux performance-monitoring tool perfmon [5].

Migration in DINO is performed in a user-level dae-
mon running separately from the scheduling daemon.
The daemon wakes up every ten milliseconds, sets up
IBS to perform sampling, reads the next sample and mi-
grates the page containing the memory address in the
sample (if the sampled instruction was a load or a store)
along with K pages in the application address space that
sequentially precede and follow the accessed page. Page
migration is effected using the numa move pages system
call.

5 Evaluation

5.1 Workloads

In this section we evaluate DINO implemented using the
migration strategy described in the previous section. We
evaluate three workload types: SPEC CPU2006 applica-
tions, SPEC MPI2007 applications, and LAMP – Lin-
ux/Apache/MySQL/PHP.

We used two experimental systems for evaluation.
One was described in Section 2.1. Another one is a Dell
PowerEdge server equipped with two AMD Barcelona
processors running at 2GHz, and 8GB of RAM, 4GB per
domain. The operating system is Linux 2.6.29.6. The
experimental design for SPEC CPU and MPI workloads
was described in Section 3.2. The LAMP workload is
described below.

The LAMP acronym is used to describe the applica-
tion environment consisting of Linux, Apache, MySQL
and PHP. The main data processing in LAMP is done
by the Apache HTTP server and the MySQL database
engine. The server management daemons apache2 and
mysqld are responsible for arranging access to the web-
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site scripts and database files and performing the ac-
tual work of data storage and retrieval. We use Apache
2.2.14 with PHP version 5.2.12 and MySQL 5.0.84. Both
apache2 and mysqld are multithreaded applications that
spawn one new distinct thread for each new client con-
nection. This client thread within a daemon is then re-
sponsible for executing the client‘s request.

In our experiment, clients continuously retrieve from
the Apache server various statistics about website activ-
ity. Our database is populated with the data gathered by
the web statistics system for five real commercial web-
sites. This data includes the information about website‘s
audience activity (what pages on what website were ac-
cessed, in what order, etc.) as well as the information
about visitors themselves (client OS, user agent informa-
tion, browser settings, session id retrieved from the cook-
ies, etc.). The total number of records in the database is
more than 3 million. We have four Apache daemons,
each responsible for handling a different type of request.
There are also four MySQL daemons that perform main-
tenance of the website database.

We further demonstrate the effect that the choice of K
(the number of pages that are moved on every migration)
has on performance of DINO. Then we compare DINO
to DI-Plain, DI-Migrate and Default.

5.2 Effect of K

Two of our workloads, SPEC CPU and LAMP demon-
strate the key insights, and so we focus on those work-
loads. We show how performance changes as we vary the
value of K. We compare to the scenario where DINO
migrates the thread’s entire resident set upon migrating
the thread itself. The per-process resident sets of the two
chosen workloads could actually fit in a single memory
node on our system (it had 4GB per node), so whole-
resident-set migration was possible. For SPEC CPU
applications, resident sets vary from under a megabyte
to 1.6GB for mcf. In general, they are in hundreds of
megabytes for memory-intensive applications and much
smaller for others. In LAMP, MySQL’s resident set was
about 400MB and Apache’s was 120MB.

We show average completion time improvement (for
Apache/MySQL this is average completion time per re-
quest), worst-case execution time improvement, and de-
viation improvement. Completion time improvement is
the average over ten runs. To compute the worst-case ex-
ecution time we run each workload ten times and record
the longest completion time. Improvement in deviation
is the percent reduction in standard deviation of the aver-
age completion time.

Figure 9 shows the results for the SPEC CPU work-
loads. Performance is hurt when we migrate a small
number of pages, but becomes comparable to whole-

resident-set migration when K reaches 4096. Whole-
resident set migration actually works quite well for
this workload, because migrations are performed infre-
quently and the resident set is small.

However upon experimenting with the LAMP work-
load we found that whole-resident set migration was
detrimental to performance, most likely because the resi-
dent sets were much larger and also because this is a mul-
tithreaded workload where threads share data. Figure 10
shows performance and deviation improvement when
K = 4096 relative to whole-resident-set migration. Per-
formance is substantially improved when K = 4096.
We experimented with smaller values of K, but found
no substantial differences on performance.

We conclude that migrating very large chunks of mem-
ory is acceptable for processes with small resident sets,
but not advisable for multithreaded applications and/or
applications with large resident sets. DINO migrates
threads infrequently, so a relatively large value of K re-
sults in good performance.
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Figure 10: Performance improvement with DINO for
K = 4096 relative to whole-resident-set migration for
LAMP.

5.3 DINO vs. other algorithms
We compare performance under DINO, DI-Plain and DI-
Migrate relative to Default, and similarly to the previous
section, report completion time improvement, worst-case
execution time improvement and deviation improvement.

Figures 11-13 show the results for the three work-
load types, SPEC CPU, SPEC MPI and LAMP respec-
tively. For SPEC CPU, DI-Plain hurts completion time
for many applications, but both DI-Migrate and DINO
improve, with DINO performing slightly better than DI-
Migrate for most applications. Worst-case improvement
numbers show a similar trend, although DI-Plain does
not perform as poorly here. Improvements in the worst-
case execution time indicate that a scheduler is able to
avoid pathological thread assignments that create espe-
cially high contention, and produce more stable perfor-
mance. Deviation of running times is improved by all
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Figure 9: Performance improvement with DINO as K is varied relative to whole-resident-set migration for SPEC
CPU.

‐10 

‐5 

0 

5 

10 

15 

20 

%
 a
v
e
ra
g
e
 -
m
e
 i
m
p
ro
v
e
m
e
n
t  DI‐Plain 

DI‐Migrate 
DINO 

‐40 

‐30 

‐20 

‐10 

0 

10 

20 

30 

%
 a
v
e
ra
g
e
 .
m
e
 i
m
p
ro
v
e
m
e
n
t  DI‐Plain 

DI‐Migrate 

DINO 

‐30 

‐20 

‐10 

0 

10 

20 

30 

40 

%
 a
v
e
ra
g
e
 .
m
e
 i
m
p
ro
v
e
m
e
n
t 

DI‐Plain 

DI‐Migrate 

DINO 
‐20 
‐15 
‐10 
‐5 
0 
5 

10 
15 
20 
25 

%
 a
v
e
ra
g
e
 -
m
e
 i
m
p
ro
v
e
m
e
n
t  DI‐Plain 

DI‐Migrate 

DINO 

(a) Average execution time improvement of DINO (IBS), DI-Migrate (IBS) and DI-Plain over Default Linux scheduler.
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(b) Worst-case execution time improvement of DINO (IBS), DI-Migrate (IBS) and DI-Plain over Default Linux scheduler.
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(c) Deviation improvement of DINO (IBS), DI-Migrate (IBS) and DI-Plain over Default Linux scheduler.

Figure 11: DINO, DI-Migrate and DI-Plain relative to Default for SPEC CPU 2006 workloads.

three schedulers relative to Default.
As to SPEC MPI workloads (Figure 12) only DINO is

able to improve completion times across the board, by as
much as 30% for some jobs. DI-Plain and DI-Migrate,
on the other hand, can hurt performance by as much as
20%. Worst-case execution time also consistently im-
proves under DINO, while sometimes degrading under
DI-Plain and DI-Migrate.

LAMP is a tough workload for DINO or any scheduler
that optimizes memory placement, because the workload
is multithreaded and no matter how you place threads

they still share data, putting pressure on interconnects.
Nevertheless, DINO still manages to improve comple-
tion time and worst-case execution time in some cases,
to a larger extent than the other two algorithms.

5.4 Discussion
Our evaluation demonstrates that DINO is significantly
better at managing contention on NUMA systems than
the DI algorithm designed without NUMA awareness or
DI that was simply extended with memory migration.
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(b) Worst-case time improvement
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Figure 12: DINO, DI-Migrate and DI-Plain relative to Default for SPEC MPI 2007.
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Figure 13: DINO, DI-Migrate and DI-Plain relative to Default for LAMP.

Multiprocess workloads representative of scientific Grid
clusters show excellent performance under DINO. Im-
provements for the challenging multithreaded workloads
are less significant as expected, and wherever degrada-
tion occurs for some threads it is outweighed by perfor-
mance improvements for other threads.

6 Related Work

Research on NUMA-related optimizations to systems is
rich and dates back many years. Many research efforts
addressed efficient co-location of the computation and
related memory on the same node [14, 3, 12, 19, 1, 4].
More ambitious proposals aimed to holistically redesign
the operating system to dovetail with NUMA architec-
tures [7, 17, 6, 20, 11]. None of the previous efforts, how-
ever, addressed shared resource contention in the context
of NUMA systems and the associated challenges.

Li et al. in [14] introduced AMPS, an operating sys-
tem scheduler for asymmetric multicore systems that
supports NUMA architectures. AMPS implemented a
NUMA-aware migration policy that can allow or deny
thread migration requested by the scheduler. The authors
used the resident set size of a thread in deciding whether
or not the OS schedule is allowed to migrate thread to
a different domain. If the migration overhead were ex-
pected to be high the migration would be disallowed.
Our scheduler, instead of prohibiting migrations, detects
which pages are being actively accessed and moves them

as well as surrounding pages to the new domain.
LaRowe et al. [12] presented a dynamic multiple-copy

policy placement and migration policy for NUMA sys-
tems. The policy periodically reevaluates its memory
placement decisions and allows multiple physical copies
of a single virtual page. It supports both migration and
replication with the choice between the two operations
based on reference history. A directory-based invalida-
tion scheme is used to ensure the coherence of replicated
pages. The policy applies a freeze/defrost strategy: to de-
termine when to defrost a frozen page and trigger reeval-
uation of its placement is based on both time and refer-
ence history of the page. The authors evaluate various
fine-grained page migration and/or replication strategies,
however, since their test machine only has one processor
per NUMA node, they do not address contention. The
strategies developed in this work could have been very
useful for our contention aware scheduler if the inexpen-
sive mechanisms that the authors used for detecting page
accesses were available to us. Detailed page reference
history is difficult to obtain without hardware support;
obtaining it in software may cause overhead for some
workloads.

Goglin et al. [8] developed an effective implementa-
tion of the move pages system call in Linux, which al-
lows the dynamic migration of large memory areas to
be significantly faster than in previous versions of the
OS. This work is integrated in Linux kernel 2.6.29 [8],
which we use for our experiments. The Next-touch pol-

13
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icy, also introduced in the paper to facilitate thread-data
affinity, works as follows: the application marks pages
that it will likely access in the future as Migrate-on-next-
touch using a new parameter to the madvise() system
call. The Linux kernel then ensures that the next access
to these pages causes a special page fault resulting in the
pages being migrated to their threads. The work pro-
vides developers with an opportunity to improve mem-
ory proximity for their programs. Our work, on the other
hand, improves memory proximity by using hardware
counters data available on every modern machine. No
involvement from the developer is needed.

Linux kernel since 2.6.12 supports the cpusets mech-
anism and its ability to migrate the memory of the ap-
plications confined to the cpuset along with their threads
to the new nodes if the parameters of a cpuset change.
Schermerhorn et al. further extended the cpuset function-
ality by adding an automatic page migration mechanism
to it [18]: if enabled, it migrates the memory of a thread
within the cpuset nodes whenever the thread migrates to
a core adjacent to a different node. Two options for the
memory migration are possible. The first is a lazy mi-
gration, when the kernel attempts to unmap any anony-
mous pages in the process’s page table. When the pro-
cess subsequently touches any of these unmapped pages,
the swap fault handler will use the ”migrate-on-fault”
mechanism to migrate the misplaced pages to the correct
node. Lazy migration may be disabled, in which case,
automigration will use direct, synchronous migration to
pull all anonymous pages mapped by the process to new
node. The efficiency of lazy automigration is compara-
ble to our memory migration solution based on IBS (we
performed experiments to verify). However, automigra-
tion requires kernel modification (it is implemented as a
collection of kernel patches), while our solution is imple-
mented on user level. Cpuset mechanism needs explicit
configuration from the system administrator and it does
not perform contention management.

In [19] the authors group threads of the same applica-
tion that are likely to share data onto neighbouring cores
to minimize the costs of data sharing between them.
They rely on several features of Performance Monitor-
ing Unit unique to IBM Open-Power 720 PCs: the abil-
ity to monitor CPU stall breakdown charged to different
microprocessor components and using the data sampling
to track the sharing pattern between threads. The DINO
algorithm introduced in our work complements [19] as it
is designed to mitigate contention between applications.
DINO provides sharing support by attempting to group
threads of the same application and their memory on the
same NUMA node, but as long as co-scheduling multiple
threads of the same application does not contradict with
a contention-aware schedule. In order to develop a more
precise metric that assesses the effects of performance

degradation versus the benefits from co-scheduling, we
would need stronger hardware support, such as that avail-
able on IBM Open-Power 720 PCs or on the newest Ne-
halem systems (as demonstrated by the member of our
team [9]).

The VMware ESX hypervisor supports NUMA load
balancing and automatic page migration for its vir-
tual machines (VMs) in commercial systems [1]. ESX
Server 2 assigns each virtual machine a home node on
whose processors a VM is allowed to run and its newly-
allocated memory comes from the home node as well.
Periodically, a special rebalancer module selects a VM
and changes its home node to the least-loaded node. In
our work we do not consider load balancing. Instead,
we make thread migration decisions based on shared re-
source contention. To eliminate possible remote access
penalties associated with accessing the memory on the
old node, ESX Server 2 performs page migration from
the virtual machine’s original node to its new home node.
ESX selects migration candidates based on finding hot
remotely-accessed memory from page faults. The DINO
scheduler, on the other hand, identifies hot pages using
Instruction-Based Sampling. No modification to the OS
is required.

The SGI Origin 2000 system [4] implemented the
following hardware-supported [13] mechanism for co-
location of computation and memory. When the dif-
ference between remote and local accesses for a given
memory page is greater than a tunable threshold, an in-
terrupt is generated to inform the operating system that
the physical memory page is suffering an excessive num-
ber of remote references and hence has to be migrated.
Our solution to page migration is different in that it
detects ”hot” remotely accessed pages via Instruction-
Based Sampling, and performs migration in the context
of a contention-aware scheduler.

In a series of papers [7] [17] [6] [20] the authors
describe a novel operating system Tornado specifically
designed for NUMA machines. The goal of this new
OS is to provide data locality and application indepen-
dence for OS objects thus minimizing penalties due to re-
mote memory access in a NUMA system. The K42 [11]
project, which is based on Tornado, is an open-source
research operating system kernel that incorporates such
innovative design principles like structuring the system
using modular, object-oriented code (originally demon-
strated in Tornado), designing the system to scale to very
large shared-memory multiprocessors, avoiding central-
ized code paths and global locks and data structures and
many more. K42 keeps physical memory close to where
it is accessed. It uses large pages to reduce hardware
and software costs of virtual memory. K42 project has
resulted in many important contributions to Linux, on
which our work relies. As a result, we were able to avoid

14
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deleterious effects of remote memory accesses without
requiring changes to the applications or the operating
system. We believe that our NUMA contention-aware
scheduling approach that was demonstrated to work ef-
fectively in Linux can also be easily implemented in
K42 with its inherent user-level implementation of ker-
nel functionality and native performance monitoring in-
frastructure.

7 Conclusions

We discovered that contention-aware algorithms de-
signed for UMA systems may hurt performance on sys-
tems that are NUMA. We found that contention for mem-
ory controllers and interconnects occurring when thread
runs remotely from its memory are the key causes. To ad-
dress this problem we presented DINO: a new contention
management algorithm for NUMA systems. While de-
signing DINO we found that simply migrating a thread’s
memory when the thread is moved to a new node is not a
sufficient solution; it is also important to eliminate super-
fluous migrations: those that add to migration cost with-
out providing the benefit. The goals for our future work
are (1) devising metric for predicting a trade-off between
performance degradation and benefits from thread shar-
ing and (2) investigate the impact of using small versus
large memory pages during migration.
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Abstract
The Graphics Processing Unit (GPU) is now commonly
used for graphics and data-parallel computing. As more
and more applications tend to accelerate on the GPU in
multi-tasking environments where multiple tasks access
the GPU concurrently, operating systems must provide
prioritization and isolation capabilities in GPU resource
management, particularly in real-time setups.

We present TimeGraph, a real-time GPU scheduler
at the device-driver level for protecting important GPU
workloads from performance interference. TimeGraph
adopts a new event-driven model that synchronizes the
GPU with the CPU to monitor GPU commands issued
from the user space and control GPU resource usage in
a responsive manner. TimeGraph supports two priority-
based scheduling policies in order to address the trade-
off between response times and throughput introduced
by the asynchronous and non-preemptive nature of GPU
processing. Resource reservation mechanisms are also
employed to account and enforce GPU resource usage,
which prevent misbehaving tasks from exhausting GPU
resources. Prediction of GPU command execution costs
is further provided to enhance isolation.

Our experiments using OpenGL graphics benchmarks
demonstrate that TimeGraph maintains the frame-rates
of primary GPU tasks at the desired level even in the
face of extreme GPU workloads, whereas these tasks be-
come nearly unresponsive without TimeGraph support.
Our findings also include that the performance overhead
imposed on TimeGraph can be limited to 4-10%, and its
event-driven scheduler improves throughput by about 30
times over the existing tick-driven scheduler.

1 Introduction

The Graphics Processing Unit (GPU) is the burgeoning
platform to support high-performance graphics and data-
parallel computing, as its peak performance is exceeding
1000 GFLOPS, which is nearly equivalent of 10 times
that of traditional microprocessors. User-end windowing
systems, for instance, use GPUs to present a more lively
interface that improves the user experience significantly
through 3-D windows, high-quality graphics, and smooth

transition. Especially recent trends on 3-D browser and
desktop applications, such as SpaceTime, Web3D, 3D-
Desktop, Compiz Fusion, BumpTop, Cooliris, and Win-
dows Aero, are all intriguing possibilities for future user
interfaces. GPUs are also leveraged in various domains
of general-purpose GPU (GPGPU) processing to facili-
tate data-parallel compute-intensive applications.

Real-time multi-tasking support is a key requirement
for such emerging GPU applications. For example, users
could launch multiple GPU applications concurrently in
their desktop computers, including games, video play-
ers, web browsers, and live messengers, sharing the same
GPU. In such a case, quality-aware soft real-time ap-
plications like games and video players should be pri-
oritized over live messengers and any other applications
accessing the GPU in the background. Other examples
include GPGPU-based cloud computing services, such
as Amazon EC2, where virtual machines sharing GPUs
must be prioritized and isolated from each other. More
in general, important applications must be well-isolated
from others for quality and security issues on GPUs,
as on-line and user-space programs can create any arbi-
trary set of GPU commands, and access the GPU directly
through generic I/O system calls, meaning that malicious
and buggy programs can easily cause the GPU to be over-
loaded. Thus, GPU resource management consolidating
prioritization and isolation capabilities plays a vital role
in real-time multi-tasking environments.

GPU resource management is usually supported at the
operating-system level, while GPU program code itself
including GPU commands is generated through libraries,
compilers, and runtime frameworks. Particularly, it is
a device driver that transfers GPU commands from the
CPU to the GPU, regardless of whether they produce
graphics or GPGPU workloads. Hence, the development
of a robust GPU device driver is of significant impact for
many GPU applications. Unfortunately, existing GPU
device drivers [1, 5, 7, 19, 25] are not tailored to support
real-time multi-tasking environments, but accelerate one
particular high-performance application in the system or
provide fairness among applications.

We have conducted a preliminary evaluation to see the
performance of existing GPU drivers, (i) the NVIDIA
proprietary driver [19] and (ii) the Nouveau open-source
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Figure 1: Decrease in performance of the OpenArena ap-
plication competing with different GPU applications.

driver [7], in multi-tasking environments, using two dif-
ferent NVIDIA graphics cards, (i) GeForce 9800 GT and
(ii) GeForce GTX 285, where the Linux 2.6.35 kernel is
used as the underlying operating system. It should be
noted that this NVIDIA driver evaluated on Linux is also
expected to closely match the performance of the Win-
dows driver (WDDM [25]), as they share about 90% of
code [23]. Figure 1 shows the relative decrease in per-
formance (frame-rate) of an OpenGL game (OpenArena)
competing with two GPU-accelerated programs (Engine
and Clearspd [15]) respectively. The Engine program
represents a regularly-behaved GPU workload, while
the Clearspd program produces a GPU command bomb
causing the GPU to be overloaded, which represents a
malicious or buggy program. To achieve the best possi-
ble performance, this preliminary evaluation assigns the
highest CPU (nice) priority to the OpenArena applica-
tion as an important application. As observed in Fig-
ure 1, the performance of the important OpenArena ap-
plication drops significantly due to the existence of com-
peting GPU applications. It highlights the fact that GPU
resource management in the current state of the art is
woefully inadequate, lacking prioritization and isolation
capabilities for multiple GPU applications.

Contributions: We propose, design, and implement
TimeGraph, a GPU scheduler to provide prioritization
and isolation capabilities for GPU applications in soft
real-time multi-tasking environments. We address a core
challenge for GPU resource management posed due to
the asynchronous and non-preemptive nature of GPU
processing. Specifically, TimeGraph adopts an event-
driven scheduler model that synchronizes the GPU with
the CPU in a responsive manner, using GPU-to-CPU
interrupts, to schedule non-preemptive GPU commands
for the asynchronously-operating GPU. Under this event-
driven model, TimeGraph supports two scheduling poli-
cies to prioritize tasks on the GPU, which address the
trade-off between response times and throughput. Time-
Graph also employs two resource reservation policies to

isolate tasks on the GPU, which provide different levels
of quality of service (QoS) at the expense of different lev-
els of overhead. To the best of our knowledge, this is the
first work that enables GPU applications to be prioritized
and isolated in real-time multi-tasking environments.

Organization: The rest of this paper is organized as
follows. Section 2 introduces our system model, in-
cluding the scope and limitations of TimeGraph. Sec-
tion 3 provides the system architecture of TimeGraph.
Section 4 and Section 5 describe the design and imple-
mentation of TimeGraph GPU scheduling and reserva-
tion mechanisms respectively. In Section 6, the perfor-
mance of TimeGraph is evaluated, and its capabilities are
demonstrated. Related work is discussed in Section 7.
Our concluding remarks are provided in Section 8.

2 System Model

Scope and Limitations: We assume a system composed
of a generic multi-core CPU and an on-board GPU. We
do not manipulate any GPU-internal units, and hence
GPU commands are not preempted once they are submit-
ted to the GPU. TimeGraph is independent of libraries,
compilers, and runtime engines. The principles of Time-
Graph are therefore applicable for different GPU archi-
tectures (e.g., NVIDIA Fermi/Tesla and ATI Stream)
and programming frameworks (e.g., OpenGL, OpenCL,
CUDA, and HMPP). Currently, TimeGraph is designed
and implemented for Nouveau [7] available in the Gal-
lium3D [15] OpenGL software stack, which is also
planned to support OpenCL. Moreover, TimeGraph has
been ported to the PSCNV open-source driver [22] pack-
aged in the PathScale ENZO suite [21], which supports
CUDA and HMPP. This paper is, however, focused on
OpenGL workloads, given the currently-available set of
open-source solutions: Nouveau and Gallium3D.

Driver Model: TimeGraph is part of the device driver,
which is an interface for user-space programs to submit
GPU commands to the GPU. We assume that the device
driver is designed based on the Direct Rendering Infras-
tructure (DRI) [14] model that is adopted in most UNIX-
like operating systems, as part of the X Window System.
Under the DRI model, user-space programs are allowed
to access the GPU directly to render frames without us-
ing windowing protocols, while they still use the win-
dowing server to blit the rendered frames to the screen.
GPGPU frameworks require no such windowing proce-
dures, and hence their model is more simplified.

In order to submit GPU commands to the GPU, user-
space programs must be allocated GPU channels, which
conceptually represent separate address spaces on the
GPU. For instance, the NVIDIA Fermi and Tesla archi-
tectures support 128 channels. Our GPU command sub-
mission model for each channel is shown in Figure 2.
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Each channel uses two types of kernel-space buffers:
User Push Buffer and Kernel Push Buffer. The User Push
Buffer is mapped on to the address space of the corre-
sponding task, where GPU commands are pushed from
the user space. GPU commands are usually grouped
as non-preemptive regions to match user-space atomic-
ity assumptions. The Kernel Push Buffer, meanwhile, is
used for kernel primitives, such as host-device synchro-
nization, GPU initialization, and GPU mode setting.

While user-space programs push GPU commands into
the User Push Buffer, they also write packets, each of
which is a (size and address) tuple to locate a certain
GPU command group, into a specific ring buffer part
of the Kernel Push Buffer, called Indirect Buffer. The
driver configures the command dispatch unit on the GPU
to read the buffer for command submission. This ring
buffer is controlled by GET and PUT pointers. The point-
ers start from the same place. Every time packets are
written to the buffer, the driver moves the PUT pointer
to the tail of the packets, and sends a signal to the GPU
command dispatch unit to download the GPU command
groups located by the packets between the GET and PUT
pointers. The GET pointer is then automatically updated
to the same place as the PUT pointer. Once these GPU
command groups are submitted to the GPU, the driver
does not manage them any longer, and continues to sub-
mit the next set of GPU command groups, if any. Thus,
this Indirect Buffer plays a role of a command queue.

Each GPU command group may include multiple
GPU commands. Each GPU command is composed of
the header and data. The header contains methods and
the data size, while the data contains the values being
passed to the methods. Methods represent GPU instruc-
tions, some of which are shared between compute and
graphics, and others are specific for each. We assume
that the device driver does not preempt on-the-fly GPU
command groups, once they are offloaded on to the GPU.
GPU command execution is out-of-order within the same
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Figure 3: TimeGraph system architecture.

GPU channel. The GPU channels are switched automat-
ically by the GPU engines.

Our driver model described above is based on Direct
Rendering Manager (DRM) [6], and especially target the
NVIDIA Fermi and Tesla architectures, but can also be
used for other architectures with minor modification.

3 TimeGraph System Architecture

The architecture of TimeGraph and its interaction with
the rest of the software stack is illustrated in Figure 3.
No modification is required for user-space programs, and
GPU command groups can be generated through exist-
ing software frameworks. However, TimeGraph needs to
communicate with a specific interface, called PushBuf,
in the device driver space. The PushBuf interface enables
the user space to submit GPU command groups stored in
the User Push Buffer. TimeGraph uses this PushBuf in-
terface to queue GPU command groups. It also uses the
IRQ handler prepared for GPU-to-CPU interrupts to dis-
patch the next available GPU command groups.

TimeGraph is composed of GPU command scheduler,
GPU reserve manager, and GPU command profiler. The
GPU command scheduler queues and dispatches GPU
command groups based on task priorities. It also coordi-
nates with the GPU reserve manager to account and en-
force GPU execution times of tasks. The GPU command
profiler supports prediction of GPU command execution
costs to avoid overruns out of reservation. There are two
scheduling policies supported to address the trade-off be-
tween response times and throughput:

• Predictable-Response-Time (PRT): This policy
minimizes priority inversion on the GPU to provide
predictable response times based on priorities.

• High-Throughput (HT): This policy increases total
throughput, allowing additional priority inversion.
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Figure 4: Diagram of the PushBuf interface and the IRQ
handler with the TimeGraph scheme.

It also supports two GPU reservation policies that ad-
dress the trade-off between isolation and throughput:

• Posterior Enforcement (PE): This policy enforces
GPU resource usage after GPU command groups
are completed without sacrificing throughput.

• Apriori Enforcement (AE): This policy enforces
GPU resource usage before GPU command groups
are submitted using prediction of GPU execution
costs at the expense of additional overhead.

In order to unify multiple tasks into a single reserve, the
TimeGraph reservation mechanism provides the Shared
reservation mode. Particularly, TimeGraph creates a spe-
cial Shared reserve instance with the PE policy when
loaded, called Background, which serves all GPU-
accelerated tasks that do not belong to any specific re-
serves. The detailed design and implementation for GPU
scheduling and GPU reservation will be described in
Section 4 and Section 5 respectively.

Figure 4 shows a high-level diagram of the PushBuf
interface and the IRQ handler, where modifications in-
troduced by TimeGraph are highlighted by bold frames.
This diagram is based on the Nouveau implementation,
but most GPU drivers should have similar control flows.
The PushBuf interface first acquires the buffer object

associated with the incoming GPU command group. It
then applies the scheduling policy to determine whether
this GPU command group can execute on the GPU. If it

should not be dispatched immediately, the corresponding
task goes to sleep. Else, the User Push Buffer object is
activated for command submission with the mutex lock
to ensure the GPU command group to be located in the
place accessible from the GPU, though the necessity of
this procedure depends on driver implementation. Time-
Graph next checks if GPU reservation is requested for
this task. If so, it applies the reservation policy to ver-
ify the GPU resource usage of this task. If it overruns,
TimeGraph winds up buffer activation, and suspends this
task until its resource budget becomes available. This
task will be rescheduled later when it is waken up, since
some higher-priority tasks may arrive by then. Finally, if
the GPU command group is qualified by the scheduling
and reservation policies, it is submitted to the GPU. As
the reservation policies need to track GPU resource us-
age, TimeGraph starts accounting for the GPU execution
time of this task. It then configures the GPU command
group to generate an interrupt to the CPU upon comple-
tion so that TimeGraph can dispatch the next GPU com-
mand group. After deactivating the buffer and unlocking
the mutex, the PushBuf interface returns.

The IRQ handler receives an interrupt notifying the
completion of the current GPU command group, where
TimeGraph stops accounting for the GPU execution
time, and wakes up the next task to execute on the GPU
based on the scheduling policy, if the GPU is idle.
Specification: System designers may use a specifica-

tion primitive to activate the TimeGraph functionality,
which is inspired by the Redline system [31]. For each
application, system designers can specify the scheduling
parameters as: <name:sched:resv:prio:C:T>,
where name is the application name, sched is its
scheduling policy, resv is its reservation policy, prio
is its priority, and a set of C and T represents that the
application task is allowed to execute on the GPU for C
microseconds everyTmicroseconds. The specification is
a text file (/etc/timegraph.spec), and TimeGraph
reads it every time a new GPU channel is allocated to a
task. If there is a matching entry based on the applica-
tion name associated with the task, the specification is
applied to the task. Otherwise, the task is assigned the
lowest GPU priority and the Background reserve.

Priority Assignment: While system designers may
assign static GPU priorities in their specification, Time-
Graph also supports automatic GPU priority assignment
(AGPA), which is enabled by using a wild-card “*” entry
in the prio field. TimeGraph provides a user-space dae-
mon executing periodically to identify the task with the
foreground window through a window programming in-
terface, such as the _NET_ACTIVE_WINDOW and the
_NET_WM_PID properties in the X Window System.
TimeGraph receives the foreground task information via
a system call, and assigns the highest priority to this
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task among those running under the AGPA mechanism.
These tasks execute at the default static GPU priority
level. Hence, different tasks can be prioritized over them
by assigning higher static GPU priorities. AGPA is, how-
ever, not available if the above window programming in-
terface is not supported. TimeGraph instead provides
another user-space tool for system designers to assign
priorities. For instance, designers can provide an opti-
mal priority assignment based on reserve periods [13],
as widely adopted in real-time systems.

Admission Control: In order to achieve predictable
services in overloaded situations, TimeGraph provides
an admission control scheme that forces the new re-
serve to be a background reserve so that currently ac-
tive reserves continue to execute in a predictable manner.
TimeGraph provides a simple interface where designers
specify the limit of total GPU resource usage by 0-100%
in a text file (/etc/timegraph.ac). The amount of limit
is computed by a traditional resource-reservation model
based on C and T of each reserve [26].

4 TimeGraph GPU Scheduling

The goal of the GPU command scheduler is to queue and
dispatch non-preemptive GPU command groups in ac-
cordance with task priorities. To this end, TimeGraph
contains a wait queue to stall tasks. It also manages a
GPU-online list, a list of pointers to the GPU command
groups currently executing on the GPU.

The GPU-online list is used to check if there are
currently-executing GPU command groups, when a GPU
command group enters into the PushBuf interface. If the
list is empty, the corresponding task is inserted into it,
and the GPU command group is submitted to the GPU.
Else, the task is inserted into the wait queue to be sched-
uled. The scheduling policies supported by TimeGraph
will be presented in Section 4.1.

Management of the GPU-online list requires the in-
formation about when GPU command groups complete.
TimeGraph adopts an event-driven model that uses GPU-
to-CPU interrupts to notify the completion of each GPU
command group, rather than a tick-driven model adopted
in the previous work [1, 5]. Upon every interrupt, the cor-
responding GPU command group is removed from the
GPU-online list. Our GPU-to-CPU interrupt setting and
handling mechanisms will be described in Section 4.2.

4.1 Scheduling Policies
TimeGraph supports two GPU scheduling policies. The
Predictable-Response-Time (PRT) policy encourages
such tasks that should behave on a timely basis without
affecting important tasks. This policy is predictable in
a sense that GPU command groups are scheduled based
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Figure 5: Example of GPU scheduling in TimeGraph.

on task priorities to make high-priority tasks responsive
on the GPU. The High-Throughput (HT) policy, on the
other hand, is suitable for such tasks that should execute
as fast as possible. There is a trade-off that the PRT
policy prevents tasks from interference at the expense of
throughput, while the HT policy achieves high through-
put for one task but may block others. For instance,
desktop-widget, browser-plugin, and video-player tasks
are desired to use the PRT policy, while 3-D game and
interactive 3-D interfacing tasks can use the HT policy.

PRT Scheduling: The PRT policy forces any GPU
command groups to wait for the completion of the pre-
ceding GPU command group, if any. Specifically, a new
GPU command group arriving at the device driver can be
submitted to the GPU immediately, if the GPU-online list
is empty. Else, the corresponding task must sleep in the
wait queue. The highest-priority task in the wait queue,
if any, is waken up upon every interrupt from the GPU.

Figure 5 (a) indicates how three tasks with different
priorities, high-priority, medium-priority (MP), and low-
priority (LP), are scheduled on the GPU under the PRT
policy. When the MP task arrives, its GPU command
group can execute on the GPU, since no GPU command
groups are executing. Given that the GPU and CPU op-
erate asynchronously, the MP task can arrive again while
its previous GPU command group is executing. How-
ever, the MP task is queued this time, because the GPU
is not idle, according to the PRT policy. Even the next
HP task is also queued due to the same reason, since fur-
ther higher-priority tasks may arrive soon. The specific
set of GPU commands appended at the end of every GPU
command group by TimeGraph generates an interrupt to
the CPU, and the TimeGraph scheduler is invoked ac-



22 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

cordingly to wake up the highest-priority task in the wait
queue. Hence, the HP task is next chosen to execute on
the GPU rather than the MP task. In this manner, the next
instance of the LP task and the second instance of the HP
task are scheduled in accordance with their priorities.

Given that the arrival times of GPU command groups
are not known a priori, and each GPU command group
is non-preemptive, we believe that the PRT policy is the
best possible approach to provide predictable response
times. However, it inevitably incurs overhead to make
a scheduling decision at every GPU command group
boundary, as shown in Figure 5 (a).

HT Scheduling: The HT policy reduces this schedul-
ing overhead, compromising predictable response times
a bit. It allows GPU command groups to be submitted to
the GPU immediately, if (i) the currently-executing GPU
command group was submitted by the same task, and
(ii) no higher-priority tasks are ready in the wait queue.
Otherwise, they must suspend in the same manner as the
PRT policy. Upon an interrupt, the highest-priority task
in the wait queue is waken up, only when the GPU-online
list is empty (the GPU is idle).

Figure 5 (b) depicts how the same set of GPU com-
mand groups used in Figure 5 (a) is scheduled under the
HT policy. Unlike the PRT policy, the second instance of
the MP task can submit its GPU command group imme-
diately, because the currently-executing GPU command
group was issued by itself. These two GPU command
groups of the MP task can execute successively without
producing the idle time. The same is true for the two
GPU command groups of the HP task. Thus, the HT pol-
icy is more for throughput-oriented tasks, but the HP task
is blocked by the MP task for a longer internal. This is
a trade-off, and if priority inversion is critical, the PRT
policy is more appropriate.

4.2 Interrupt Setting and Handling
In order to provide an event-driven model, TimeGraph
configures the GPU to generate an interrupt to the CPU
upon the completion of each GPU command group. The
scheduling point is thus made at every GPU command
group boundary. We now describe how the interrupt is
generated. For simplicity of description, we here focus
on the NVIDIA GPU architecture.
Completion Notifier: The NVIDIA GPU provides

the NOTIFY command to generate an interrupt from the
GPU to the CPU. TimeGraph puts this command at the
end of each GPU command group. However, the in-
terrupt is not launched immediately when the NOTIFY
command is operated but when the next command is dis-
patched. TimeGraph therefore adds the NOP command
after the NOTIFY command, as a dummy command. We
also need to consider that GPU commands execute out

of order on the GPU. If the NOTIFY command is oper-
ated before all commands in the original GPU command
group are operated, the generated interrupt is not timely
at all. TimeGraph hence adds the SERIALIZE com-
mand right before the NOTIFY command, which forces
the GPU to stall until all on-the-fly commands complete.
There is no need to add another piece of the SERIALIZE
command after the NOTIFY command, since we know
that no tasks other than the current task can use the GPU
until TimeGraph is invoked upon the interrupt.

Interrupt Association: All interrupts from the GPU
caught in the IRQ handler are relayed to TimeGraph.
When TimeGraph receives an interrupt, it first references
the head of the GPU-online list to obtain the task in-
formation associated with the corresponding GPU com-
mand group. TimeGraph next needs to verify whether
this interrupt is truly generated by the commands that
TimeGraph inserted into at the end of the GPU command
group, given that user-space programs may also use the
NOTIFY command. In order to recognize the right inter-
rupt, TimeGraph further adds the SET_REF command
before the SERIALIZE command, which instructs the
GPU to write a specified sequence number to a particular
GPU register. This number is identical for each task, and
is simply incremented by TimeGraph. TimeGraph reads
this GPU register when an interrupt is received. If the
register value is less than the expected sequence num-
ber associated with the corresponding GPU command
group, this interrupt should be ignored, since it must have
been caused by someone else before the SET_REF com-
mand. Another piece of the SERIALIZE command also
needs to be added before the SET_REF command to en-
sure in-order command execution. As a consequence,
TimeGraph inserts the following commands at the end
of each GPU command group: SERIALIZE, SET_REF,
SERIALIZE, NOTIFY, NOP.

Task Wake-Up: Once the interrupt is verified, Time-
Graph removes the GPU command group at the head of
the GPU-online list. If the corresponding task is sched-
uled under the PRT policy, TimeGraph wakes up the
highest-priority task in the wait queue, and inserts its
GPU command group into the GPU-online list. If the
task is assigned the HT policy, meanwhile, TimeGraph
wakes up the highest-priority task in the same manner as
the PRT policy, only when the GPU-online list is empty.

5 TimeGraph GPU Reservation

TimeGraph provides GPU reservation mechanisms to
regulate GPU resource usage for tasks scheduled under
the PRT policy. Each task is assigned a reserve that is
represented by capacity C and period T . Budget e is the
amount of time that a task is entitled for execution. Time-
Graph uses a popular rule for budget consumption and
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Figure 6: Example of GPU reservation in TimeGraph.

replenishment used in real-time systems [20, 26]. Specif-
ically, the budget is decreased by the amount of time con-
sumed on the GPU, and is replenished by at most capac-
ity C once every period T . However, we need different
reservation policies than previous work due to the asyn-
chronous and non-preemptive nature of GPU processing,
as we will describe in Section 5.1. Our GPU resource ac-
counting and enforcement mechanisms will be described
in Section 5.2. TimeGraph further supports prediction of
GPU execution costs for strict isolation. Section 5.3 will
describe our approach to GPU execution cost prediction.

5.1 Reservation Policies
TimeGraph supports two GPU reservation policies. The
Posterior Enforcement (PE) policy is aimed for light-
weight reservation, allowing tasks to overrun out of their
reserves to an extent. The Apriori Enforcement (AE)
policy reduces reserve overruns by predicting GPU ex-
ecution costs a priori at the expense of additional over-
head. We recommend that the PE policy be primarily
used when isolation is required, and the AE policy be
used only if extremely time-critical applications are con-
currently executed on the GPU.

PE Reservation: The PE policy permits GPU com-
mand groups to be submitted to the GPU, if their budget
is greater than zero. Else, the task goes to sleep until
the budget is replenished. The budget can be negative,
when the task overruns out of reservation. The over-
run penalty is, however, imposed on the next budget re-
plenishment. The budget for the next period is therefore
given by e = min(C, e + C).

Figure 6 (a) shows how four GPU command groups
of the same task are enforced under the PE policy. The
budget is initialized to C. When the second GPU com-
mand group completes, the budget is negative. Hence,

the third GPU command group must wait for the bud-
get to be replenished, even though the GPU remains idle.
Since GPU reservation is available under the PRT policy,
the fourth GPU command group is blocked even though
the budget is greater than zero, since another GPU com-
mand group is currently executing.

AE Reservation: For each GPU command group sub-
mission, the AE policy first predicts a GPU execution
cost x. The GPU command group can be submitted to the
GPU, only if the predicted cost is no greater than the bud-
get. Else, the task goes to sleep until the budget is replen-
ished. The next replenishment amount depends on the
predicted cost x and the currently-remaining budget e. If
the predicted cost x is no greater than the capacity C, the
budget for the next period is bounded by e = C to avoid
transient overload. Else, it is set to e = min{x, e + C}.
The task can be waken up only when e ≥ x.

Figure 6 (b) depicts how the same set of four GPU
command groups used in Figure 6 (a) is controlled un-
der the AE policy. For simplicity of description, we as-
sume for now that prediction of GPU execution costs is
perfectly accurate, and Section 5.3 will describe how to
practically predict GPU execution costs. Unlike the PE
policy, the second GPU command group is not submitted
to the GPU, as its budget is less than the predicted cost,
but is submitted later when the budget is replenished to
be e = min{x, e + C} > x. The fourth GPU command
group also needs to wait until the budget is sufficiently
replenished. However, unlike the second GPU command
group, the replenished budget is bounded by C, since
x < C. This avoids transient overload.

Shared Reservation: TimeGraph allows multiple
tasks to share a single reserve under the Shared mode.
When some task creates a Shared reserve, other tasks
can join it. The Shared mode can be used together with
both the PE and AE policies. The Shared mode is use-
ful when users want to cap the GPU resource usage of
multiple tasks to a certain range. There is no need to
adjust the capacity and period for each task. It can also
reduce the overhead of reservation, since it only needs to
manage one reserve for multiple tasks.

5.2 Accounting and Enforcement
GPU execution times are accounted in the PushBuf in-
terface and the IRQ handler as illustrated in Figure 4.
TimeGraph saves CPU timestamps when GPU command
groups start and complete. Specifically, when each GPU
command group is qualified to be submitted to the GPU,
TimeGraph records the current CPU time as its start time
in the PushBuf interface, and at some later point of time
when TimeGraph is notified of the completion of this
GPU command group, the current CPU time is recorded
as its finish time in the IRQ handler. The difference be-
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tween the start time and the finish time is accounted for
as the execution time of this GPU command group, and
is subtracted from the budget.

Enforcement works differently for the PE and the AE
policies. In the PushBuf interface, the AE policy predicts
the execution cost x of each GPU command group based
on the idea presented in Section 5.3, while the PE pol-
icy always assumes x = 0. Then, both policies compare
the budget e and the cost x. Only if e > x is satisfied,
the GPU command group can be submitted to the GPU.
Otherwise, the corresponding task is suspended until the
budget is replenished. It should be noted that this en-
forcement mechanism is very different from traditional
CPU reservation mechanisms [20, 26] that use timers or
ticks to suspend tasks, since GPU command groups are
non-preemptive, and hence we need to perform enforce-
ment at GPU command group boundary. TimeGraph
however still uses timers to replenish the budget period-
ically. Every time the budget is replenished, it compares
e and x again. If e > x is satisfied, the task is waken up,
but it needs to be rescheduled, as illustrated in Figure 4.

5.3 Command Profiling
TimeGraph contains the GPU command profiler to pre-
dict GPU execution costs for AE reservation. Each GPU
command is composed of the header and data, as shown
in Figure 2. We hence parse the methods and the data
sizes from the headers.

We now explain how to predict GPU execution costs
from these pieces of information. GPU applications tend
to repeatedly create GPU command groups with the same
methods and data sizes, since they use the same set of
API functions, e.g., OpenGL, and each function likely
generates the same sequence of GPU commands in terms
of methods and data sizes, while data values are quite
variant. Given that GPU execution costs depend highly
on methods and data sizes, but not on data values, we
propose a history-based prediction approach.

TimeGraph manages a history table to record the GPU
command group information. Each record consists of a
GPU command group matrix and the average GPU ex-
ecution cost associated to this matrix. The row and the
column of the matrix contain the methods and their data
sizes respectively. TimeGraph also attaches a flag to each
GPU command group, indicating if it hits some record.
When the methods and the data sizes of the GPU com-
mand group are obtained from the remapped User Push
Buffer, TimeGraph looks at the history table. If there
exists a record that contains exactly the same GPU com-
mand group matrix, i.e., the same set of methods and
data sizes, it uses the average GPU execution cost stored
in this record, and the flag is set. Otherwise, the flag
is cleared, and TimeGraph uses the worst-case GPU ex-

ecution cost among all the records. Upon the comple-
tion of the GPU command group, TimeGraph references
the flag attached to the corresponding task. If the flag
is set, it updates the average GPU execution cost of the
record with the actual execution time of this GPU com-
mand group. Otherwise, it inserts a new record where
the matrix has the methods and the data size of this GPU
command group, and the average GPU execution time
is initialized with its actual execution time. The size of
the history table is configurable by designers. If the total
number of the records exceeds the table size, the least-
recently-used (LRU) record is removed.

Preemption Impact: Even the same GPU command
group may consume very different GPU execution times.
For example, if reusable texture data is cached, graph-
ics operation is much faster. We realize that when the
GPU contexts (channels) are switched, GPU execution
times can vary. Hence, TimeGraph verifies GPU con-
text switches at every scheduling point. If the context is
switched, TimeGraph will not update the average GPU
execution cost, since the context switch may have af-
fected the actual GPU execution time. Instead, it saves
the difference between the actual GPU execution time
and the average GPU execution cost as the preemption
impact. TimeGraph keeps updating the average preemp-
tion impact. A single preemption cost is measured be-
forehand when TimeGraph is loaded. The preemption
impact is then added to the predicted cost.

6 Evaluation

We now provide a detailed quantitative evaluation of
TimeGraph on the NVIDIA GeForce 9800 GT graphics
card with the default frequency and 1 GB of video mem-
ory. Our underlying platform is the Linux 2.6.35 kernel
running on the Intel Xeon E5504 CPU and 4 GB of main
memory. While our evaluation and discussion are fo-
cused on this graphics card, Similar performance benefits
from TimeGraph have also been observed with different
graphics cards viz, GeForce GTX 285 and GTX 480.

As primary 3-D graphics benchmarks, we use the
Phoronix Test Suite [24] that executes the OpenGL 3-
D games, OpenArena, World of Padman, Urban Terror,
and Unreal Tournament 2004 (UT2004), in the demo
mode based on the test profile, producing various GPU-
intensive workloads. We also use MPlayer as a pe-
riodic workload. In addition, the Gallium3D Engine
demo program is used as a regularly-behaved workload,
and the Gallium3D Clearspd demo program that ex-
ploits a GPU command bomb is used as a misbehaving
workload. Furthermore, we use SPECviewperf 11 [28]
to evaluate the throughput of different GPU scheduling
models. The screen resolution is set to 1280 × 1024.
The scheduling parameters are loaded from the pre-
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configured TimeGraph specification file. The maximum
number of records in the history table for GPU execution
cost prediction is set to 100.

6.1 Prioritization and Isolation
We first evaluate the prioritization and isolation proper-
ties achieved by TimeGraph. As described in Section 3,
TimeGraph automatically assigns priorities. CPU nice
priorities are always effective, while GPU priorities are
effective only when TimeGraph is activated. The priority
level is aligned between the GPU and CPU. We use the
PRT policy for the X server to prevent it from affecting
primary applications, but it is scheduled by the highest
GPU/CPU priority, since it should still be responsive to
blit the rendered frames to the screen.

Coarse-grained Performance: Figure 7 shows the
performance of the 3-D games, while the Engine widget
is concurrently sharing the GPU. We use the HT policy
for the 3-D games, while the Engine widget is assigned
the PRT policy under TimeGraph. As shown in Figure 7,
TimeGraph improves the performance of the 3-D games
by about 11% for OpenArena, 27% for World of Pad-
man, 22% for Urban Terror, and 2% for UT2004, with
GPU priority support. Further performance isolation is
obtained by GPU reservation, capping the GPU resource
usage of the Engine widget. Our experiment assigns the
Engine widget a reserve of 2.5ms every 25ms to retain
GPU resource usage at 10%. As compared to the case
without GPU reservation support, the performance of the
3-D games is improved by 2 ∼ 21% under PE reser-
vation, and by 4 ∼ 36% under AE reservation. Thus,
the AE policy provides better performance for the 3-D
games at the expense of more conservative scheduling of
the Engine widget with prediction.

Figure 8 presents the results from a setup similar to the
above experiments, where the Clearspd bomb generates
heavily-competing workload instead of the Engine wid-
get. The performance benefit resulting from assigning
higher GPU priorities to the games under the HT pol-
icy is clearer in this setup. Even without GPU reser-
vation support, TimeGraph enables the 3-D games to
run about 3 ∼ 6 times faster than the vanilla Nouveau
driver, though they still face a performance loss of about
24 ∼ 52% as compared to the previous setup where the
Engine widget contends with the 3-D games. Regulating
the GPU resource usage of the Clearspd bomb through
GPU reservation limits this performance loss to be within
3%. Particularly, the AE policy yields improvements of
up to 5% over the PE policy.

Extreme Workloads: In order to evaluate the capabil-
ities of TimeGraph in the face of extreme workloads, we
execute the 3-D games with five instances of the Clear-
spd bomb. In this case, the cap of each individual re-
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Figure 7: Performance of the 3-D games competing with
a single instance of the Engine widget.
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Figure 8: Performance of the 3-D games competing with
a single instance of the Clearspd bomb.
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Figure 9: Performance of the 3-D games competing with
five instances of the Clearspd bomb.

serve is correspondingly decreased to 0.5ms every 25ms
so that the total cap of the five Clearspd-bomb tasks is
aligned with 2.5ms every 25ms. As here are multiple
Clearspd-bomb tasks, we evaluate an additional setup
where a single PE reserve of 2.5ms every 25ms runs
with the Shared reservation mode. As shown in Fig-
ure 9, the 3-D games are nearly unresponsive without
TimeGraph support due to the scaled-up GPU workload,
whereas TimeGraph can isolate the performance of the
3-D games even under such an extreme circumstance. In
fact, the performance impact is reduced to 7 ∼ 20% by
using GPU priorities, and leveraging GPU reservation re-
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Figure 11: Performance of the Engine widget competing
with five instances of the Clearspd bomb.

sults in nearly no performance loss, similar to results in
Figure 8. The Shared reservation mode also provides
slightly better performance with PE reserves.

Performance Regulation: We next demonstrate the
effectiveness of TimeGraph in regulating the frame-rate
for each task by changing the size of GPU reserve. Fig-
ure 10 shows the performance of the OpenArena game
and the Engine widget contending with each other. The
solid lines indicate a setup where the PE policy is as-
signed for both the applications, while the dotted lines
indicate a setup where the AE policy is assigned for the
Engine widget instead. GPU reservation is configured
so that the total GPU resource usage of the two applica-
tions is capped at 90%, and the remaining 10% is avail-
able for the X server. Assigning the AE policy for the
Engine widget slightly improves the performance of the
OpenArena game, while it brings a performance penalty
for the Engine widget itself due to the overhead for pre-
diction of GPU execution costs. In either case, however,
TimeGraph successfully regulates the frame-rate in ac-
cordance with the size of GPU reserve. In this exper-
iment, we conclude that it is desirable to assign a GPU
reserve for the OpenArena game with C/T = 60 ∼ 80%
and that for the Engine widget with C/T = 10 ∼ 30%,
given that this configuration provides both the applica-
tions with an acceptable frame-rate over 25 fps.
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(b) PRT scheduling.
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(c) PRT scheduling and PE reservation.

Figure 12: Interference among three widget instances.

Fine-grained Performance: The 3-D games demon-
strate highly variable frame-rate workloads, while 3-D
widgets often exhibit nearly constant frame-rates. In or-
der to study the behavior of TimeGraph on both these
two categories of applications, we look at the variabil-
ity of frame-rate with time for the Engine widget con-
tending with five instances of the Clearspd bomb, as
shown in Figure 11. The total GPU resource usage of
the Clearspd-bomb tasks is capped at 2.5ms every 25ms
through GPU reservation, and a higher priority is given to
the Engine widget. These results show that GPU reser-
vation can provide stable frame-rates on a time for the
Engine widget. Since the Engine widget is not as GPU-
intensive as the 3-D games, it is affected more by the
Clearspd bomb making the GPU overloaded, when GPU
reservation is not applied. The benefits of GPU reserva-
tion are therefore more clearly observed.

Interference Issues: We now evaluate the interfer-
ence among regularly-behaved concurrent 3-D widgets.
Figure 12 (a) shows a chaotic behavior arising from exe-
cuting three instances of the Engine widget concurrently,
with different CPU priorities but without TimeGraph
support. Although the Engine widget by itself is a very
regular workload, when competing with more instances
of itself, the GPU resource usage exhibits high variabil-
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Figure 13: Performance of MPlayer competing with five
instances of the Clearspd bomb.

ity and unpredictability. Figure 12 (b) illustrates the im-
proved behavior under TimeGraph using the PRT pol-
icy, where we assign the high, the medium, and the low
GPU priorities for Engine #1, Engine #2, and Engine #3
respectively, using the user-space tool presented in Sec-
tion 3. TimeGraph successfully provides predictable re-
sponse times for the three tasks according based on their
priorities. Further performance isolation can be achieved
by GPU reservation, exploiting different sizes of GPU
reserves: (i) 15ms every 25ms to Engine #1, (ii) 5ms
every 50ms to Engine #2, and (iii) 5ms every 100ms to
Engine #3, as shown in Figure 12 (c). The PE policy is
used here. Since the Engine widget has a non-trivial de-
pendence on the CPU, the absolute performance is lower
than expected for smaller reserves.

Periodic Behavior: For evaluating the impact on ap-
plications with periodic activity, we execute MPlayer
in the foreground when five instances of the Clearspd
bomb contend for the GPU. We use an H264-compressed
video, with a frame size of 1920×800 and a frame rate
of 24 fps, which uses x-video acceleration on the GPU.
As shown in Figure 13, the video playback experience
is significantly disturbed without TimeGraph support.
When TimeGraph assigns a PE reserve of 10ms every
40ms for MPlayer, and a PE reserve of 5ms every 40ms
for the Clearspd bomb tasks in the Shared reservation
mode, the playback experience is significantly improved.
It closely follows the ideal frame-rate of 24 fps for video
playback. This illustrates the benefits of TimeGraph for
interactivity, where performance isolation plays a vital
role in determining user experience.

6.2 GPU Execution Cost Prediction

We now evaluate the history-based prediction of GPU ex-
ecution costs for realizing GPU reservation with the AE
policy. The effectiveness of AE reservation relies highly
on GPU execution cost prediction. Hence, it is impor-
tant to identify the types of applications for which we
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(b) Clearspd bomb.
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(c) OpenArena game.

Figure 14: Errors for GPU execution cost prediction.

can predict GPU execution costs more precisely. Fig-
ure 14 shows both actual GPU execution costs and pre-
diction errors for the 3-D graphics applications used in
earlier experiments: Engine, Clearspd, and OpenArena.
Since these applications issue a very large number of
GPU command groups, we focus on a snapshot between
the 5000th and the 10000th GPU command groups of
the applications. In the following discussion, positive er-
rors denote pessimistic predictions. Figure 14 (a) shows
that the history-based prediction approach employed by
TimeGraph performs within a 15% error margin on the
Engine widget that uses a reasonable number of meth-
ods. For the Clearspd bomb that issues a very limited set
of methods, while producing extreme workloads, Time-
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Graph can predict GPU execution costs within a 7% er-
ror margin as shown in Figure 14 (b). On the other
hand, the results of GPU execution cost prediction un-
der OpenArena, provided in Figure 14 (c), show that
only about 65% of the observed GPU command groups
have the predicted GPU execution costs within a 20%
error margin. Such unpredictability arises from the in-
herently dynamic nature of complex computer graphics
like abrupt scene changes. The actual penalty of mis-
prediction is, however, suffered only once per reserve
period, and is hence not expected to be significant for
reserves with long periods.

In addition to the presented method, we have also ex-
plored static approaches using pre-configured values for
predicted costs. Our experiments show that such static
approaches perform worse than the presented dynamic
approach, largely due to the dynamically changing and
non-stationary nature of application workloads.

GPU execution cost prediction plays a vital role in
real-time setups, where it is unacceptable for low-priority
tasks to even cause the slightest interference to high-
priority tasks. As the above experimental results show
that our prediction approach tends to fail for complex
interactive applications like OpenArena. However, we
expect the structure of real-time applications to be less
dynamic and more regular like the Engine and Clearspd
tasks. GPU reservation with the AE policy for complex
applications like OpenArena would require support from
the application program itself, since their behavior is not
easily predictable from historic execution results. Other-
wise, the PE policy is desired for low overhead.

6.3 Overhead and Throughput
In order to quantify the performance overhead imposed
by TimeGraph, we measure the standalone performance
of the 3-D game benchmarks. Figure 15 shows that as-
signing the HT policy for both the games and the X
server incurs about 4% performance overhead for the
games. This small overhead is attributed to the fact that
TimeGraph is still invoked upon every arrival and com-
pletion of GPU command group. It is interesting to see
that assigning the PRT policy for the X server increases
the overhead for the games up to about 10%, even though
the games use the HT policy. As the X server is used to
blit the rendered frames to the screen, it can lower the
frame-rate of the game, if it is blocked by the game itself.
On the other hand, assigning the PRT policy for both
the X server and the game adds a non-trivial overhead of
about 17 ∼ 28% largely due to queuing and dispatching
all GPU command groups. This overhead is introduced
by queuing delays and scheduling overheads, as Time-
Graph needs to be invoked for submission of each GPU
command group. We however conjecture that such over-
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Figure 16: Throughput of event-driven and tick-driven
schedulers in TimeGraph.

head cost is inevitable for GPU scheduling at the device-
driver level to shield important GPU applications from
performance interference. If there is no TimeGraph sup-
port, the performance of high-priority GPU applications
could significantly decrease in the presence of competing
GPU workloads (as shown in Figure 1), which affects the
system performance more than the maximum scheduling
overhead of 28% introduced by TimeGraph. As a con-
sequence, TimeGraph is evidently beneficial in real-time
multi-tasking environments.

Finally, we compare the throughput of two conceiv-
able GPU scheduling models: (i) the event-driven sched-
uler adopted in TimeGraph, and (ii) the tick-driven
scheduler that was presented in the previous work, called
GERM [1, 5]. The TimeGraph event-driven scheduler
is invoked only when GPU command groups arrive and
complete, while the GERM tick-driven scheduler is in-
voked at every tick, configured to be 1ms (Linux jiffies).
Figure 16 shows the results of SPECviewperf bench-
marking with the Maya viewset created for 3-D computer
graphics, where the PRT policy is used for GPU schedul-
ing. Surprisingly, the TimeGraph event-driven scheduler
obtains about 15 ∼ 30 times better scores than the tick-
driven scheduler for most test cases. According to our
analysis, this difference arises from the fact that many
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GPU command groups can arrive in a very short interval.
The GERM tick-driven scheduler reads a particular GPU
register every tick to verify if the current GPU command
group has completed. Suppose that there are 30 GPU
command groups with a total execution time of less than
1ms. The tick-driven scheduler takes at least 30ms to
compete these GPU command groups because the GPU
register must be read 10 times, while the event-driven
scheduler could complete them in 1ms as GPU-to-CPU
interrupts are used. Hence, non-trivial overheads are im-
posed on the tick-driven scheduler.

7 Related Work

GPU Scheduling: The Graphics Engine Resource Man-
ager (GERM) [1, 5] aims for GPU multi-tasking support
similar to TimeGraph. The resource management con-
cepts of TimeGraph and GERM are, however, fundamen-
tally different. TimeGraph focuses on prioritization and
isolation among competing GPU applications, while fair-
ness is a primary concern for GERM. Since fair resource
allocation cannot shield particular important tasks from
interference in the face of extreme workloads, as reported
in [31], TimeGraph addresses this problem for GPU ap-
plications through priority and reservation support. Ap-
proaches to synchronize the GPU with the CPU are also
different between TimeGraph and GERM. TimeGraph is
based on an event-driven model that uses GPU-to-CPU
interrupts, whereas GERM adopts a tick-driven model
that polls a particular GPU register. As demonstrated
in Section 6.3, the tick-driven model can become unre-
sponsive when many GPU commands arrive in a short
interval, which could likely happen for graphics and
compute-intensive workloads, while TimeGraph is re-
sponsive even in such cases. Hence, TimeGraph is more
suitable for real-time applications. In addition, Time-
Graph can predict GPU execution costs a priori, taking
into account both methods and data sizes, while GERM
estimates them posteriorly, using only data sizes. Since
GPU execution costs are very dependent not only on data
sizes but also on methods, we claim that TimeGraph
computes GPU execution costs more precisely. How-
ever, additional computation overheads are required for
prediction. TimeGraph therefore provides light-weight
reservation with the PE policy without prediction to ad-
dress this trade-off. Furthermore, TimeGraph falls inside
the device driver, while GERM is spread across the de-
vice driver and user-space library. Hence, GERM could
require major modifications for different runtime frame-
works, e.g., OpenGL, OpenCL, CUDA, and HMPP.

The Windows Display Driver Model (WDDM) [25] is
a GPU driver architecture for the Microsoft Windows.
While it is proprietary, GPU priorities seem to be sup-
ported in our experience, but are not explicitly exposed to

the user space as a first-class primitive. Apparently, there
is no GPU reservation support. In fact, since NVIDIA
shares more than 90% of code between Linux and Win-
dows [23]. Therefore, it eventually suffers from the per-
formance interference as demonstrated in Figure 1.

VMGL [11] supports virtualization in the OpenGL
APIs for graphics applications running inside a Vir-
tual Machine (VM). It passes graphics requests from
guest OSes to a VMM host, but GPU resource man-
agement is left to the underlying device driver. The
GPU-accelerated Virtual Machine (GViM) [8] virtual-
izes the GPU at the level of abstraction for GPGPU ap-
plications, such as the CUDA APIs. However, since the
solution is ’above’ the device driver layer, GPU resource
management is coarse-grained and functionally limited.
VMware’s Virtual GPU [3] enables GPU virtualization
at the I/O level. Hence, it operates faster and its usage
is not limited to GPGPU applications. However, multi-
tasking support with prioritization, isolation, or fairness
is not supported. TimeGraph could coordinate with these
GPU virtualization systems to provide predictable re-
sponse times and isolation.

CPU Scheduling: TimeGraph shares the concept of
priority and reservation, which has been well-studied by
the real-time systems community [13, 26], but there is
a fundamental difference from these traditional studies
in that TimeGraph is designed to address an arbitrarily-
arriving non-preemptive GPU execution model, whereas
the real-time systems community has often considered
a periodic preemptive CPU execution model. Several
bandwidth-preserving approaches [12, 29, 30] for an
arbitrarily-arriving model exist, but a non-preemptive
model has not been much studied yet. The concept
of priority and reservation has also been considered in
the operating systems literature [4, 9, 10, 17, 20, 31].
Specifically, batch scheduling has a similar constraint to
GPU scheduling in that non-preemptive regions disturb
predictable responsiveness [27]. These previous work
are, however, mainly focused on synchronous on-chip
CPU architectures, whereas TimeGraph addresses those
scheduling problems for asynchronous on-board GPU ar-
chitectures where explicit synchronization between the
GPU and CPU is required.

Disk Scheduling: Disk devices have similarity to
GPUs in that they operate with non-preemptive regions
off the chip. Disk scheduling for real-time and interactive
systems [2, 16] therefore considered priority and reserva-
tion support for non-preemptive operation. However, the
GPU is typically a coprocessor independent of the CPU,
which has its own set of execution contexts, registers,
and memory devices, while the disk is more dedicated to
I/O. Hence, TimeGraph uses completely different mech-
anisms to realize prioritization and isolation than these
previous work. In addition, TimeGraph needs to ad-
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dress the trade-off between predictable response times
and throughput since synchronizing the GPU and CPU
incurs overhead, while disk I/O is originally synchronous
with read and write operation.

8 Conclusions

This paper has presented TimeGraph, a GPU scheduler
to support real-time multi-tasking environments. We de-
veloped the event-driven model to schedule GPU com-
mands in a responsive manner. This model allowed us
to propose two GPU scheduling policies, Predictable
Response Time (PRT) and High Throughput (HT),
which address the trade-off between response times and
throughput. We also proposed two GPU reservation
policies, Posterior Enforcement (PE) and the Apriori
Enforcement (AE), which present an essential design
knob for choosing the level of isolation and through-
put. Our detailed evaluation demonstrated that Time-
Graph can protect important GPU applications even
in the face of extreme GPU workloads, while provid-
ing high-throughput, in real-time multi-tasking environ-
ments. TimeGraph is open-source software, and may be
downloaded from our website at http://rtml.ece.
cmu.edu/projects/timegraph/.

In future work, we will elaborate coordination of
GPU and CPU resource management schemes to fur-
ther consolidate prioritization and isolation capabilities
for the entire system. We are also interested in coordina-
tion of video memory and system memory management
schemes. Exploration of other models for GPU schedul-
ing is another interesting direction of future work. For
instance, modifying the current API to introduce non-
blocking interfaces could improve throughput at the ex-
pense of modifications to legacy applications. Schedul-
ing overhead and blocking time may also be reduced by
implementing an real-time satellite kernel [18] on mi-
crocontrollers present in modern GPUs. Finally, we will
tackle the problem of mapping application-level specifi-
cations, such as frame-rates, into priority and reservation
properties at the operating-system level.
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Abstract
Heterogeneous multi-cores—platforms comprised of
both general purpose and accelerator cores—are becom-
ing increasingly common. While applications wish to
freely utilize all cores present on such platforms, operat-
ing systems continue to view accelerators as specialized
devices. The Pegasus system described in this paper uses
an alternative approach that offers a uniform resource
usage model for all cores on heterogeneous chip mul-
tiprocessors. Operating at the hypervisor level, its novel
scheduling methods fairly and efficiently share acceler-
ators across multiple virtual machines, thereby making
accelerators into first class schedulable entities of choice
for many-core applications. Using NVIDIA GPGPUs
coupled with x86-based general purpose host cores, a
Xen-based implementation of Pegasus demonstrates im-
proved performance for applications by better managing
combined platform resources. With moderate virtual-
ization penalties, performance improvements range from
18% to 140% over base GPU driver scheduling when the
GPUs are shared.

1 Introduction
Systems with specialized processors like those used
for accelerating computations, network processing, or
cryptographic tasks [27, 34] have proven their utility
in terms of higher performance and lower power con-
sumption. This is not only causing tremendous growth
in accelerator-based platforms, but it is also leading
to the release of heterogeneous processors where x86-
based cores and on-chip network or graphics accelera-
tors [17, 31] form a common pool of resources. However,
operating systems and virtualization platforms have not
yet adjusted to these architectural trends. In particular,
they continue to treat accelerators as secondary devices
and focus scheduling and resource management on their
general purpose processors, supported by vendors that
shield developers from the complexities of accelerator
hardware by ‘hiding’ it behind drivers that only expose

higher level programming APIs [19, 28]. Unfortunately,
technically, this implies that drivers rather than operating
systems or hypervisors determine how accelerators are
shared, which restricts scheduling policies and thus, the
optimization criteria applied when using such heteroge-
neous systems.

A driver-based execution model can not only poten-
tially hurt utilization, but also make it difficult for appli-
cations and systems to obtain desired benefits from the
combined use of heterogeneous processing units. Con-
sider, for instance, an advanced image processing ser-
vice akin to HP’s Snapfish [32] or Microsoft’s Photo-
Synth [25] applications, but offering additional compu-
tational services like complex image enhancement and
watermarking, hosted in a data center. For such appli-
cations, the low latency responses desired by end users
require the combined processing power of both general
purpose and accelerator cores. An example is the ex-
ecution of sequences of operations like those that first
identify spatial correlation or correspondence [33] be-
tween images prior to synthesizing them [25]. For these
pipelined sets of tasks, some can efficiently run on multi-
core CPUs, whereas others can substantially benefit from
acceleration [6, 23]. However, when they concurrently
use both types of processing resources, low latency is at-
tained only when different pipeline elements are appro-
priately co- or gang-scheduled onto both CPU and GPU
cores. As shown later in this paper, such co-scheduling is
difficult to perform with current accelerators when used
in consolidated data center settings. Further, it is hard to
enforce fairness in accelerator use when the many clients
in typical web applications cause multiple tasks to com-
pete for both general purpose and accelerator resources,

The Pegasus project addresses the urgent need for sys-
tems support to smartly manage accelerators. It does
this by leveraging the new opportunities presented by
increased adoption of virtualization technology in com-
mercial, cloud computing [1], and even high perfor-
mance infrastructures [22, 35]: the Pegasus hypervisor
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extensions (1) make accelerators into first class schedu-
lable entities and (2) support scheduling methods that en-
able efficient use of both the general purpose and acceler-
ator cores of heterogeneous hardware platforms. Specifi-
cally, for platforms comprised of x86 CPUs connected to
NVIDIA GPUs, these extensions can be used to manage
all of the platform’s processing resources, to address the
broad range of needs of GPGPU (general purpose com-
putation on graphics processing units) applications, in-
cluding the high throughput requirements of compute in-
tensive web applications like the image processing code
outlined above and the low latency requirements of com-
putational finance [24] or similarly computationally in-
tensive high performance codes. For high throughput,
platform resources can be shared across many applica-
tions and/or clients. For low latency, resource manage-
ment with such sharing also considers individual applica-
tion requirements, including those of the inter-dependent
pipeline-based codes employed for the financial and im-
age processing applications.

The Pegasus hypervisor extensions described in Sec-
tions 3 and 5 do not give applications direct access to
accelerators [28], nor do they hide them behind a virtual
file system layer [5, 15]. Instead, similar to past work
on self-virtualizing devices [29], Pegasus exposes to ap-
plications a virtual accelerator interface, and it supports
existing GPGPU applications by making this interface
identical to NVIDIA’s CUDA programming API [13].
As a result, whenever a virtual machine attempts to use
the accelerator by calling this API, control reverts to the
hypervisor. This means, of course, that the hypervisor
‘sees’ the application’s accelerator accesses, thereby get-
ting an opportunity to regulate (schedule) them. A sec-
ond step taken by Pegasus is to then explicitly coordi-
nate how VMs use general purpose and accelerator re-
sources. With the Xen implementation [7] of Pegasus
shown in this paper, this is done by explicitly scheduling
guest VMs’ accelerator accesses in Xen’s Dom0, while at
the same time controlling those VMs’ use of general pur-
pose processors, the latter exploiting Dom0’s privileged
access to the Xen hypervisor and its VM scheduler.

Pegasus elevates accelerators to first class schedula-
ble citizens in a manner somewhat similar to the way
it is done in the Helios operating system [26], which
uses satellite kernels with standard interfaces for XScale-
based IO cards. However, given the fast rate of tech-
nology development in accelerator chips, we consider
it premature to impose a common abstraction across
all possible heterogeneous processors. Instead, Pegasus
uses a more loosely coupled approach in which it as-
sumes systems to have different ‘scheduling domains’,
each of which is adept at controlling its own set of re-
sources, e.g., accelerator vs. general purpose cores. Pe-
gasus scheduling, then, coordinates when and to what ex-

tent, VMs use the resources managed by these multiple
scheduling domains. This approach leverages notions of
‘cellular’ hypervisor structures [11] or federated sched-
ulers that have been shown useful in other contexts [20].
Concurrent use of both CPU and GPU resources is one
class of coordination methods Pegasus implements, with
other methods aimed at delivering both high performance
and fairness in terms of VM usage of platform resources.

Pegasus relies on application developers or toolchains
to identify the right target processors for different com-
putational tasks and to generate such tasks with the ap-
propriate instruction set architectures (ISAs). Further,
its current implementation does not interact with tool
chains or runtimes, but we recognize that such inter-
actions could improve the effectiveness of its runtime
methods for resource management [8]. An advantage
derived from this lack of interaction, however, is that
Pegasus does not depend on certain toolchains or run-
times, nor does it require internal information about ac-
celerators [23]. As a result, Pegasus can operate with
both ‘closed’ accelerators like NVIDIA GPUs and with
‘open’ ones like IBM Cell [14], and its approach can eas-
ily be extended to support other APIs like OpenCL [19].

Summarizing, the Pegasus hypervisor extensions
make the following contributions:

Accelerators as first class schedulable entities—
accelerators (accelerator physical CPUs or aPCPUs) can
be managed as first class schedulable entities, i.e., they
can be shared by multiple tasks, and task mappings to
processors are dynamic, within the constraints imposed
by the accelerator software stacks.

Visible heterogeneity—Pegasus respects the fact that
aPCPUs differ in capabilities, have different modes of
access, and sometimes use different ISAs. Rather than
hiding these facts, Pegasus exposes heterogeneity to the
applications and the guest virtual machines (VMs) that
are capable of exploiting it.

Diversity in scheduling—accelerators are used in
multiple ways, e.g., to speedup parallel codes, to increase
throughput, or to improve a platform’s power/perfor-
mance properties. Pegasus addresses differing applica-
tion needs by offering a diversity of methods for schedul-
ing accelerator and general purpose resources, including
co-scheduling for concurrency constraints.

‘Coordination’ as the basis for resource manage-
ment—internally, accelerators use specialized execution
environments with their own resource managers [14, 27].
Pegasus uses coordinated scheduling methods to align
accelerator resource usage with platform-level manage-
ment. While coordination applies external controls to
control the use of ‘closed’ accelerators, i.e., accelerators
with resource managers that do not export coordination
interfaces, it could interact more intimately with ‘open’
managers as per their internal scheduling methods.
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Novel scheduling methods—current schedulers on
parallel machines assume complete control over their un-
derlying platforms’ processing resources. In contrast,
Pegasus recognizes and deals with heterogeneity not only
in terms of differing resource capabilities, but also in
terms of the diverse scheduling methods these resources
may require, an example being the highly parallel inter-
nal scheduling used in GPGPUs. Pegasus coordination
methods, therefore, differ from traditional co-scheduling
in that they operate above underlying native techniques.
Such meta-scheduling, therefore, seeks to influence the
actions of underlying schedulers rather than replacing
their functionality. This paper proposes and evaluates
new coordination methods that are geared to dealing with
diverse resources, including CPUs vs. GPUs and mul-
tiple generations of the latter, yet at the same time, at-
tempting to preserve desired virtual platform properties,
including fair-sharing and rioritization.

The current Xen-based Pegasus prototype efficiently
virtualizes NVIDIA GPUs, resulting in performance
competitive with that of applications that have direct ac-
cess to the GPU resources, as shown in Section 6. More
importantly, when the GPGPU resources are shared by
multiple guest VMs, online resource management be-
comes critical. This is evident from the performance
benefits derived from the coordination policies described
in Section 4, which range from 18% to 140% over base
GPU driver scheduling. An extension to the current,
fully functional, single-node Pegasus prototype will be
deployed to a large-scale GPU-based cluster machine,
called Keeneland, under construction at Oak Ridge Na-
tional Labs [35], to further validate our approach and to
better understand how to improve the federated schedul-
ing infrastructures needed for future larger scale hetero-
geneous systems.

In the remaining paper, Section 2 articulates the need
for smart accelerator sharing. Section 3 outlines the Pe-
gasus architecture. Section 4 describes its rich resource
management methods. A discussion of scheduling poli-
cies is followed by implementation details in Section 5,
and experimental evaluation in Section 6. Related work
is in Section 7, followed by conclusions and future work.

2 Background
This section offers additional motivation for the Pegasus
approach on a heterogeneous multi-core platforms.

Value in sharing resources—Accelerator perfor-
mance and usability (e.g., the increasing adoption of
CUDA) are improving rapidly. However, even for to-
day’s platforms, the majority of applications do not oc-
cupy the entire accelerator [2, 18]. In consequence and
despite continuing efforts to improve the performance
of single accelerator applications [12], resource sharing
is now supported in NVIDIA’s Fermi architecture [27],

IBM’s Cell, and others. These facts are the prime drivers
behind our decision to develop scheduling methods that
can efficiently utilize both accelerator and general pur-
pose cores. However, as stated earlier, for reasons of
portability across different accelerators and accelerator
generations, and to deal with their proprietary nature,
Pegasus resource sharing across different VMs is imple-
mented at a layer above the driver, leaving it up to the
individual applications running in each VM to control
and optimize their use of accelerator resources.

Limitations of traditional device driver based so-
lutions—Typical accelerators have a sophisticated and
often proprietary device driver layer, with an optional
runtime. While these efficiently implement the computa-
tional and data interactions between accelerator and host
cores [28], they lack support for efficient resource shar-
ing. For example, first-come-first-serve issue of CUDA
calls from ‘applications-to-GPU’ through a centralized
NVIDIA-driver can lead to possibly detrimental call in-
terleavings, which can cause high variances in call times
and degradation in performance, as shown by measure-
ments of the NVIDIA driver in Section 6. Pegasus can
avoid such issues and use a more favorable call order, by
introducing and regulating time-shares for VMs to issue
GPU-requests. This leads to significantly improved per-
formance even for simple scheduling schemes.

3 Pegasus System Architecture
Designed to generalize from current accelerator-based
systems to future heterogeneous many-core platforms,
Pegasus creates the logical view of computational re-
sources shown in Figure 1. In this view, general purpose
and accelerator tasks are schedulable entities mapped to
VCPUs (virtual CPUs) characterized as general purpose
or as ‘accelerator’. Since both sets of processors can
be scheduled independently, platform-wide scheduling,
then, requires Pegasus to federate the platform’s gen-
eral purpose and accelerator schedulers. Federation is
implemented by coordination methods that provide the
serviced virtual machines with shares of physical pro-
cessors based on the diverse policies described in Sec-
tion 4. Coordination is particularly important for closely
coupled tasks running on both accelerator and general
purpose cores, as with the image processing application
explained earlier. Figure 1 shows virtual machines run-
ning on either one or both types of processors, i.e., the
CPUs and/or the accelerators. The figure also suggests
the relative rarity of VMs running solely on accelerators
(grayed out in the figure) in current systems. We segre-
gate the privileged software components shown for the
host and accelerator cores to acknowledge that the accel-
erator could have its own privileged runtime.

The following questions articulate the challenges in
achieving the vision shown in Figure 1.
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Figure 1: Logical view of Pegasus architecture

How can heterogeneous resources be managed?:
Hardware heterogeneity goes beyond varying compute
speeds to include differing interconnect distances, differ-
ent and possibly disjoint memory models, and potentially
different or non-overlapping ISAs. This makes it difficult
to assimilate these accelerators into one common plat-
form. Exacerbating these hardware differences are soft-
ware challenges, like those caused by the fact that there
is no general agreement about programming models and
runtimes for accelerator-based systems [19, 28].

Are there efficient methods to utilize heterogeneous re-
sources?: The hypervisor has limited control over how
the resources internal to closed accelerators are used, and
whether sharing is possible in time, space, or both be-
cause there is no direct control over scheduler actions
beyond the proprietary interfaces. The concrete ques-
tion, then, is whether and to what extent the coordinated
scheduling approach adopted by Pegasus can succeed.

Pegasus therefore allows schedulers to run resource al-
location policies that offer diversity in how they maxi-
mize application performance and/or fairness in resource
sharing.

3.1 Accelerator Virtualization
With GViM [13], we outline methods for low-overhead
virtualization of GPUs for the Xen hypervisor, address-
ing heterogeneous hardware with general purpose and
accelerator cores, used by VMs with suitable codes (e.g.,
for Larrabee or Tolapai cores, codes that are IA in-
struction set compatible vs. non-IA compatible codes for
NVIDIA or Cell accelerators). Building on this approach
and acknowledging the current off-chip nature of accel-
erators, Pegasus assumes these hardware resources to be
managed by both the hypervisor and Xen’s ‘Dom0’ man-
agement (and driver) domain. Hence, Pegasus uses front
end/back end split drivers [3] to mediate all accesses
to GPUs connected via PCIe. Specifically, the requests

for GPU usage issued by guest VMs (i.e., CUDA tasks)
are contained in call buffers shared between guests and
Dom0, as shown in Figure 2, using a separate buffer for
each guest. Buffers are inspected by ‘poller’ threads that
pick call packets from per-guest buffers and issue them
to the actual CUDA runtime/driver resident in Dom0.
These poller threads can be woken up whenever a do-
main has call requests waiting. This model of execution
is well-matched with the ways in which guests use accel-
erators, typically wishing to utilize their computational
capabilities for some time and with multiple calls.

For general purpose cores, a VCPU as the (virtual)
CPU representation offered to a VM embodies the state
representing the execution of the VM’s threads/processes
on physical CPUs (PCPUs). As a similar abstraction,
Pegasus introduces the notion of an accelerator VCPU
(aVCPU), which embodies the VM’s state concerning
the execution of its calls to the accelerator. For the
Xen/NVIDIA implementation, this abstraction is a com-
bination of state allocated on the host and on the acceler-
ator (i.e., Dom0 polling thread, CUDA calls, and driver
context form the execution context while the data that is
operated upon forms the data portion, when compared
with the VCPUs). By introducing aVCPUs, Pegasus can
then explicitly schedule them, just like their general pur-
pose counterparts. Further, and as seen from Section 6,
virtualization costs are negligible or low and with this
API-based approach to virtualization, Pegasus leaves the
use of resources on the accelerator hardware up to the
application, ensures portability and independence from
low-level changes in NVIDIA drivers and hardware.

3.2 Resource Management Framework
For VMs using both VCPUs and aVCPUs, resource man-
agement can explicitly track and schedule their joint use
of both general purpose and accelerator resources. Tech-
nically, such management involves scheduling their VC-
PUs and aVCPUs to meet desired Service Level Objec-
tives (SLOs), concurrency constraints, and to ensure fair-
ness in different guest VMs’ resource usage.

For high performance, Pegasus distinguishes two
phases in accelerator request scheduling. First, the
accelerator selection module runs in the Accelera-
tor Domain—which in our current implementation is
Dom0—henceforth, called DomA. This module asso-
ciates a domain, i.e., a guest VM, with an accelerator
that has available resources, by placing the domain into
an ‘accelerator ready queue’, as shown in Figure 2. Do-
mains are selected from this queue when they are ready
to issue requests. Second, it is only after this selection
that actual usage requests are forwarded to, i.e., sched-
uled and run on, the selected accelerator. There are mul-
tiple reasons for this difference in accelerator vs. CPU
scheduling. (1) An accelerator like the NVIDIA GPU
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Figure 2: Logical view of the resource management
framework in Pegasus

has limited memory, and it associates a context with each
‘user’ (e.g., a thread) that locks some of the GPU’s re-
sources. (2) Memory swapping between host and accel-
erator memory over an interconnect like PCIe is expen-
sive, which means that it is costly to dynamically change
the context currently running on the GPU. In response,
Pegasus GPU scheduling restricts the number of domains
simultaneously scheduled on each accelerator and in ad-
dition, it permits each such domain to use the accelerator
for some extensive time duration. The following param-
eters are used for accelerator selection.

Accelerator profile and queue—accelerators vary in
terms of clock speed, memory size, in-out bandwidths
and other such physical characteristics. These are static
or hardware properties that can identify capability dif-
ferences between various accelerators connected in the
system. There also are dynamic properties like allo-
cated memory, number of associated domains, etc., at
any given time. This static and dynamic information
is captured in an ‘accelerator profile’. An ‘accelerator
weight’ computed from this profile information deter-
mines current hardware capabilities and load character-
istics for the accelerator. These weights are used to or-
der accelerators in a priority queue maintained within the
DomA Scheduler, termed as ‘accelerator queue’. For
example, the more an accelerator is used, the lower its
weight becomes so that it does not get oversubscribed.
The accelerator with the highest weight is the most ca-
pable and is the first to be considered when a domain
requests accelerator use.

Domain profile—domains may be more or less de-
manding of accelerator resources and more vs. less capa-
ble of using them. The ‘domain profiles’ maintained by
Pegasus describe these differences, and they also quan-

titatively capture domain requirements. Concretely, the
current implementation expects credit assignments [7]
for each domain that gives it proportional access to
the accelerator. Another example is to match the do-
main’s expected memory requirements against the avail-
able memory on an accelerator (with CUDA, it is possi-
ble to determine this from application metadata). Since
the execution properties of domains change over time,
domain execution characteristics should be determined
dynamically, which would then cause the runtime mod-
ification of a domain’s accelerator credits and/or access
privileges to accelerators. Automated methods for doing
so, based on runtime monitoring, are subject of our fu-
ture work, with initial ideas reported in [8]. This paper
lays the groundwork for such research: (1) we show co-
ordination to be a fundamentally useful method for man-
aging future heterogeneous systems, and (2) we demon-
strate the importance of these runtime-based techniques
and performance advantages derived from their use in a
coordinated scheduling environment.

Once a domain has been associated with an acceler-
ator, the DomA Scheduler in Figure 2 schedules exe-
cution of individual domain requests per accelerator by
activating the corresponding domain’s aVCPU. For all
domains in its ready queue, the ‘DomA Scheduler’ has
complete control over which domain’s requests are sub-
mitted to the accelerator(s), and it can make such deci-
sions in coordination with the hypervisor’s VCPU sched-
uler, by exchanging relevant accelerator and schedule
data. Scheduling in this second phase, can thus be en-
hanced by coordinating the actions of the hypervisor and
DomA scheduler(s) present on the platform, as intro-
duced in Figure 1. In addition, certain coordination poli-
cies can use the monitoring/feedback module, which cur-
rently tracks the average values of wait times for acceler-
ator requests, the goal being to detect SLO (service level
objective) violations for guest requests. Various policies
supported by the DomA scheduler are described in the
following section.

4 Resource Management Policies for
Heterogeneity-aware Hypervisors

Pegasus contributes its novel, federated, and
heterogeneity-aware scheduling methods to the sub-
stantive body of past work in resource management.
The policies described below, and implemented by the
DomA scheduler, are categorized based on their level
of interaction with the hypervisor’s scheduler. They
range from simple and easily implemented schemes
offering basic scheduling properties to coordination-
based policies that exploit information sharing between
the hypervisor and accelerator subsystems. Policies
are designed to demonstrate the range of achievable
coordination between the two scheduler subsystems



36 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

Algorithm 1: Simplified Representation of Scheduling Data
and Functions for Credit-based Schemes
/* D = Domain being considered */
/* X = Domain cpu or accelerator credits */
/* T = Scheduler timer period */
/* Tc = Ticks assigned to next D */
/* Tm = maximum ticks D gets based on X */
Data: Ready queue RQA of domains (D)
/* RQ is ordered by X */
Data: Accelerator queue AccQ of accelerators
/* AccQ is ordered by accelerator weight */

InsertDomainforScheduling(D)
if D not in RQA then

Tc ← 1, Tm ← X
Xmin

A ← PickAccelerator(AccQ,D)
InsertDomainInRQ CreditSorted(RQA,D)

else
/* D already in some RQA */
if ContextEstablished then

Tc ← Tm
else

Tc ← 1
DomASchedule(RQA)
InsertDomainforScheduling(Curr Dom)
D ← RemoveHeadandAdvance(RQA)
Set D’s timer period to Tc; Curr dom ← D

and the benefits seen by such coordination for various
workloads. The specific property offered by each policy
is indicated in square brackets.

4.1 Hypervisor Independent Policies
The simplest methods do not support scheduler federa-
tion, limiting their scheduling logic to DomA.

No scheduling in backend (None) [first-come-first-
serve]—provides base functionality that assigns domains
to accelerators in a round robin manner, but relies on
NVIDIA’s runtime/driver layer to handle all request
scheduling. DomA scheduler plays no role in domain
request scheduling. This serves as our baseline.

AccCredit (AccC) [proportional fair-share]—
recognizing that domains differ in terms of their desire
and ability to use accelerators, accelerator credits are
associated with each domain, based on which different
domains are polled for different time periods. This
makes the time given to a guest proportional to how
much it desires to use the accelerator, as apparent in
the pseudo-code shown in Algorithm 1, where the
requests from the domain at the head of the queue are
handled until it finishes its awarded number of ticks.
For instance, with credit assignments (Dom1,1024),
(Dom2,512), (Dom3,256), and (Dom4,512), the number
of ticks will be 4, 2, 1, and 2, respectively.

Because the accelerators used with Pegasus require
their applications to explicitly allocate and free accelera-
tor state, it is easy to determine whether or not a domain
currently has context (state) established on an accelera-

Algorithm 2: Simplified Representation of CoSched and
AugC Schemes

/* RQcpu=Per CPU ready q in hypervisor */
/* HS=VCPU-PCPU schedule for next period */
/* X = domain credits */

HypeSchedule(RQcpu)
Pick VCPUs for all PCPUs in system
∀D,AugCreditD = RemainingCredit
Pass HS to DomA scheduler

DomACoSchedule(RQA,HS)
/* To handle #cpus > #accelerators */
∀D ∈ (RQA

⋂
HS)

Pick D with highest X
if D = null then

/* To improve GPU utilization */
Pick D with highest X in RQA

DomAAugSchedule(RQA,HS)
foreach D ∈ RQA do

Pick D with highest (AugCredit + X)

tor. The DomA scheduler, therefore, interprets a domain
in a ContextEstablished state as one that is actively using
the accelerator. When in a NoContextEstablished state, a
minimum time tick (1) is assigned to the domain for the
next scheduling cycle (see Algorithm 1).

4.2 Hypervisor Controlled Policy
The rationale behind coordinating VCPUs and aVCPUs
is that the overall execution time of an application (com-
prised of both host and accelerator portions) can be re-
duced if its communicating host and accelerator tasks
are scheduled at the same time. We implement one such
method described next.

Strict co-scheduling (CoSched) [latency reduc-
tion by occasional unfairness]—an alternative to the
accelerator-centric policies shown above, this policy
gives complete control over scheduling to the hyper-
visor. Here, accelerator cores are treated as slaves to
host cores, so that VCPUs and aVCPUs are scheduled
at the same time. This policy works particularly well
for latency-sensitive workloads like certain financial pro-
cessing codes [24] or barrier-rich parallel applications. It
is implemented by permitting the hypervisor scheduler
to control how DomA schedules aVCPUs, as shown in
Algorithm 2. For ‘singular VCPUs’, i.e., those without
associated aVCPUs, scheduling reverts to using a stan-
dard credit-based scheme.

4.3 Hypervisor Coordinated Policies
A known issue with co-scheduling is potential unfair-
ness. The following methods have the hypervisor ac-
tively participate in making scheduling decisions rather
than governing them:

Augmented credit-based scheme (AugC) [through-
put improvement by temporary credit boost]—going
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beyond the proportionality approach in AccC, this pol-
icy uses active coordination between the DomA sched-
uler and hypervisor (Xen) scheduler in an attempt to bet-
ter co-schedule domains on a CPU and GPU. To en-
able coscheduling, the Xen credit-based scheduler pro-
vides to the DomA scheduler, as a hint, its CPU sched-
ule for the upcoming period, with remaining credits for
all domains in the schedule as shown in Algorithm 2.
The DomA scheduler uses this schedule to add tempo-
rary credits to the corresponding domains in its list (i.e.,
to those that have been scheduled for the next CPU time
period). This boosts the credits of those domains that
have their VCPUs selected by CPU scheduling, thus in-
creasing their chances for getting scheduled on the corre-
sponding GPU. While this effectively co-schedules these
domains’ CPU and GPU tasks, the DomA scheduler re-
tains complete control over its actions; no domain with
high accelerator credits is denied its eventual turn due to
this temporary boost.

SLA feedback to meet QoS requirements (SLAF)
[feedback-based proportional fair-share]—this is an
adaptation of the AccC scheme as shown in Algorithm
1, with feedback control. (1) We start with an SLO de-
fined for a domain (statically profiled) as the expected
accelerator utilization—e.g., 0.5sec every second. (2)
As shown in Algorithm 1, once the domain moves to a
ContextEstablished state, it is polled, and its requests are
handled for its assigned duration. In addition, a sum of
domain poll time is maintained. (3) Ever so often, all
domains associated with an accelerator are scanned for
possible SLO violations. Domains with violations are
given extra time ticks to compensate, one per scheduling
cycle. (4) In high load conditions, there is a trigger that
increases accelerator load in order to avoid new domain
requests, which in the worst case, forces domains with
comparatively low credits to wait longer to get compen-
sated for violations seen by higher credit domains.

For generality in scheduling, we have also imple-
mented: (1) Round robin (RR) [fair-share] which is hy-
pervisor independent, and (2) XenoCredit (XC) [propor-
tional fair-share] which is similar to AccC except it de-
pends on CPU credits assigned to the corresponding VM,
making it a hypervisor coordinated policy.

5 System Implementation
The current Pegasus implementation operates with Xen
and NVIDIA GPUs. As a result, resource management
policies are implemented within the management frame-
work (Section 3.2) run in DomA (i.e., Dom0 in the cur-
rent implementation), as shown in Figure 2.

Discovering GPUs and guest domains: the manage-
ment framework discovers all of the GPUs present in the
system, assembles their static profiles using cudaGetDe-
viceProperties() [28], and registers them with the Pega-

sus hypervisor scheduling extensions. When new guest
domains are created, Xen adds them to its hypervisor
scheduling queue. Our management framework, in turn,
discovers them by monitoring XenStore.

Scheduling: the scheduling policies RR, AccC, XC,
and SLAF are implemented using timer signals, with one
tick interval equal to the hypervisor’s CPU scheduling
timer interval. There is one timer handler or scheduler
for each GPU, just like there is one scheduling timer
interrupt per CPU, and this function picks the next do-
main to run from corresponding GPU’s ready queue, as
shown in Algorithm 1. AugC and CoSched use a thread
in the backend that performs scheduling for each GPU
by checking the latest schedule information provided by
the hypervisor, as described in Section 4. It then sleeps
for one timer interval. The per domain pollers are wo-
ken up or put to sleep by scheduling function(s), using
real time signals with unique values assigned to each do-
main. This restricts the maximum number of domains
supported by the backend to the Dom0 operating system
imposed limit, but results in bounded/prioritized signal
delivery times.

Two entirely different scheduling domains, i.e., DomA
and the hypervisor, control the two different kinds of
processing units, i.e., GPUs and x86 cores. This poses
several implementation challenges for the AugC and
CoSched policies such as: (1) What data needs to be
shared between extensions and the hypervisor scheduler
and what additional actions to take, if any, in the hyper-
visor scheduler, given that this scheduler is in the critical
path for the entire system? (2) How do we manage the
differences and drifts in these respective schedulers’ time
periods?

Concerning (1), the current implementation extends
the hypervisor scheduler to simply have it share its
VCPU-PCPU schedule with the DomA scheduler, which
then uses this schedule to find the right VM candidates
for scheduling. Concerning (2), there can be a noticeable
timing gap between when decisions are made and then
enacted by the hypervisor scheduler vs. the DomA ex-
tensions. The resulting delay as to when or how soon
a VCPU and an aVCPU from same domain are co-
scheduled can be reduced with better control over the use
of GPU resources. Since NVIDIA drivers do not offer
such control, there is notable variation in co-scheduling.
Our current remedial solution is to have each aVCPU be
executed for ‘some time’, i.e., to run multiple CUDA call
requests, rather than scheduling aVCPUs at a per CUDA
call granularity, thereby increasing the possible overlap
time with its ‘co-related’ VCPU. This does not solve the
problem, but it mitigates the effects of imprecision, par-
ticularly for longer running workloads.
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6 Experimental Evaluation
Key contributions of Pegasus are (1) accelerators as first
class schedulable entities and (2) coordinated schedul-
ing to provide applications with the high levels of per-
formance sought by use of heterogeneous processing
resources. This section first shows that the Pegasus
way of virtualizing accelerators is efficient, next demon-
strates the importance of coordinated resource manage-
ment, and finally, presents a number of interesting in-
sights about how diverse coordination (i.e., scheduling)
policies can be used to address workload diversity.

Testbed: All experimental evaluations are conducted
on a system comprised of (1) a 2.5GHz Xeon quad-core
processor with 3GB memory and (2) an NVIDIA 9800
GTX card with 2 GPUs and the v169.09 GPU driver.
The Xen 3.2.1 hypervisor and the 2.6.18 Linux kernel
are used in Dom0 and guest domains. Guest domains
use 512MB memory and 1 VCPU each, the latter pinned
to certain physical cores, depending on the experiments
being conducted.

6.1 Benchmarks and Applications
Pegasus is evaluated with an extensive set of bench-
marks and with emulations of more complex computa-
tionally expensive enterprise codes like the web-based
image processing application mentioned earlier. Bench-
marks include (1) parallel codes requiring low levels
of deviation for highly synchronous execution, and (2)
throughput-intensive codes. A complete listing appears
in Table 1, identifying them as belonging to either the
parboil benchmark suite [30] or the CUDA SDK 1.1.
Benchmark-based performance studies go beyond run-
ning individual codes to using representative code mixes
that have varying needs and differences in behavior
due to different dataset sizes, data transfer times, it-
eration complexity, and numbers of iterations executed
for certain computations. The latter two are a good
measure of GPU ‘kernel’ size and the degree of cou-
pling between CPUs orchestrating accelerator use and
the GPUs running these kernels respectively. Depending
on their outputs and the number of CUDA calls made,
(1) throughput-sensitive benchmarks are MC, BOp, PI,
(2) latency-sensitive benchmarks include FWT, and sci-
entific, and (3) some benchmarks are both, e.g., BS, CP.
A benchmark is throughput-sensitive when its perfor-
mance is best evaluated as the number of some quan-
tity processed or calculated per second, and a benchmark
is latency-sensitive when it makes frequent CUDA calls
and its execution time is sensitive to potential virtual-
ization overhead and/or delays or ‘noise’ in accelerator
scheduling. The image processing application, termed
PicSer, emulates web codes like PhotoSynth. BlackSc-
holes represents financial codes like those run by option
trading companies [24].

Category Source Benchmarks
Financial SDK Binomial(BOp), BlackSc-

holes(BS), Monte-
Carlo(MC)

Media
process-
ing

SDK
or par-
boil

ProcessImage(PI)=matrix
multiply+DXTC, MRIQ,
FastWalshTransform(FWT)

Scientific parboil CP, TPACF, RPES
Table 1: Summary of Benchmarks

6.2 GPGPU Virtualization

Virtualization overheads when using Pegasus are de-
picted in Figures 3(a)–(c), using the benchmarks listed
in Table 1. Results show the overhead (or speedup)
when running the benchmark in question in a VM vs.
when running it in Dom0. The overhead is calculated as
the time it takes the benchmark to run in a VM divided
by the time to run it in Dom0. We show the overhead
(or speedup) for the average total execution time (Total
Time) and the average time for CUDA calls (Cuda Time)
across 50 runs of each benchmark. Cuda Time is calcu-
lated as the time to execute all CUDA calls within the
application. Running the benchmark in Dom0 is equiv-
alent to running it in a non-virtualized setting. For the
1VM numbers in Figure 3(a) and (c), all four cores are
enabled, and to avoid scheduler interactions, Dom0 and
the VM are pinned on separate cores. The experiments
reported in Figure 3(b) have only 1 core enabled and the
execution times are not averaged over multiple runs, with
a backend restart for every run. This is done for reasons
explained next. All cases use an equal number of physi-
cal GPUs, and Dom0 tests are run with as many cores as
the Dom0–1VM case.

An interesting observation about these results is that
sometimes, it is better to use virtualized rather than non-
virtualized accelerators. This is because (1) the Pegasus
virtualization software can benefit from the concurrency
seen from using different cores for the guest vs. Dom0
domains, and (2) further advantages are derived from ad-
ditional caching of data due to a constantly running—
in Dom0—backend process and NVIDIA driver. This
is confirmed in Figure 3(b), which shows higher over-
heads when the backend is stopped before every run,
wiping out any driver cache information. Also of inter-
est is the speedup seen by say, BOp or PI vs. the perfor-
mance seen by say, BS or RPES, in Figure 3(a). This is
due to an increase in the number of calls per application,
seen in BOp/PI vs. BS/RPES, emphasizing the virtual-
ization overhead added to each executed CUDA call. In
these cases, the benefits from caching and the presence
of multiple cores are outweighed by the per call overhead
multiplied by the number of calls made.
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Figure 3: Evaluation of GPU virtualization overhead (lower is better)

6.3 Resource Management
The Pegasus framework for scheduling coordination
makes it possible to implement diverse policies to meet
different application needs. Consequently, we use mul-
tiple metrics to evaluate the policies described in Sec-
tion 4. They include (1) throughput (Quantity/sec) for
throughput-sensitive applications, (2) work done (Quan-
tity work/sec) (which is the sum of the calculations done
over all runs divided by the total time taken), and/or (3)
per call latency (Latency) observed for CUDA calls (la-
tency is reported including the CUDA function execution
time to account for the fact that we cannot control how
the driver orders the requests it receives from Pegasus).

Experimental Methodology: To reduce scheduling
interference from the guest OS, each VM runs only a sin-
gle benchmark. Each sample set of measurements, then,
involves launching the required number of VMs, each of
which repeatedly runs its benchmark. To evaluate ac-
celerator sharing, experiments use 2, 3, or 4 domains,
which translates to configurations with no GPU/CPU
sharing, sharing of one GPU and one CPU by two of
the three domains, and sharing of two CPUs and both
GPUs by pairs of domains, respectively. In all experi-
ments, Dom1 and Dom3 share a CPU as well as a GPU,
and so do Dom2 and Dom4, when present. Further, to
avoid non-deterministic behavior due to actions taken
by the hypervisor scheduler, and to deal with the lim-
ited numbers of cores and GPGPUs available on our
experimental platform, we pin the domain VCPUs to
certain CPUs, depending on the experiment scenario.
These CPUs are chosen based on the workload distribu-
tion across CPUs (including backend threads in Dom0)
and the concurrency requirements of VCPU and aVCPU
from the same domain (simply put, VCPU from a do-
main and the polling thread forming its aVCPU cannot
be co-scheduled if they are bound to the same CPU).

For brevity, the results shown in this section focus
on the BS benchmark, because of (1) its closeness to
real world financial workloads, (2) its tunable iteration
count argument that varies its CPU-GPU coupling and
can highlight the benefits of coordination, (3) its easily

varied data sizes and hence GPU computation complex-
ity, and (4) its throughput as well as latency sensitive na-
ture. Additional reported results are for benchmarks like
PicSer, CP and FWT in order to highlight specific in-
teresting/different cases, like those for applications with
low degrees of coupling or with high latency sensitivity.
For experiments that assign equal credits to all domains,
we do not plot RR and AccC, since they are equivalent
to XC. Also, we do not show AccC if accelerator credits
are equal to Xen credits.

Observations at an early stage of experimentation
showed that the CUDA driver introduces substantial vari-
ations in execution time when a GPU is shared by multi-
ple applications (shown by the NoVirt graph in Figure 9).
This caused us to use a large sample size of 50 runs
per benchmark per domain, and we report either the h-
spread1 or work done which is the sum of total output
divided by total elapsed time over those multiple runs.
For throughput and latency based experiments, we re-
port values for 85% of the runs from the execution set,
which prunes some outliers that can greatly skew results
and thus, hide the important insights from a particular
experiment. These outliers are typically introduced by
(1) a serial launch of domains causing the first few read-
ings to show non-shared timings for certain domains, and
(2) some domains completing their runs earlier due to
higher priority and/or because the launch pattern causes
the last few readings for the remaining domains to again
be during the unshared period. Hence, all throughput
and latency graphs represent the distribution of values
across the runs, with a box in the graph representing
50% of the samples around the median (or h-spread) and
the lower and upper whiskers encapsulating 85% of the
readings, with the minimum and maximum quantities as
delimiters. It is difficult, however, to synchronize the
launches of domains’ GPU kernels with the execution
of their threads on CPUs, leading to different orderings
of CUDA calls in each run. Hence, to show cumulative
performance over the entire experiment, for some exper-
imental results, we also show the ‘work done’ over all of

1http://mathworld.wolfram.com/H-Spread.html
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the runs.
Scheduling is needed when sharing accelerators:

Figure 3(c) shows the overhead of sharing the GPU when
applications are run both in Dom0 and in virtualized
guests. In the figure, the 1VM quantities refer to over-
head (or speedup) seen by a benchmark running in 1VM
vs. when it is run nonvirtualized in Dom0. 2dom0 and
2VM values are similarly normalized with respect to the
Dom0 values. 2dom0 values indicate execution times
observed for a benchmark when it shares a GPU run-
ning in Dom0, i.e., in the absence of GPU virtualiza-
tion, and 2VM values indicate similar values when run
in two guest VMs sharing the GPU. For the 2VM case,
the Backend implements RR, a scheduling policy that is
completely fair to both VMs, and their CPU credits are
set to 256 for equal CPU sharing. These measurements
show that (1) while the performance seen by applications
suffers from sharing (due to reduced accelerator access),
(2) a clear benefit is derived for most benchmarks from
using even a simple scheduling method for accelerator
access. This is evident from the virtualized case that uses
a round robin scheduler, which shows better performance
compared with the nonvirtualized runs in Dom0 for most
benchmarks, particularly the ones with lower numbers
of CUDA call invocations. This shows that scheduling is
important to reduce contention in the NVIDIA driver and
thus helps minimize the resulting performance degrada-
tion. Measurements report Cuda Time and Total Time,
which is the metric used in Figures 3(a)–(b).

We speculate that sharing overheads could be reduced
further if Pegasus was given more control over the way
GPU resources are used. Additional benefits may arise
from improved hardware support for sharing the acceler-
ator, as expected for future NVIDIA hardware [27].

Coordination can improve performance: With en-
couraging results from the simple RR scheduler, we
next experiment with the more sophisticated policies de-
scribed in Section 4. In particular, we use BlackScholes
(outputs options and hence its throughput is given by
Options/sec) which, with more than 512 compute kernel
launches and a large number of CUDA calls, has a high
degree of CPU-GPU coupling. This motivates us to also
report the latency numbers seen by BS.

An important insight from these experiments is that
coordination in scheduling is particularly important for
tightly coupled codes, as demonstrated by the fact that
our base case, None, shows large variations and worse
overall performance, whereas AugC and CoSched show
the best performance due to their higher degrees of coor-
dination. Figures 4(a)–(c) show that these policies per-
form well even when domains have equal credits. The
BlackScholes run used in this experiment generates 2
million options over 512 iterations in all our domains.
Figure 4(a) shows the distribution of throughput values

in Million options/sec, as explained earlier. While XC
and SLAF see high variation due to higher dependence
on driver scheduling and no attempt for CPU and GPU
coscheduling, they still perform at least 33% better than
None when comparing the medians. AugC and CoSched
add an additional 4%–20% improvement as seen from
Figure 4(a). The higher performance seen with Dom1
and Dom3 for total work done in Figure 4(b) in case of
AugC and CoSched is because of the lower signaling la-
tency seen by the incoming and outgoing domain back-
end threads, due to their co-location with the scheduling
thread and hence, the affected call ordering done by the
NVIDIA driver (which is beyond our control).

Beyond the improvements shown above, future de-
ployment scenarios in utility data centers suggest the im-
portance of supporting prioritization of domains. This
is seen by experiments in which we modify the credits
assigned to a domain, which can further improve perfor-
mance (see Figure 5). We again use BlackScholes, but
with Domain credits as (1) (Dom1,256), (2) (Dom2,512),
(3) (Dom3,1024), and (4) (Dom4,256), respectively. The
effects of such scheduling are apparent from the fact
that, as shown in Figure 5(b), Dom3 succeeds in per-
forming 2.4X or 140% more work when compared with
None, with its minimum and maximum throughput val-
ues showing 3X to 2X improvement respectively. This is
because domains sometimes complete early (e.g., Dom3
completes its designated runs before Dom1) which then
frees up the accelerator for other domains (e.g., Dom1)
to complete their work in a mode similar to non-shared
operation, resulting in high throughput. The ‘work done’
metric captures this because average throughput is cal-
culated for the entire application run. Another important
point seen from Figure 5(c) is that the latency seen by
Dom4 varies more as compared to Dom2 for say AugC
because of the temporary unfairness resulting from the
difference in credits between the two domains. A final
interesting note is that scheduling becomes less impor-
tant when accelerators are not highly utilized, as evident
from other measurements not reported here.

Coordination respects proportional credit assign-
ments: The previous experiments use equal amounts
of accelerator and CPU credits, but in general, not
all guest VMs need equal accelerator vs. general
purpose processor resources. We demonstrate the
effects of discretionary credit allocations using the BS
benchmark, since it is easily configured for variable
CPU and GPU execution times, based on the expected
number of call and put options and the number of
iterations denoted by BS〈#options,#iterations〉. Each
domain is assigned different GPU and CPU cred-
its denoted by Dom#〈AccC,XC,SLA proportion〉.
This results in the configuration for this experiment
being: Dom1〈1024,256,0.2〉 running BS〈2mi,128〉,
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Figure 4: Performance of different scheduling schemes [BS]—equal credits for four guests
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Figure 5: Performance of scheduling schemes [BS]—Credits: Dom1=256, Dom2=512, Dom3=1024, Dom4=256

Dom2〈1024,1024,0.8〉 running BS〈2mi,512〉,
Dom3〈256,1024,0.8〉 running BS〈0.8mi,512〉, and
Dom4〈768,256,0.2〉 running BS〈1.6mi,128〉, where mi
stands for million.

Results depicting ‘total work done’ in Figure 6 demon-
strate that coordinated scheduling methods AugC and
CoSched deal better with proportional credit assign-
ments. Results show that domains with balanced CPU
and GPU credits are more effective in getting work
done—Dom2 and Dom3 (helped by high Xen credits)—
than others. SLAF shows performance similar to
CoSched and AugC due to its use of a feedback loop
that tries to attain 80% utilization for Dom2 and Dom3
based on Xen credits. Placement of Dom4 with a high
credit domain Dom2 somewhat hurts its performance,
but its behavior is in accordance with its Xen credits and
SLAF values, and it still sees a performance improve-
ment of at least 18% compared to XC (lowest perfor-
mance improvement among all scheduling schemes for
the domain) with None. Dom1 benefits from coordina-
tion due to earlier completion of Dom3 runs, but is af-
fected by its low CPU credits for the rest of the schemes.

One lesson from these runs is that the choice of credit
assignment should be based on the expected outcome and
the amount of work required by the application. How
to make suitable choices is a topic for future work, par-
ticularly focusing on the runtime changes in application
needs and behavior. We also realize that we cannot con-
trol the way the driver ultimately schedules requests pos-
sibly introducing high system noise and limiting achiev-
able proportionality.

Coordination is important for latency sensitive codes:
Figure 8 corroborates our earlier statement about the
particular need for coordination with latency-intolerant
codes. When FWT is run in all domains, first with equal
CPU and GPU credits, then with different CPU cred-
its per domain, it is apparent that ‘None’ (no schedul-
ing) is inappropriate. Specifically, as seen in Figure 8,
all scheduling schemes see much lower latencies and la-
tency variations than None. Another interesting point is
that the latencies seen for Dom2 and Dom3 are almost
equal, despite a big difference in their credit values, for
all schemes except RR (which ignores credits). This is
because latencies are reduced until reaching actual virtu-
alization overheads and thereafter, are no longer affected
by differences in credits per domain. The other perfor-
mance effects seen for total time can be attributed to the
order in which calls reach the driver.

Scheduling is not always effective: There are situa-
tions in which scheduling is not effective. We have ob-
served this when a workload is very short lived or when
it shows a high degree of variation, as shown in Figure
9. These variations can be attributed to driver process-
ing, with evidence for this attribution being that the same
variability is observed in the absence of Pegasus, as seen
from the ‘NoVirt’ bars in the figure. An idea for future
work with Pegasus is to explicitly evaluate this via run-
time monitoring, to establish and track penalties due to
sharing, in order to then adjust scheduling to avoid such
penalties whenever possible.

Scheduling does not affect performance in the ab-
sence of sharing; scheduling overheads are low: When
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Figure 8: Average latencies seen for [FWT]
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using two, three, and four domains assigned equal cred-
its, with a mix of different workloads, our measurements
show that in general, scheduling works well and exhibits
little variation, especially in the absence of accelerator
sharing. While those results are omitted due to lack
of space, we do report the worst case scheduling over-
heads seen per scheduler call in Table 2, for different
scheduling policies. MS in the table refers to the Monitor
and Sweep thread responsible for monitoring credit value
changes for guest VMs and cleaning out state for non-
existing VMs. Xen kernel refers to the changes made to
the hypervisor CPU scheduling method. Acc0 and Acc1
refer to the schedulers (for timer based schemes like RR,
XC, SLAF) in our dual accelerator testbed. Hype refers
to the user level thread run for policies like AugC and
CoSched for coordinating CPU and GPU activities.

As seen from the table, the Pegasus backend compo-
nents have low overhead. For example, XC sees ∼0.5ms
per scheduler call per accelerator, compared to a typ-
ical execution time of CUDA applications of between
250ms to 5000ms and with typical scheduling periods of
30ms. The most expensive component, with an overhead
of ∼1ms, is MS, which runs once every second.

Scheduling complex workloads: When evaluating
scheduling policies with the PicSer application, we run
three dual-core, 512MB guests on our testbed. One VM
(Dom2) is used for priority service and hence given 1024
credits and 1 GPU, while the remaining two are assigned
256 credits, and they share the second GPU. VM2 is
latency-sensitive, and all of the VMs care about through-

Policy MS Xen Kernel Acc0/Hype Acc1
(µsec) (µsec) (µsec) (µsec)

None 272 0.85 0 0
XC 1119 0.85 507 496
AugC 1395 0.9 3.36 0
SLAF 1101 0.95 440 471
CoSched 1358 0.825 2.71 0

Table 2: Backend scheduler overhead

put. Scheduling is important because CPUs are shared by
multiple VMs. Figure 7(a) shows the average throughput
(Pixels/sec to incorporate different image sizes) seen by
each VM with four different policies. We choose AugC
and CoSched to highlight the co-scheduling differences.
None is to provide a baseline, and SLAF is an enhanced
version of all of the credit based schemes. AugC tries
to improve the throughput of all VMs, which results in a
somewhat lower value for Dom2. CoSched gives priority
to Dom2 and can penalize other VMs, as evident from
the GPU latencies shown in Figure 7(b). ‘No schedul-
ing’ does not perform well. More generally, it is clear
that coordinated scheduling can be effective in meeting
the requirements of multi-VM applications sharing CPU
and GPU resources.

6.4 Discussion
Experimental results show that the Pegasus approach ef-
ficiently virtualizes GPUs and in addition, can effec-
tively schedule their use. Even basic accelerator request
scheduling can improve sharing performance, with ad-
ditional benefits derived from active scheduling coordi-
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nation schemes. Among these methods, XC can per-
form quite well, but fails to capitalize on CPU-GPU co-
ordination opportunities for tightly coupled benchmarks.
SLAF, when applied to CPU credits, has a smoothing
effect on the high variations of XC, because of its feed-
back loop. For most benchmarks, especially those with
a high degree of coupling, AugC and CoSched perform
significantly better that other schemes, but require small
changes to the hypervisor. More generally, scheduling
schemes work well in the absence of over-subscription,
helping regulate the flow of calls to the GPU. Regulation
also results in lowering the degrees of variability caused
by un-coordinated use of the NVIDIA driver.

AugC and CoSched, in particular, constitute an inter-
esting path toward realizing our goal of making accel-
erators first class citizens, and further improvements to
those schemes can be derived from gathering additional
information about accelerator resources. There is not,
however, a single ‘best’ scheduling policy. Instead, there
is a clear need for diverse policies geared to match differ-
ent system goals and to account for different application
characteristics.

Pegasus scheduling uses global platform knowledge
available at hypervisor level, and its implementation ben-
efits from hypervisor-level efficiencies in terms of re-
source access and control. As a result, it directly ad-
dresses enterprise and cloud computing systems in which
virtualization is prevalent. Yet, clearly, methods like
those in Pegasus can also be realized at OS level, par-
ticularly for the high performance domain where hyper-
visors are not yet in common use. In fact, we are cur-
rently constructing a CUDA interposer library for non-
virtualized, native guest OSes, which we intend to use
to deploy scheduling solutions akin to those realized in
Pegasus at large scale on the Keeneland machine.

7 Related Work
The importance of dealing with the heterogeneity of fu-
ture multi-core platforms is widely recognized. Cy-
press [10] has expressed the design principles for hy-
pervisors actually realized in Pegasus (e.g., partitioning,
localization, and customization), but Pegasus also articu-
lates and evaluates the notion of coordinated scheduling.
Multikernel [4] and Helios [26] change system structures
for multicores, advocating distributed system models and
satellite kernels for processor groups, respectively. In
comparison, Pegasus retains the existing operating sys-
tem stack, then uses virtualization to adapt to diverse un-
derlying hardware, and finally, leverages the federation
approach shown scalable in other contexts to deal with
multiple resource domains.

Prior work on GPU virtualization has used the
OpenGL API [21] or 2D-3D graphics virtualization (Di-
rectX, SVGA) [9]. In comparison, Pegasus operates on

entire computational kernels more readily co-scheduled
with VCPUs running on general purpose CPUs. This
approach to GPU virtualization is outlined in an earlier
workshop paper, termed GViM [13], which also presents
some examples that motivate the need for QoS-aware
scheduling. In comparison, this paper thoroughly evalu-
ates the approach, develops and explores at length the no-
tion of coordinated scheduling and the scheduling meth-
ods we have found suitable for GPGPU use and for
latency- vs. throughput-intensive enterprise codes.

While similar in concept, Pegasus differs from coordi-
nated scheduling at the data center level, in that its de-
terministic methods with predictable behavior are more
appropriate at the fine-grained hypervisor level than the
loosely-coordinated control-theoretic or statistical tech-
niques used in data center control [20]. Pegasus co-
scheduling differs in implementation from traditional
gang scheduling [36] in that (1) it operates across mul-
tiple scheduling domains, i.e., GPU vs. CPU schedul-
ing, without direct control over how each of those do-
mains schedules its resources, and (2) because it limits
the idling of GPUs, by running workloads from other
aVCPUs when a currently scheduled VCPU does not
have any aVCPUs to run. This is appropriate because
Pegasus co-scheduling schemes can afford some skew
between CPU and GPU components, since their aim is
not to solve the traditional locking issue.

Recent efforts like Qilin [23] and predictive runtime
code scheduling [16] both aim to better distribute tasks
across CPUs and GPUs. Such work is complementary
and could be used combined with the runtime schedul-
ing methods of Pegasus. Upcoming hardware support for
accelerator-level contexts, context isolation, and context-
switching [27] may help in terms of load balancing op-
portunities and more importantly, it will help improve
accelerator sharing [9].

8 Conclusions and Future Work
This paper advocates making all of the diverse cores of
heterogeneous manycore systems into first class schedu-
lable entities. The Pegasus virtualization-based approach
for doing so, is to abstract accelerator interfaces through
virtualization and then devise scheduling methods that
coordinate accelerator use with that of general purpose
host cores. The approach is applied to a combined
NVIDIA- and x86-based GPGPU multicore prototype,
enabling multiple guest VMs to efficiently share het-
erogenous platform resources. Evaluations using a large
set of representative GPGPU benchmarks and compu-
tationally intensive web applications result in insights
that include: (1) the need of coordination when sharing
accelerator resources, (2) its critical importance for ap-
plications that frequently interact across the CPU-GPU
boundary, and (3) the need for diverse policies when co-
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ordinating the resource management decisions made for
general purpose vs. accelerator cores.

Certain elements of Pegasus remain under develop-
ment and/or are subject of future work. Admission con-
trol methods can help alleviate certain problems with ac-
celerator sharing, such as those caused by insufficient
accelerator resources (e.g., memory). Runtime load bal-
ancing across multiple accelerators would make it easier
to deal with cases in which GPU codes do not perform
well when sharing accelerator resources. Static profiling
and runtime monitoring could help identify such codes.
There will be some limitations in load balancing, how-
ever, because of the prohibitive costs in moving the large
amounts of memory allocated on completely isolated
GPU resources. This restricts load migration to cases
in which the domain has no or little state on a GPU. As
a result, the first steps in our future work will be to pro-
vide Pegasus scheduling methods with additional options
for accelerator mappings and scheduling, by generalizing
our implementation to use both local and non-local accel-
erators (e.g., when they are connected via high end net-
work links like Infiniband). Despite these shortcomings,
the current implementation of Pegasus not only enables
multiple VMs to efficiently share accelerator resources,
but also achieves considerable performance gains with its
coordination methods.
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Abstract
Interrupt coalescing is a well known and proven tech-
nique for reducing CPU utilization when processing high
IO rates in network and storage controllers. Virtualiza-
tion introduces a layer of virtual hardware for the guest
operating system, whose interrupt rate can be controlled
by the hypervisor. Unfortunately, existing techniques
based on high-resolution timers are not practical for vir-
tual devices, due to their large overhead. In this paper, we
present the design and implementation of a virtual inter-
rupt coalescing (vIC) scheme for virtual SCSI hardware
controllers in a hypervisor.

We use the number of commands in flight from the
guest as well as the current IO rate to dynamically set
the degree of interrupt coalescing. Compared to exist-
ing techniques in hardware, our work does not rely on
high-resolution interrupt-delay timers and thus leads to
a very efficient implementation in a hypervisor. Further-
more, our technique is generic and therefore applicable
to all types of hardware storage IO controllers which, un-
like networking, don’t receive anonymous traffic. We
also propose an optimization to reduce inter-processor
interrupts (IPIs) resulting in better application perfor-
mance during periods of high IO activity. Our imple-
mentation of virtual interrupt coalescing has been ship-
ping with VMware ESX since 2009. We present our
evaluation showing performance improvements in micro
benchmarks of up to 18% and in TPC-C of up to 5%.

1 Introduction

The performance overhead of virtualization has de-
creased steadily in the last decade due to improved hard-
ware support for hypervisors. This and other storage de-
vice optimizations have led to increasing deployments
of IO intensive applications on virtualized hosts. Many
important enterprise applications today exhibit high IO
rates. For example, transaction processing loads can is-

sue hundreds of very small IO operations in parallel re-
sulting in tens of thousands of IOs per second (IOPS).
Such high IOPS are now within reach of even more IT
organizations with faster storage controllers, wider adop-
tion of solid-state disks (SSDs) as front-end tier in stor-
age arrays and increasing deployments of high perfor-
mance consolidated storage devices using Storage Area
Network (SAN) or Network-Attached Storage (NAS)
protocols.

For high IO rates, the CPU overhead for handling all
the interrupts can get very high and eventually lead to
lack of CPU resources for the application itself [7, 14].
CPU overhead is even more of a problem in virtualiza-
tion scenarios where we are trying to consolidate as many
virtual machines into one physical box as possible. Free-
ing up CPU resources from one virtual machine (VM)
will improve performance of other VMs on the same
host. Traditionally, interrupt coalescing or moderation
has been used in network and storage controller cards
to limit the number of times that application execution
is interrupted by the device to handle IO completions.
Such coalescing techniques have to carefully balance an
increase in IO latency with the improved execution effi-
ciency due to fewer interrupts.

In hardware controllers, fine-grained timers are used
in conjunction with interrupt coalescing to keep an up-
per bound on the latency of IO completion notifications.
Such timers are inefficient to use in a hypervisor and
one has to resort to other pieces of information to avoid
longer delays. This problem is challenging for several
other reasons, including the desire to maintain a small
code size thus keeping the trusted computing base to a
manageable size. We treat the virtual machine workload
as unmodifiable and as an opaque black box. We also
assume based on earlier work that guest workloads can
change their behavior very quickly [6, 10].

In this paper, we target the problem of coalescing in-
terrupts for virtual devices without assuming any support
from hardware controllers and without using high res-
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olution timers. Traditionally, there are two parameters
that need to be balanced: maximum interrupt delivery la-
tency (MIDL) and maximum coalesce count (MCC). The
first parameter denotes the maximum time to wait before
sending the interrupt and the second parameter denotes
the number of accumulated completions before sending
an interrupt to the operating system (OS). The OS is in-
terrupted based on whichever parameter is hit first.

We propose a novel scheme to control for both MIDL
and MCC implicitly by setting the delivery ratio of in-
terrupts based on the current number of commands in
flight (CIF) from the guest OS and overall IO comple-
tion rate. The ratio, denoted as R, is simply the ratio of
how many virtual interrupts are sent to the guest divided
by the number of actual IO completions received by the
hypervisor on behalf of that guest. Note that 0 < R ≤ 1.
Lower values of delivery ratio, R, denotes a higher de-
gree of coalescing. We increase R when CIF is low and
decrease the delivery rate R for higher values of CIF.

The key insight in the paper is that unlike network IO,
CIF can be used directly for storage controllers because
each request has a corresponding command in flight prior
to completion. Also, based on the characteristics of stor-
age devices, it is important to maintain certain number
of commands in flight to efficiently utilize the underly-
ing storage device [9, 11, 23]. The benefits of command
queuing are well known and concurrent IOs are used in
most storage arrays to maintain high utilization. Another
challenge in coalescing interrupts for storage IO requests
is that many important applications issue synchronous
IOs. Delaying the completion of prior IOs can delay the
issue of future ones, so one has to be very careful about
minimizing the latency increase.

Another problem we address is specific to hypervisors,
where the host storage stack has to receive and process an
IO completion before routing it to the issuing VM. The
hypervisor may need to send inter-processor interrupts
(IPIs) from the CPU that received the hardware interrupt
to the remote CPU where the VM is running for notifi-
cation purposes. We provide an optimization to reduce
the number of IPIs issued using the timestamp of the last
interrupt that was sent to the guest OS. This reduces the
overall number of IPIs while bounding the latency of no-
tifying the guest OS about an IO completion.

We have implemented our virtual interrupt coalescing
(vIC) techniques in the VMware ESX hypervisor [21]
though they can be applied to any hypervisor including
type 1 and type 2 as well as hardware storage controllers.
Experimentation with a set of micro benchmarks shows
that vIC techniques can improve both workload through-
put and CPU overheads related to IO processing by up
to 18%. We also evaluated vIC against the TPC-C work-
load and found improvements of up to 5%. The vIC im-
plementation discussed here is being used by thousands

of customers in the currently shipping ESX version.
The next section presents background on VMware

ESX Server architecture and overall system model along
with a more precise problem definition. Section 3
presents the design of our virtual interrupt coalescing
mechanism along with a discussion of some practical
concerns. An extensive evaluation of our implementa-
tion is presented in Section 4, followed by some lessons
learned from our deployment experience in real world
in Section 5. Section 6 presents an overview of related
work followed by conclusions and directions for future
work in Sections 7 and 8 respectively.

2 System Model

Our system model consists of two components in the
VMware ESX hypervisor: VMkernel and the virtual ma-
chine monitor (VMM). The VMkernel is a hypervisor
kernel, a thin layer of software controlling access to
physical resources among virtual machines. The VMk-
ernel provides isolation and resource allocation among
virtual machines running on top of it. The VMM is re-
sponsible for correct and efficient virtualization of the
x86 instruction set architecture as well as emulation of
high performance virtual devices. It is also the concep-
tual equivalent of a “process” to the ESX VMkernel. The
VMM intercepts all the privileged operations from a VM
including IO and handles them in cooperation with the
VMkernel.

Figure 1 shows the ESX VMkernel executing storage
stack code on the CPU on the right and an example VM
running on top of its virtual machine monitor (VMM)
running on the left processor. In the figure, when an in-
terrupt is received from a storage adapter (1), appropriate
code in the VMkernel is executed to handle the IO com-
pletion (2) all the way up to the vSCSI subsystem which
narrows the IO to a specific VM. Each VMM shares a
common memory area with the ESX VMkernel, where
the VMkernel posts IO completions in a queue (3) fol-
lowing which it may issue an inter-process interrupt or
IPI (4) to notify the VMM. The VMM can pick up the
completions on its next execution (5) and process them
(6) resulting finally in the virtual interrupt being fired (7).

Without explicit interrupt coalescing, the VMM al-
ways asserts the level-triggered interrupt line for every
IO. Level-triggered lines do some implicit coalescing al-
ready but that only helps if two IOs are completed back-
to-back in the very short time window before the guest
interrupt service routine has had the chance to deassert
the line.

Only the VMM can assert the virtual interrupt line and
it is possible after step 3 that the VMM may not get
a chance to execute for a while. To limit any latency
implications of a VM not entering into the VMM, the
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Figure 1: Virtual Interrupt Delivery Mechanism. When a disk IO completes, an interrupt is fired (1) from a physical
adapter to a particular Physical CPU (PCPU) where the interrupt handler of the hypervisor delivers it to the appropriate
device driver (2). Higher layers of the hypervisor storage stack process the completion until the IO is matched (vSCSI
layer) to a particular Guest Operating System which issued the IO and its corresponding Virtual Machine Monitor
(VMM). vSCSI then updates the shared completion queue for the VMM (3) and if the guest or VMM is currently
executing, issues an inter-processor interrupt (IPI) to the target PCPU where the VMM is known to be running (4).
The IPI is only a latency optimization since the VMM would have inspected the shared queues the next time the guest
exited to the VMM anyway. The remote VMM’s IPI handler takes the signal and (5) inspects the completion queues
of its virtual SCSI host bus adapters (HBAs), processes and virtualizes the completions (6) and fires a virtual interrupt
to be handled by the guest (7).

VMkernel will take one of two actions. It will sched-
ule the VM if it is descheduled. Otherwise, if both the
VM and the VMkernel are executing on separate cores at
the same time, the VMkernel sends an IPI, in step 4 in
the figure. This IPI is purely an optimization to provide
lower latency IO completions to the guest. Without the
IPI, guests may execute user level code for an extended
period without triggering any hypervisor intercept that
would allow for virtual interrupt delivery. Correctness
guarantees can still be met even if the IPI isn’t issued
since the VMM will pickup the completion as a matter
of course the next time that it gets invoked via a timer in-
terrupt or a guest exiting into VMM mode due to a priv-
ileged operation.

Based on the design described above, there are two in-
efficiencies in the existing mechanism. First the VMM
will interrupt the guest for every completion that it sees
posted by the VMkernel. We would like to coalesce these
to reduce the guest CPU overhead during high IO rates.
Second, IPIs are very costly and are used mainly as a la-

tency optimization. It would be desirable to dramatically
reduce them if one could track the rate at which comple-
tions are being picked up by the VMM. All this needs to
be done without the help of fine grained timers because
they are prohibitively expensive in a hypervisor. Thus
the main challenges in coalescing virtual interrupts can
be summarized as:

1. How to control the rate of interrupt delivery from a
VMM to a guest without loss of throughput?

2. How and when to delay the IPIs without inducing
high IO latencies?

In the next section, we present our virtual interrupt co-
alescing mechanisms to efficiently resolve both of these
challenges.

3 vIC Design

In this section, we first present some background on ex-
isting coalescing mechanisms and explain why they can-



48 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

not be used in our environment. Next, we present our
approach at a high level followed by the details of each
component and a discussion of specific implementation
issues.

3.1 Background
When implemented in physical hardware controllers, in-
terrupt coalescing generally makes use of high resolu-
tion timers to cap the amount of extra latency that in-
terrupt coalescing might introduce. Such timers allow
the controllers to directly control MIDL (maximum in-
terrupt delivery latency) and adapt MCC (maximum co-
alesce count) based on the current rate. For example,
one can configure MCC based on a recent estimate of in-
terrupt arrivals and put a hard cap on latency by using
high resolution timers to control MIDL. Some devices
are known to allow a configurable MIDL in increments
of tens of microseconds.

Such high resolution timers are generally used in ded-
icated IO processors where the firmware timer handler
overhead can be well contained and the hardware re-
sources can be provisioned at design time to meet the
overhead constraints. However, in any general purpose
operating system or hypervisor, it is generally not con-
sidered feasible to program high resolution timing as a
matter of course. The associated CPU overhead is sim-
ply too high.

If we were to try to directly map that MCC/MIDL so-
lution to virtual interrupts, we would be forced to drive
the system timer interrupt using resolutions as high as
100 µs. Such a high interrupt rate would have prohibitive
performance impact on the overall system both in terms
of the sheer CPU cost of running the software interrupt
handler ten thousand times a second, as well as the first-
and second-order context switching overhead associated
with each of them. As a comparison, Microsoft Win-
dows 7 typically sets up its timers to go off every 15.6 ms
or down to 1 ms in special cases whereas VMware ESX
configures timers in the range of 1 ms and 10 ms or even
longer when using one-shot timers. This is orders of
magnitude lower resolution than what is used by typical
storage hardware controller firmware.

3.2 Our approach
In our design, we define a parameter called interrupt de-
livery ratio R, as the ratio of interrupts delivered to the
guest and the actual number of interrupts received from
the device for that guest. A lower delivery ratio implies
a higher degree of coalescing. We dynamically set our
interrupt delivery ratio, R, in a way that will provide co-
alescing benefits for CPU efficiency as well as tightly
control any extra vIC-related latency. This is done using

commands in flight (CIF) as the main parameter and IO
completion rate (measured as IOs per sec or IOPS) as a
secondary control.

At a high level, if IOPS is high, we can coalesce more
interrupts within the same time period, thereby improv-
ing CPU efficiency. However, we still want to avoid and
limit the increase in latency for cases when the IOPS
changes drastically or when the number of issued com-
mands is very low. SSDs can typically do tens of thou-
sands of IOPS even with CIF = 1, but delaying IOs in this
case would hurt overall performance.

To control IO delay, we use CIF as a guiding param-
eter, which determines the overall impact that the coa-
lescing can have on the workload. For example, coalesc-
ing 4 IO completions out of 32 outstanding might not be
a problem since we are able to keep the storage device
busy with the remaining 28, whereas even a slight delay
caused by coalescing 2 IOs out of 4 outstanding could
result in the resources of the storage device not getting
fully utilized. Thus we want to vary the delivery ratio R
in inverse proportion of the CIF value. Using both CIF
values and estimated IOPS value, we are able to provide
effective coalescing for a wide variety of workloads.

There are three main parameters used in our algorithm:

• iopsThreshold: IOPS value below which no inter-
rupt coalescing is done.

• cifThreshold: CIF value below which no interrupt
coalescing is done.

• epochPeriod: Time interval after which we re-
evaluate the delivery ratio, in order to react to the
change in the VM workload.

The algorithm operates in one of the three modes:
(1) Low-IOPS (R = 1): We turn off vIC if the achieved
throughput of a workload ever drops below the iop-
sThreshold. Recall that we do not have a high resolution
timer. If we did, whenever it would fire, it would allow us
to determine if we have held on to an IO completion for
too long. A key insight for us is that instead of a timer,
we can actually rely on future IO-completion events to
give our code a chance to control extra latency.

For example, an IOPS value of 20,000 means that
on average there will be a completion returned every
50 µs. Our default iopsThreshold is 2000 that implies
a completion on average every 500 µs. Therefore, at
worst, we can add that amount of latency. For higher
IOPS, the extra latency only decreases. In order to do
this, we keep an estimate of the current number of IOPS
completed by the VM.

(2) Low-CIF (R = 1): We turn off vIC whenever the
number of outstanding IOs (CIF) drops below a config-
urable parameter cifThreshold. Our interrupt coalescing
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Figure 2: Virtual Interrupt Delivery Steps. In addition to Figure 1, vIC adds a new shared area object tracking the last
time that the VMM fired an interrupt. Before sending the IPI, vSCSI checks to ensure that time since the last VMM-
induced virtual interrupt is less than a configurable threshold. If not so, an IPI is still fired, otherwise, it is deferred.
In the VMM, an interrupt coalescing scheme is introduced. Note that we did not introduce a high-resolution timer and
instead rely on the subsequent IO completions themselves to drive the vIC logic and to regulate the vIC related delay.

algorithm tries to be very conservative so as to not in-
crease the application IO latency for trickle IO work-
loads. Such workloads have very strong IO inter depen-
dencies and generally issue only a very small number of
outstanding IOs.

A canonical example of an affected workload is dd,
which issues one IO at a time. For dd, if we had co-
alesced an interrupt, it would actually hang forever. In
fact, waiting is completely useless for such cases and it
only adds extra latency. When only a small number of
IOs (cifThreshold) remain outstanding on an adapter, we
stop coalescing. Otherwise, there may be a throughput
reduction because we are delaying a large percentage of
IOs.

(3) Variable R based on CIF: Setting the delivery ra-
tio (R) dynamically is challenging since we have to bal-
ance the CPU efficiency gained by coalescing against ad-
ditional latency that may be added especially since that
may in turn lower the achieved throughput. We discuss
our computation of R next.

3.2.1 Dynamic Adjustment of Delivery Ratio R

Which ratio is picked depends upon the number of
commands in flight (CIF) and the configuration option
“cifThreshold”. As CIF increases, we have more room to

coalesce. For workloads with multiple outstanding IOs,
the extra delay works well since they are able to amortize
the cost of the interrupt being delivered to process more
than one IO. For example, if the CIF value is 24, even if
we coalesce 3 IOs at a time, the application will have 21
other IOs pending at the storage device to keep it busy.

In deciding the value of R, we have two main issues
to resolve. First we cannot choose an arbitrary frac-
tional value of R and implement that because of the lack
of floating point calculations in the VMM code. Sec-
ond, a simple ratio of the form 1/x based on a counter x
would imply that the only delivery-ratio options available
to the algorithm would be (100%, 50%, 25%, 12.5%,
...). The jump from 100% down to 50% is actually too
drastic. Instead, we found that to be able to handle a
multitude of situations, we need to have delivery ratios,
anywhere from 100% down to 6.25%. In order to do
this we chose to set two fields, countUp and skipUp, dy-
namically to express the delivery ratios. Intuitively, we
deliver (countUp) out of every (skipUp) interrupts, i.e.
R = countU p/skipU p. For example, to deliver 80% of
the interrupts, countUp = 4 and skipUp = 5 whereas for
6.25% countUp = 1 and skipUp = 16. Table 1 shows
the full range of values as encoded in Algorithm 1. By
allowing ratios between 100% and 50%, we can tightly
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Algorithm 1: Delivery Ratio Determination
IntrCoalesceRecalc(int cif)
currIOPS : Current throughput in IOs per sec;
ci f : Current # of commands in flight (CIF);
ci f T hreshold : Configurable min CIF (default=4);
if currIOPS < iopsT hreshold ∨ ci f < ci f T hreshold then

/* R = 1 */
countU p ←− 1;
skipU p ←− 1;

else if ci f < 2∗ ci f T hreshold then
/* R = 0.8 */
countU p ←− 4;
skipU p ←− 5;

else if ci f < 3∗ ci f T hreshold then
/* R = 0.75 */
countU p ←− 3;
skipU p ←− 4;

else if ci f < 4∗ ci f T hreshold then
/* R = 0.66 */
countU p ←− 2;
skipU p ←− 3;

else
/* R = 8/CIF */
countU p ←− 1;
skipU p ←− ci f /(2∗ ci f T hreshold);

control the throughput loss at smaller CIF.
The exact values of R are determined based on experi-

mentation and to support the efficient implementation in
a VMM. Algorithm 1 shows the exact values of deliv-
ery ratio R as a function of CIF, cifThreshold and iop-
sThreshold. Next we will discuss the details of interrupt
delivery mechanism and some optimizations in imple-
menting this computation.

3.2.2 Delivering Interrupts

On any given IO completion, the VMM needs to decide
whether to post an interrupt to the guest or to coalesce
it with a future one. This decision logic is captured in
pseudo code in Algorithm 2. First, at every “epoch pe-
riod”, which defaults to 200 ms, we reevaluate the vIC
rate so we can react to changes in workloads. This is
done in function IntrCoalesceRecalc(), the pseudo code
for which is found in Algorithm 1.

Next, we check to see if the new CIF is below the
cifThreshold. If such a condition happens, we immedi-
ately deliver the interrupt. The VMM is designed as a
very high performance software system where we worry
about code size (in terms of both lines of code (LoC) and
bytes of .text). Ultimately, we have to calculate for
each IO completion whether or not to deliver a virtual
interrupt given the ratio R = countU p/skipU p. Since
this decision is on the critical path of IO completion, we

Algorithm 2: VMM—IO Completion Handler
ci f : Current # of commands in flight (CIF);
ci f T hreshold : Configurable min CIF (default=4);
epochStart : Time at start of current epoch (global);
epochPeriod : Duration of each epoch (global);
di f f ←− currTime()− epochStart;
if di f f > epochPeriod then

IntrCoalesceRecalc(ci f );
if ci f < ci f T hreshold then

counter ←− 1;
deliverIntr();

else if counter < countU p then
counter ++;
deliverIntr();

else if counter >= skipU p then
counter ←− 1;
deliverIntr();

else
counter ++;
/* don’t deliver */

if Interrupt Was Delivered then
SharedArea.timeStamp ←− currTime();

CIF Intr Delivery Ratio R as %
1-3 100%
4-7 80%
8-11 75%

12-15 66%
CIF ≥ 16 8 / CIF

e.g., CIF = 64 12%

Table 1: Default interrupt delivery ratio (R) as a function
of CIF. ci f T hreshold is set to the default of 4.

have designed a simple but very condensed logic to do so
with the minimum number of LoC, which needs careful
explanation.

In Algorithm 2, counter is an abstract number that
counts up from 1 till countU p − 1 delivering an in-
terrupt each time. It then continues to count up till
skipU p − 1 while skipping each time. Finally, once
counter reaches skipU p, it is reset back to 1 along with
an interrupt delivery. Let us look at two examples of a
series of counter values as more IOs come in, along with
whether the algorithm delivers an interrupt as tuples of
〈counter, deliver?〉. For countU p/skipU p ratio of 3/4,
a series of IOs looks like:
〈1, yes〉, 〈2, yes〉, 〈3, no〉, 〈4, yes〉.

Whereas for countU p/skipU p of 1/5:
〈1, no〉, 〈2, no〉, 〈3, no〉, 〈4, no〉, 〈5, yes〉.
Next we look at the optimization related to reducing

the number of IPIs sent to a VM during high IO rate.
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3.3 Reducing IPIs

So far, we have described the mechanism for virtual in-
terrupt coalescing inside the VMM. As mentioned in
Section 2 and illustrated in Figure 1, another component
involved in IO delivery is the ESX VMkernel. Recall that
IO completions from hardware controllers are handled
by this component and sent to the VMM, an operation
that can require an IPI in case the guest is currently run-
ning on the remote processor. Since IPIs are expensive,
we would like to avoid them or at the very least mini-
mize their occurrence. Note that the IPI is a mechanism
to force the VMM to wrest execution control away from
the guest to process a completion. As such it is purely
a latency optimization and correctness guarantees don’t
hinge on it since the VMM frequently gets control any-
way and always checks for completions.

Figure 2 shows the additional data flow and compu-
tation in the system to accomplish our goal of reducing
IPIs. The primary concern is that a guest OS might have
scheduled a compute intensive task, which may result in
the VMM not receiving an intercept. In the worst case,
the VMM will wait until the next timer interrupt, which
could be several milliseconds away, to receive a chance
to execute and deliver virtual interrupts. So, our goal is
to avoid delivering IPIs as much as possible while also
bounding the extra latency increase.

We introduce as part of the shared area between the
VMM and the VMkernel where completion queues are
managed, a new time-stamp of the last time the VMM
posted an IO completion virtual interrupt to the guest
(see last line of Algorithm 2). We added a new step (3.5)
in the VMkernel where before firing an IPI, we check
the current time against what the VMM has posted to
the shared area. If the time difference is greater than a
configurable threshold, we post the IPI. Otherwise, we
give the VMM an opportunity to notice IO completions
in due course on its own. Section 4.5 provides exper-
imental evaluation of the impact of IPI delay threshold
values.

3.4 Implementation Cost

We took great care to minimize the cost of vIC and to
make our design and implementation as portable as pos-
sible. A part of that was to refrain from using any float-
ing point code. In the critical path code (Algorithm 2),
we even avoid integer divisions. This should allow our
design to be directly implementable in other hypervisors
on any CPU architecture, and even in firmware or hard-
ware of storage controllers. For reference, the increase in
the 64-bit VMM .text section was only 400 bytes and
the .data section grew by only 104 bytes. Our patch
for the LSI Logic emulation in the VMM was less than

120 LoC. Similarly, the IPI coalescing logic in the VMk-
ernel was implemented with just 50 LoC.

4 Experimental Evaluation

To evaluate our vIC approach, we have examined sev-
eral micro-benchmark and macro-benchmark workloads
and compared each workload with and without inter-
rupt coalescing. In each case we have seen a reduc-
tion in CPU overhead, often associated with an increase
in throughput (IOPS). For all of the experiments, un-
less otherwise indicated, the parameters are set as fol-
lows: ci f T hreshold = 4, iopsT hreshold = 2000 and
epochPeriod = 200 ms. All but the TPC-C experiments
were run on an HP Proliant DL-380 machine with 4 dual-
core AMD 2.4 GHz processors. The attached storage ar-
ray was an EMC CLARiiON CX3-40 with very small
fully cached LUNs. The Fibre Channel HBA used was a
dual-port QLogic 4Gb card.

In the next subsections, we first discuss the results for
the Iometer micro benchmark in Section 4.1. Next, we
cover the CPU utilization improvements of the Iometer
benchmark and a detailed break-down of savings in Sec-
tion 4.2. Section 4.3 presents our evaluation of vIC us-
ing two SQL IO simulators, namely SQLIOSim and GS-
Blaster. Finally, we present results for a complex TPC-
C-like workload in Section 4.4. For each of the experi-
ments, we have looked at the CPU savings along with the
impact on throughput and latency of the workload.

4.1 Iometer Workload
We evaluated two Iometer [1] workloads running on a
Microsoft Windows 2003 VM on top of an internal build
of VMware ESX Server. The first workload consists of
4KB sequential IO reads issued by one worker thread
running on a fully cached Logical Unit (LUN). In other
words, all IO requests are hitting the array’s cache in-
stead of requiring disk access. The second workload is
identical except for a different block size of 8KB.

For both workloads we varied the number of outstand-
ing IOs to see the improvement over baseline. In Ta-
ble 2, we show the full matrix of our test results for the
4KB workload. Furthermore, Table 3 summarizes the
percentage improvements over the baseline where coa-
lescing was disabled. The column labeled R, in Table 2,
is the average ratio chosen by algorithm based on vary-
ing CIF over the course of the experiment; as expected,
our algorithm coalesces more rigorously as the number
of outstanding IOs is increased. Looking closely at the
64 CIF case, we can see that the dynamic delivery ratio,
R, was found to be 1/6 on average. This means that one
interrupt was delivered for every six IOs. The guest op-
erating system reported a drop from 113K interrupts per
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OIO R̂ IOPS CPU
cost
cycles/ IO

Int/sec
Guest

Baseline
IOPS

Baseline
CPU
Cost

Baseline
Int/sec
Guest

8 4/5 31.2K 82.6K 49K 30.5K 84.2K 47K
16 2/3 38.9K 74.8K 58K 38.4K 77.0K 60K
32 1/3 48.3K 68.0K 69K 46.4K 70.5K 74K
64 1/6 53.1K 64.0K 34K 52.9K 78.4K 113K

Table 2: Iometer 4KB reads with one worker thread and
a cached Logical Unit (LUN). R̂ is the average delivery
ratio set dynamically by the algorithm in this experiment.
OIO is the number of outstanding IOs setting in Iometer.
At runtime, CIF is often lower than the workload config-
ured OIO as confirmed by R̂ here being lower than the
R(OIO) from Table 1.

OIO IOPS
%diff

CPU cost
%diff

Int/sec Guest
%diff

8 2.3% -1.9% 4.3%
16 1.3% -2.8% -3.3%
32 4.1% -3.5% -6.8%
64 0.4% -18.4% -66.4%

Table 3: Summary of improvements in key metrics with
vIC. The experiments is the same as in Table 2.

second to 34K. The result of this is that the CPU cycles
per IO have also dropped from 78.4K to 64.0K, which is
an efficiency gain of 18%.

In Tables 4 and 5 we show the same results as before,
but now with the 8KB IO workload. For the 64 CIF case,
the algorithm results in the same interrupt coalescing ra-
tio of 1/6 with now a 7% efficiency improvement over
the baseline. The interrupt per second in the guest have
dropped from 30K to 11K.

In both Table 2 and 4 we see a noticeable reduction in
CPU cycles per IO whenever vIC has been enabled. We
also would like to note that throughput never decreased
and in many cases actually increased significantly.

4.2 Iometer CPU Usage Breakdown

For the 8KB sequential read Iometer workload with 64
outstanding IOs, we examined the breakdown between
the VMM and guest OS CPU usage. Table 6 shows the
monitor’s abridged kstats. The VMK VCPU HALT statis-
tic is the percent of time that the guest was idle. No-
tice that the guest idle time has increased which im-
plies that the guest OS spent less time processing IO
for the same effective throughput. The guest kernel run-
time is measured by the amount of time we spent in the
TC64 IDENT. Here we see a noticeable decrease in ker-
nel mode execution time from 9.0% to 7.4%. The LSI
Logic virtual SCSI adapter IO issuing time measured
by device Priv Lsilogic IO has decreased from

OIO R̂ IOPS CPU
cost
cycles/ IO

Int/sec
Guest

Baseline
IOPS

Baseline
CPU
Cost

Baseline
Int/sec
Guest

8 4/5 31.2K 83.6K 48K 29.9K 88.2K 49K
16 2/3 39.3K 77.6K 61K 38.5K 81.3K 63K
32 1/3 41.5K 76.0K 60K 41.1K 77.1K 69K
64 1/6 41.5K 71.0K 11K 41.1K 75.7K 30K

Table 4: Iometer 8KB reads with one worker thread and
a cached Logical Unit (LUN). Caption as in Table 2.

OIO IOPS
%diff

CPU cost
%diff

Int/sec Guest
%diff

8 4.3% -5.2% -2.0%
16 2.1% -4.5% -3.2%
32 1.0% -1.5% -13.0%
64 1.0% -6.2% -63.3%

Table 5: Summary of improvements in key metrics with
vIC. The experiments is the same as in Table 4.

5.0% to 4.3%.
The IO completion work done in the VMM is part of

a generic message delivery handler function and is mea-
sured by DrainMonitorActions in the profile. The
table shows a slight increase from 0.5% to 0.7% of CPU
consumption due to the management of the interrupt co-
alescing ratio.

The net savings gained by enabling virtual interrupt
coalescing can be measured by looking at the guest idle
time which is a significant 6.4% of a core. In a real work-
load which performs both IO and CPU-bound operations,
this would result in an extra 6+% of available time for
computation. We expect that some part of this gain also
includes the reduction of the virtualization overhead as
a result of vIC mostly consisting of second order effects
related to virtual device emulation.

4.3 SQLIOSim and GSBlaster

We also examined the results from SQLIOSim [13] and
GSBlaster. Both of these macro-benchmark workloads
are designed to mimic the IO behavior of Microsoft SQL
Server.

SQLIOSim is designed to target an “ideal” IO latency
to tune for. That means that if the benchmark sees a
higher IO latency it assumes that there are too many out-
standing IOs and reduces that number. The reverse case
is also true allowing the benchmark to tune for this pre-
set optimal latency value. The user chooses this value to
maximize their throughput and minimize their latency. In
SQLIOSim we used the default value of 100ms.

GSBlaster is our own internal performance testing tool
which behaves similar to SQLIOSim. It was designed
as a simpler alternative to SQLIOSim which we could
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With vIC Without vIC
VMK VCPU HALT 71.4% 65.0%
TC64 IDENT 7.4% 9.0%
device Priv Lsilogic IO 4.3% 5.0%
DrainMonitorActions 0.7% 0.5%

Table 6: VMM profile for 8KB sequential read Iometer
workload. Each row represents time spent in the related
activity relative to a single core. The list is filtered down
for space reasons to only the profile entries that changed.

IOPS CPU
Cost

Baseline
IOPS

Baseline
CPU
Cost

IOPS
%diff

CPU
Cost
%diff

SQLIOSim 6282 339K 5327 410K +17.9% -17.4%
GSBlaster 24651 126K 20755 151K +18.8% -16.6%

Table 7: Performance improvements in SQLIOSim and
GSBlaster. Improvements are seen both in IOPS and
CPU efficiency.

understand and analyze in an easier manner. As opposed
to SQLIOSim, when using GSBlaster we choose a fixed
value for the number of outstanding IOs. It will then run
the workload based on this configuration.

Table 7 shows the results of our optimization on both
the target macro-benchmark workloads. We can see that
the IOPS increased as a result of vIC by more than
17%. As in previous benchmarks, we also found that
the CPU cost per IO decreased (by 17.4% in the case of
SQLIOSim and 16.6% in the case of GSBlaster).

4.4 TPC-C Workload
The results seen so far have been for micro and macro
benchmarks with relatively simple workload drivers.
Whereas such data gives us insight into the upside po-
tential of vIC, we have to put that in context of a large,
complex application that performs computation as well
as IO. We chose to evaluate our system on our internal
TPC-C testbed1. The number of users is always kept
large enough to fully utilize the CPU resources, such that
adding more users won’t increase the performance. Our
TPC-C run was on a 4-way Opteron E based machine.
The system was backed by a 45-disk EMC CX-3-20 stor-
age array.

Table 8 shows results with and without interrupt co-
alescing with a ci f T hreshold range of 2–4. When vIC
is enabled, we were able to increase the number of users
from 80 to 90 at the CPU saturation point. This immedi-
ately demonstrates that vIC freed up more CPU for real
workload computation. Increasing the number of users
also helps increase the achieved, user-visible benchmark

1Non-comparable implementation; results not TPC-CTMcompliant;
deviations include: batch benchmark, undersized database.

T T Users IOPS Intr/ Latency
Diff Sec

No vIC 43.3 80 10.2K 9.9K 7.7ms
cifT = 4 44.6 +3.0% 90 10.4K 6.4K 8.5ms
cifT = 2 45.5 +5.1% 90 10.5K 5.8K 9.2ms

Table 8: TPC-C workload throughput (T ) run with
and without interrupt coalescing and with different
cifThreshold (cifT) configuration parameter values.

Diff vs. baseline
ci f T = 4 ci f T = 2

IDT AfterInterrupt -28% -31%
device Priv Lsilogic IO -12% -14%
DrainMonitorActions -19% -22%
Intr Deliver -25% -30%
Intr IOAPIC -40% -46%
device SCSI CmdComplete -13% -16%
Intr -42% -49%

Table 9: VMM profile for TPC-C. Each row represents
improvements in time spent in the related activity. The
list is filtered down for space reasons to only the profile
entries that changed significantly.

metric of throughput or transactions per minute. Table 8
shows that the transcation rate increased by 3.0% and
5.1% for ci f T hreshold of 4 and 2, respectively. In our
experience, optimizations for TPC-C are very difficult
and significant investment is made for each fractional
percent of improvement. As such, we consider an in-
crease of 3.0%–5.1% to be very significant.

We also logged data for the algorithm-selected vIC
rate, R, every 200 ms during the run. Figure 3 shows
the histogram of the distribution of R for certain duration
of the TPC-C run. It is interesting that R varies dramat-
ically throughout the workload. The frequency distribu-
tion here is a function of the workload and not vIC.

Furthermore, in Figure 4 we show the same data plot-
ted against time. The interrupt coalescing rate varies sig-
nificantly because the TPC-C workload has periods of
IO bursts. In fact, there are numerous times where the
algorithm selects to deliver less than 1 out of every 12
interrupts. This illustrates how the self-adaptability and
responsiveness of our algorithm is necessary to satisfy
complex real-world workloads.

As a result of interrupt coalescing, we see a decrease in
virtual interrupts per second delivered to the guest from
9.9K to 6.4K and 5.8K. We also noticed an increase in
the IOPS achieved by the storage array. This can be
explained by the fact that there is increased parallelism
(more users) in the input workload. Such a change in
workload has been demonstrated in earlier work to in-
crease throughput [11].

Any increase in parallelism is also accompanied by an
expected increase in average latency [11]. This explains
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Figure 4: The algorithm selected virtual interrupt coalescing rate, R, over time for TPC-C. The high dynamic range
illustrates the burstiness in outstanding IOs of the workload and the resulting online adaptation by vIC.

Figure 3: Histogram of dynamically selected virtual in-
terrupt coalescing rates, R, during our TPC-C run. The
x-axis is log-scale.

the bulk of the increase between the no-vIC and the vIC-
enabled rows in Table 8. However, one would expect
a certain increase in latency from any interrupt coalesc-
ing algorithm. In our case, we expect latency increases
to be less than a few hundred microseconds. Using in-
stantaneous IOPS, CIF and R, we can calculate the mean
delay from vIC. For instance, at the median delivery rate
R = 1/3, at the achieved mean IOPS of 10K for this ex-
periment, the increase would be 200 µs.

In Table 9 we show a profile of percentage reduction
in CPU utilization of several key VMM components as a

result of interrupt coalescing. IOs are processed as part
of the VMM’s action processing queue. The reduction
in the queue processing is between 19% and 22% for the
CIF thresholds of 4 and 2 respectively. Fewer interrupts
means that the guest operating system is performing
fewer register operations on the virtual LSI Logic con-
troller, shown by device Priv Lsilogic IO. The
net reduction in device operations translated to a 12%
and 14% reduction, respectively, in CPU usage relative
to using the virtual device without vIC. We also mea-
sured an approximately 30% reduction in the monitor’s
interrupt delivery function Intr Deliver.

4.5 IPI interference: CPU-bound loads

Recall that we described an optimization of not posting
IPIs in all cases using a threshold delay, in order to lower
the impact of IPIs on VMs workload (Section 3.3). In
this section, we first motivate our optimization by show-
ing that the impact on CPU-bound applications can be
very high. We show nevertheless that sending at least
some IPIs is essential as an IO latency and throughput
optimization. We then provide data to illustrate the diffi-
cult trade-off between the two concerns.

We ran two workloads, one IO bound and the other
CPU bound, on the same virtual machine running the Mi-
crosoft Windows 2003 operating system. The IO-bound
workload is running an Iometer, 1 worker benchmark,
doing 8 OIO, 8K Read from a fully cached small LUN.
The CPU-bound workload is an SMP version of Hyper Pi
for which the run time in seconds to calculate 1M digits
of π on two virtual processors is plotted as triangles (av-
erage of 6 runs). Hyper Pi is fully-backlogged and we run
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Figure 5: Effect of different IPI send thresholds. This plot illustrates the trade-off in IO throughput and CPU efficiency
of two co-running benchmarks, as we vary the key parameter: the IPI send threshold. The workloads are run on the
same 2-vCPU Windows 2003 guest. The IO workload performance is shown as vertical bars for an Iometer, 1 worker,
8 OIO, 8K Read from a fully cached small LUN. Each IO data point is the average of 50 consecutive samples. The
CPU-bound workload is an SMP version of Hyper Pi for which the run time in seconds to calculate 1M digits of
pi on two virtual processors is plotted as triangles (average of 6 runs). For each workload, both the co-running and
independent scores are plotted. No delay in sending an IPI results in the highest IO throughput whereas waiting 500
microseconds to send an IPI results in the highest performance of the CPU-bound workload.

it at the idle priority class effectively giving Iometer
higher priority while ensuring that the guest never halts
due to idling.

Figure 5 shows the effect of different IPI send thresh-
olds on performance. This plot illustrates the trade-off
in IO throughput and CPU efficiency of two co-running
benchmarks respectively, as we vary the IPI send thresh-
old from VMkernel. For each workload, Figure 5 shows
both the co-running and independent scores. The IO
workload performance is shown as vertical bars in terms
of IO throughput observed by Iometer. Each IO data
point is the average of 50 consecutive samples. Perfor-
mance of Hyper Pi workload is shown in terms of time
to completion of 1 million digit computation for π.

First, notice that the throughput for “IOPS no Hyper
Pi” bars do not change much with the IPI send threshold.
This is because the guest is largely idle and frequently
entering the CPU halt state. Whenever the guest halts,
the VMM gains execution control and has the chance to
check for pending completions from the VMkernel. As
such, sending IPIs more or less frequently has hardly any
bearing on the latency of the VMM noticing and deliver-
ing an interrupt to the guest. Similarly, the blue triangle
case of “Hyper Pi no IO” shows no sensitivity to our pa-
rameter. This is obvious: no IO activity means that IPIs
are out of the picture anyway.

As soon as we run those two benchmarks together,
they severely interfere with each other. This is due to
the fact that Hyper Pi is keeping the CPU busy imply-
ing that the guest never enters halt. Therefore, the VMM
only has rare opportunities to check for pending IO com-

pletions (e.g., when a timer interrupt is delivered). Hyper
Pi sees its best performance at high IPI-send thresholds
(right end of the x-axis) since it gets to run uninterrupted
for longer periods of time. However, IO throughput (see
the blue bars) suffers quite a bit from the increased la-
tency. Conversely, if no delay is used (left end of the
x-axis), the impact on the performance of Hyper Pi is se-
vere. As expected, IO performance does really well in
such situations.

It should be noted that the two workloads, though run-
ning on the same virtual machine, are not tied to each
other. In other words, there is no closed loop between
them as is often the case with enterprise applications.
Still, the setup is illustrative in showing the impact of
IPIs on IO and CPU bound workloads.

These results indicate that setting a good IPI send
threshold is important but nontrivial and even workload
dependent. We consider automatic setting of this param-
eter to be highly interesting future work. For ESX, we
have currently set the default to be 100 microseconds to
favor CPU bound parts of workloads based on experi-
ments on closed loop workloads run against real disks.

5 Deployment Experience

Our implementation of vIC as described in this paper has
been the default for VMware’s LSI Logic virtual adapter
in the ESX hypervisor since version 4.0, which was re-
leased in the second quarter of 2009. As such, we have
significant field experience with deployments into the
tens of thousands of virtual machines. Since then, we
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have not received any performance bug reports on the
virtual interrupt coalescing algorithm.

On the other hand, the pvscsi virtual adapter which
first shipped in ESX 4.0 did not initially have some of
the optimizations that we developed for the LSI Logic
virtual interrupt coalescing. In particular, although it had
variable interrupt coalescing rates depending on CIF, it
was missing the iopsT hreshold and was not capable of
setting the coalescing rate, R, between 1/2 and 1. As
a result, several performance bugs were reported. We
triaged these bugs to be related to the missing optimiza-
tions in pvscsi which are now fixed in the subsequent
ESX 4.1 release. We feel that this experience further vali-
dates the completeness of our virtual interrupt coalescing
approach as a successful, practical technique for signif-
icantly improving performance in one dimension (lower
CPU cost of IO) without sacrificing others (throughput
or latency).

The key issue with any interrupt coalescing scheme is
the potential for increases in IO response times which
we have studied above. At high IO rates, some appli-
cation IO threads might be blocked a little longer due
to coalescing. In our case, this delay is strictly bound
by the 1/iopsT hreshold. Our solution is significantly
better than other coalescing techniques since it explic-
itly takes CIF into account. In our experience, vIC lets
compute threads of real applications run longer before
getting interrupted. Increased execution time can reduce
overhead from sources such as having the application’s
working set evicted from the CPU caches, etc. Interrupt
coalescing is all about the trade off between CPU effi-
ciency and IO latencies. Hence, we provide parameters
to adjust that tradeoff if necessary, though the default set-
tings have been tuned using a variety of workloads.

6 Related Work

Interrupts have been in active use since early days of
computers to handle input-output devices. Smother-
man [19] provides an interesting history of the evolution
of interrupts and their usage in various computer sys-
tems starting from UNIVAC (1951). With increasing net-
work bandwidth and IO throughput for storage devices,
the rate of interrupts and thus CPU overhead to handle
them has been increasing pretty much since the interrupt
model was first developed. Although processor speeds
and number of cores have been increasing to keep up
with these devices, the motivation to reduce overall CPU
overhead of interrupt handling has remained strong. In-
terrupt coalescing has been very successfully deployed
in various hardware controllers to mitigate the CPU over-
head. Many patents and papers have been published on
performing interrupt coalescing for network and storage
hardware controllers.

Gian-Paolo’s patent [15] provides a method for dy-
namic adjustment of maximum frame count and max-
imum wait time parameters for sending the interrupts
from a communication interface to a host processor. The
packet count parameter is increased when the rate of ar-
rivals is high and decreased when the interrupt arrival
rate gets low. The maximum wait time parameter en-
sures a bounded delay on the latency of the packet deliv-
ery. Hickerson and Mccombs’s patent [12] uses a single
counter to keep track of the number of initiated tasks.
The counter is decremented on the task completion event
and it is incremented when the task is initiated. A delay
timer is set using the counter value. An interrupt is gen-
erated either when the delay timer is fired or the counter
value is less than a certain threshold. In contrast to both
of these patented techniques, our mechanism adjusts the
delivery rate itself based on CIF and does not rely on
any delay timers. It should be noted, however, that our
approach is complementary to interrupt coalescing opti-
mizations done in the hardware controllers since they can
benefit in lowering the load on the hypervisor host, in our
case the ESX VMkernel.

QLogic [4] and Emulex [5] have also implemented in-
terrupt coalescing in their storage HBAs but the details
of their implementation are not publicly available. The
knowledge base article for a Qlogic driver [3] suggests
the use of a delay parameter, ql2xintrdelaytimer which
is used as a wait time for firmware before generating
an interrupt. This is again dependent on high resolution
timers and delaying the interrupts by a certain amount.
Online documentation suggests that the QLogic inter-
rupt delay timer can be set in increments of 100 µs. In-
terrupt coalescing can be disabled by another parameter
called ql2xoperationmode. Interestingly, this driver pa-
rameter allows two modes of interrupt coalescing distin-
guished by whether an interrupt is fired if CIF drops to 0.
A similar document related to Emulex device driver for
VMware [2] suggests the use of statically defined delay
and IO count thresholds, lpfc cr delay, lpfc cr count, for
interrupt coalescing.

Stodolsky, Chen and Bershad [20] describe an opti-
mistic scheme to reduce the cost of interrupt masking by
deferring the processing (“continuation”) of any interrupt
that arrives during a critical section to a later time. Many
operating systems now use similar techniques to handle
the scheduling of deferred processing for interrupts. The
paper also suggests that interrupts be masked at the time
of deferral so that the critical section can continue with-
out further interruptions. Level-triggered interrupts like
the ones described in our work are another way of ac-
complishing the same thing. Both of these techniques
from the Bershad paper are complementary to the idea
of coalescing which is more concerned with the delay of
interrupt delivery.
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Zec et al. [22] study the impact of generic inter-
rupt coalescing implementation in 4.4BSD on the steady
state TCP throughput. They modified the fxp driver in
FreeBSD and controlled only the delay parameter Td ,
which specifies the time duration between the arrival of
first packet and the time at which hardware interrupt is
sent to the OS. Similarly, Dong et al. recently studied [8]
the CPU impact of interrupts and proposed an adaptive
interrupt coalescing scheme for a network controller.

Mogul and Ramakrishnan [14] studied the problem of
receive livelock, where the system is busy processing in-
terrupts all the time and other necessary tasks are starved
to the most part. To avoid this problem they suggested
the hybrid mechanism of polling under high load and us-
ing regular interrupts for lighter loads. Polling can in-
crease the latency for IO completions, thereby affecting
the overall application behavior. They optimized their
system by using various techniques to initiate polling and
enable interrupts under specific conditions. They also
proposed round robin polling to fairly allocate resources
among various sources.

Salah et al. [17] did an analysis of various interrupt
handling schemes such as polling, regular interrupts, in-
terrupt coalescing, and disabling and enabling of inter-
rupts. Their study concludes that no single scheme is
good under all traffic conditions. This further moti-
vates the need for an adaptive mechanism that can ad-
just to the current interrupt arrival rate and other work-
load parameters. Salah [16] performed an analytical and
simulation study of the relative benefit of time-based
versus number-of-packets based interrupt coalescing in
context of networking. More recently Salah and Qah-
tan [18] implemented and evaluated a different hybrid
interrupt handling scheme for Gigabit NICs in Linux ker-
nel 2.6.15. Their hybrid scheme switches between inter-
rupt disabling-enabling (DE) and polling.

Our approach, instead of switching to polling, adjusts
the overall interrupt delivery rate during high load. We
believe this is more flexible and adapts well to drastic
changes in guest workload. We also use CIF which is
available only in context of storage controllers but allows
us to solve this problem more efficiently. Furthermore,
we do not have the luxury to change the guest behavior
in terms of interrupts vs polling because the guest OS is
like a black box to virtualization hypervisors.

7 Conclusions

In this paper, we studied the problem of efficient virtual
interrupt coalescing in context of virtual hardware con-
trollers implemented by a hypervisor. We proposed the
novel techniques of using the number of commands in
flight to dynamically adjust the interrupt delivery ratio in
fine-grained steps and to use future IO events to avoid

the need of high-resolution timers. We also designed
a technique to reduce the number of inter-processor in-
terrupts while keeping the latency bounded. Our pro-
totype implementation in the VMware ESX hypervisor
showed that we are able to improve application through-
put (IOPS) by up to 19% and improve CPU efficiency
up to 17% (for the GSBlaster and SQLIOSim workloads
respectively). When tested against our TPC-C work-
load, vIC improved the workload performance by 5.1%
and demonstrated the ability of our algorithm to adapt
quickly to changes in the workload. Our technique is
equally applicable to hypervisors and hardware storage
controllers; we hope that our work spurs further work in
this area.

8 Open Problems

There are some open problems which deserve further
exploration by our fellow researchers and practitioners.
Firmware implementations of vIC could lower the cost
of hardware controllers and provide tighter latency con-
trol than what is available today. Currently, our vIC
implementation hard-codes the best CIF-to-R mappings
based on extensive experimentation. Dynamic adapta-
tion of that mapping appears to be an interesting prob-
lem. In some architectures, PCI devices are directly
passed-through to VMs. Interrupt coalescing in this con-
text is worthy of investigation.

At first blush, networking controllers do not appear
to lend themselves to a CIF-based approach since the
protocol layering in the stack means that the lower lay-
ers (where interrupt posting decisions are made) do not
know the semantics of higher layers. Still, we speculate
that inference techniques might be applicable to do ag-
gressive coalescing without loss of throughput in context
of high-bandwidth TCP connections using window size-
based techniques.

Acknowledgements

We would like to thank Maxime Austruy who worked
on the pvscsi virtual adapter and co-invented some of
the interrupt coalescing techniques discussed here. Many
thanks to Davide Bergamasco, Jinpyo Kim, Vincent Lin
and Reza Taheri for help with experimental validation of
our work and to our shepherd, Muli Ben-Yehuda, for de-
tailed comments and guidance. Finally, this work would
not have been possible without support, encouragement
and feedback from Ole Agesen, Mateen Ahmad, Keerti
Garg, Mallik Mahalingham, Tim Mann, Glen McCready
and Carl Waldspurger.



58 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

References

[1] Iometer. http://www.iometer.org.

[2] Emulex Driver for VMware ESX. August 2007.
www-dl.emulex.com/support/vmware/732/
vmware.pdf.

[3] QLogic: Advanced Parameters For Driver Mod-
ules Under VMware. October 2009. http:
//kb.qlogic.com/KanisaPlatform/
Publishing/548/1492_f.SAL_Public.html.

[4] QLogic: QLE8152 datasheet. 2009. http:
//www.starline.de/fileadmin/images/
produkte/qlogic/QLogic_QLE8152.pdf.

[5] Emulex: OneCommand Manager. June 2010.
http://www.emulex.com/artifacts/
ad19cc4e-870a-42e9-a4b2-bcaa70e2afd6/
elx_rc_all_onecommand_efficiency_
qlogic.pdf.

[6] I. Ahmad. Easy and Efficient Disk I/O Workload Char-
acterization in VMware ESX Server. Workload Charac-
terization, 2007. IISWC 2007. IEEE 10th International
Symposium on, pages 149–158, Sept. 2007.

[7] X. Chang, J. Muppala, Z. Han, and J. Liu. Analysis of
interrupt coalescing schemes for receive-livelock problem
in gigabit ethernet network hosts. In IEEE International
Conference on Communications(ICC), pages 1835–1839,
May 2008.

[8] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with SR-IOV.
In HPCA, pages 1–10, 2010.

[9] A. Gulati, I. Ahmad, and C. Waldspurger. PARDA: Pro-
portionate Allocation of Resources for Distributed Stor-
age Access. In Proc. Conference on File and Storage
Technology (FAST ’09), Feb. 2009.

[10] A. Gulati, C. Kumar, and I. Ahmad. Storage Workload
Characterization and Consolidation in Virtualized Envi-
ronments. In Workshop on Virtualization Performance:
Analysis, Characterization, and Tools (VPACT), 2009.

[11] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL:
Automated IO Load Balancing across Storage Devices. In

Proc. Conference on File and Storage Technology (FAST
’10), Feb. 2010.

[12] R. Hickerson and C. C. Mccombs. Method and appara-
tus for coalescing i/o interrupts that efficiently balances
performance and latency. (US PTO 6065089), May 2000.

[13] Microsoft. How to use the sqliosim utility to simulate
sql server activity on a disk subsystem, 2009. http:
//support.microsoft.com/kb/231619.

[14] J. C. Mogul and K. K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. ACM Trans.
Comput. Syst., 15(3):217–252, 1997.

[15] G. paolo D. Musumeci. System and method for dynam-
ically tuning interrupt coalescing parameters. (US PTO
6889277), May 2005.

[16] K. Salah. To coalesce or not to coalesce. Intl. J. of Elec.
and Comm., pages 215–225, 2007.

[17] K. Salah, K. El-Badawi, and F. Haidari. Performance
analysis and comparison of interrupt-handling schemes in
gigabit networks. Comput. Commun., 30(17):3425–3441,
2007.

[18] K. Salah and A. Qahtan. Implementation and experimen-
tal performance evaluation of a hybrid interrupt-handling
scheme. Comput. Commun., 32(1):179–188, 2009.

[19] M. Smotherman. Interrupts, 2008. http://www.cs.
clemson.edu/˜mark/interrupts.html.

[20] D. Stodolsky, J. B. Chen, and B. N. Bershad. Fast inter-
rupt priority management in operating system kernels. In
moas’93: USENIX Symposium on USENIX Microkernels
and Other Kernel Architectures Symposium, pages 9–9,
Berkeley, CA, USA, 1993. USENIX Association.

[21] VMware, Inc. Introduction to VMware Infrastructure.
2010. http://www.vmware.com/support/pubs/.

[22] M. Zec, M. Mikuc, and M. Zagar. Estimating the impact
of interrupt coalescing delays on steady state tcp through-
put. Tenth SoftCOM 2002 conference, 2002.

[23] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization via
throughput and latency control. In Proc. of MASCOTS,
Sep 2005.



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 59

Power Budgeting for Virtualized Data Centers

Harold Lim
Duke University

Aman Kansal
Microsoft Research

Jie Liu
Microsoft Research

Abstract

Power costs are very significant for data centers. To max-
imally utilize the provisioned power capacity, data cen-
ters often employ over-subscription, that is, the sum of
peak consumptions of individual servers may be greater
than the provisioned capacity. Power budgeting methods
are employed to ensure that actual consumption never
exceeds capacity. However, current power budgeting
methods enforce capacity limits in hardware and are not
well suited for virtualized servers because the hardware
is shared among multiple applications. We present a
power budgeting system for virtualized infrastructures
that enforces power limits on individual distributed ap-
plications. Our system enables multiple applications to
share the same servers but operate with their individual
quality of service guarantees. It responds to workload
and power availability changes, by dynamically allocat-
ing appropriate amount of power to different applications
and tiers within applications. The design is mindful of
practical constraints such the data center’s limited visi-
bility into hosted application performance. We evaluate
the system using workloads derived from real world data
center traces.

1 Introduction

Data centers require large amounts of power and the
costs of their power supply infrastructure, backup gen-
erators and batteries, and power consumption are a sig-
nificant concern [13]. Aside from costs, the availabil-
ity of power may be a limiting factor, especially for
smaller data centers deployed in enterprise buildings, ed-
ucational institutions, and for emerging container-based
“edge” data centers located close to end users. As a re-
sult, data center design must minimize the power capac-
ity requested from utilities. The need to optimize provi-
sioned power capacity has lead to the adoption of a prac-
tice known as over-subscription. In over-subscribed data

centers, the sum of the possible peak power consump-
tions of all the servers combined is greater than the pro-
visioned capacity. Servers typically operate below their
peak power and even when servers from one application
are near peak usage, other servers may be well below
their peaks, keeping the total power within capacity. To
ensure that actual total power use stays below capacity,
servers are equipped with power budgeting mechanisms
that can throttle the power usage of a server, such as by
reducing the processor frequency. Power budgeting has
been used for several safe and efficient over-subscription
methods [9, 3, 23, 19].

However, the current methods are not well suited to
virtualized infrastructures where the servers are shared
by virtual machines (VMs) belonging to different appli-
cations, due to several reasons. First, in virtualized in-
frastructures, there is a disconnect between the physical
server layout and the logical organization of resources
among applications. Hardware power budgeting used in
current power budgeting methods does not respect the
isolation among virtual machines with different perfor-
mance requirements. Second, existing techniques do not
explicitly address workload and power dynamics. As in-
put workload volumes change, the power available for
different applications changes, as does the optimal distri-
bution of power among an application’s constituent tiers.
Third, existing designs typically use a single power con-
trol knob and do not exploit multiple feasible combina-
tions of power settings for optimizing performance.

In this paper we present a power budgeting solution
named virtualized power shifting (VPS) that efficiently
coordinates the power distribution among a large num-
ber of VMs within given peak power capacity. VPS dy-
namically shifts power among various distributed com-
ponents to efficiently utilize the total available power
budget, as workloads and power availability vary. Power
is distributed among application components in the cor-
rect proportions to achieve the best performance. The
system respects application boundaries and differentiates
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performance based on priorities. In contrast to existing
techniques that use only one power control knob, typi-
cally frequency scaling, VPS uses multiple power control
knobs and selects the optimal combinations of power set-
tings to optimize performance within the available power
budget. We describe how the system operates with prac-
tical constraints such as limited insight into application
performance.

The system tracks dynamic power availability and
workload dynamics with low error, as its design is based
on well-studied control theoretic algorithms with desir-
able stability and accuracy properties. We evaluate the
system through experiments on a multi-server testbed
running a mix of interactive and batch processing bench-
marks. Real world data center traces from Microsoft’s
online services are used.

2 Virtualized Power Budgeting Challenges

The over-arching problem addressed by VPS is to dy-
namically adjust power allocations in a multi-application
scenario. The key challenges presented by this problem
are discussed below.

2.1 Server Sharing
The large number of servers in a data center are shared
among multiple applications, typically using virtualiza-
tion. VMs from multiple applications may be co-located
on the same physical servers depending on the applica-
tion characteristics such as complimentary resource us-
age and data placement needs. At the same time, VMs
from one application are spread across many servers
based on required minimum spread for hardware redun-
dancy, and minimum number of servers needed to al-
low for seamless software upgrades. Since different
applications have different users and workloads, an in-
crease in the workload and power usage of one appli-
cation should not negatively impact another application
sharing the same hardware. In some scenarios, different
applications may have different priorities. For example,
customer-facing online services may have higher priority
than batch processing or internal enterprise applications.

The power budgeting mechanism must therefore en-
force power limits at application granularity rather than
at the hardware level. Power budgets enforced in hard-
ware, such as using dynamic voltage and frequency scal-
ing (DVFS), impact an entire server or all processor cores
supplied from the same voltage rail1. This will cause a
performance drop for all application VMs sharing those
processors. Additional power capping mechanisms that

1In most servers, an entire processor chip or socket is supplied from
a single voltage rail and hence the supply voltage and DVFS can only
be controlled for the entire socket consisting of multiple cores.

operate at the individual VM level must be used. Coor-
dination of power allocations must also follow the appli-
cation VM layout across the server infrastructure.

2.2 Multi-dimensional Power Control
To respect application boundaries, a combination of
hardware-based (e.g. DVFS) and software-based (e.g.
VM CPU time allocation) power control knobs is used.
Multiple knobs imply that more than one combina-
tions of power settings may achieve the same power
level. However, application performance may be differ-
ent for each feasible combination. We illustrate this phe-
nomenon through experimental measurements in a later
section (Figure 5): at a given power level, performance
varies up to 25% depending on power settings. Power
budgeting design has the opportunity to maximize perfor-
mance, if it intelligently selects the best combination of
power settings to satisfy the power budget. Optimization
of performance brings with it challenges of measuring
and modelling performance. These measurements may
not be available in certain scenarios, especially when the
applications are not owned by the same entity that man-
ages the data center, as is often the case for large orga-
nizations and cloud based infrastructures. The VPS sys-
tem includes different modes of operation to work with
or without such information.

2.3 Dynamic Power Proportions
The input workload volume for each application changes
over time, implying that the power used, and as a result
the power available for other applications, changes. The
power budgets must be dynamically adapted, requiring
run time coordination across all applications.

Within an application, allocation of power to its VMs
is also non-trivial since the best allocation may vary with
workload volume. This happens because different VMs
may be hosting different tiers of the application. As a
toy example, consider a two tier application with the
front-end tier executing a processor intensive stage and
the back-end tier providing data storage. Power usage of
the front-end tier depends on processor utilization, and as
an example suppose it changes between 50W and 100W.
The back-end comprises disk storage, and has a high idle
power for keeping the disks spinning, say 80W, with an
additional power usage of up to 20W that varies with the
volume of I/O activity. At peak load, the allocation of
power is 100W to each tier, while at idle, the power al-
location is 50W and 80W to the two tiers respectively.
The power distribution proportion among tiers is not con-
stant.

Changes in workload not only change the applica-
tion power consumptions but also influence the power

2
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used by the shared components such as cooling equip-
ment. Another dynamic factor is the power capacity
available. For example, if environmentally-harvested en-
ergy is used, the available supply varies over time. In
view of the workload and power capacity dynamics, to
maximally utilize the available capacity, the budgeting
mechanism must dynamically adjust the power alloca-
tion proportions across applications and application tiers.

3 System Design

The VPS system for power budgeting is designed to ad-
dress the challenges described in the previous section.
To support multiple distributed applications in a scalable
manner, we use a hierarchical approach. The hierarchy is
designed to follow the application layout, with the total
power budget being divided dynamically among appli-
cations, and within the application among the different
tiers, following down to the individual VMs comprising
those tiers. This hierarchy is independent of the server
and rack layout. Power is tracked at the VM level allow-
ing each application to be budgeted independently of oth-
ers by leveraging VM specific power control knobs (such
as VM CPU time allocation). The dynamics of the sys-
tem, including workload variations and power capacity
changes, are handled through feedback controllers that
monitor and control the power usage in real time. Ap-
plication performance is optimized through a combina-
tion of control algorithms based on proportional-integral-
derivative (PID) and model predictive control (MPC). In
this section, we describe the design of the VPS architec-
ture and the control algorithms used.

3.1 Power Budgeting Architecture

Figure 1 shows the overall structure of the VPS system.
The white boxes correspond to VPS components while
the gray boxes show the underlying physical hierarchy.
The VPS control mechanism consists of a multi-level hi-
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Figure 1: VPS power control hierarchy. The white boxes
constitute VPS while the gray boxes represent the physi-
cal hierarchy. PDU stands for power Distribution unit.

erarchy where the topmost level is a data center level
controller2. This controller receives the total power ca-
pacity as its input. The controller allocates it among
the application level controllers that comprise the next
level in the hierarchy. The top level controller is scal-
able since it monitors and controls only a small num-
ber of applications rather than the thousands of individ-
ual servers or VMs. Each application may in turn con-
sist of hundreds or even thousands of VMs. The appli-
cation is thus further divided into tiers and the applica-
tion level controller monitors and controls only the tier-
level controllers. The tiers of the application are typi-
cally arranged in a pipeline that, as we describe in the
detailed controller design, facilitates our method for op-
timal power allocation among the application compo-
nents. This approach utilizes the available power more
efficiently than following a physical server or rack lay-
out based hierarchy. The tier level controller in turn con-
trols each VM belonging to the corresponding applica-
tion tier. Within a tier, the constituent VMs are often load
balanced and similar in behavior. If a particular tier has a
reasonably small number of VMs, the tier level controller
can perform a nearly uniform allocation within the tier,
and directly command the VM power settings affecting
the power consumption. If the number of VMs within
a tier is very large, or the VM roles are distinct, further
levels may be added to the hierarchy, based on network
proximity or VM roles. Without loss of generality, we
focus on a three-level hierarchy: data center level, appli-
cation level, and tier level. VPS operates independent of
the physical hierarchy comprising of servers, racks, and
power distribution units (PDUs).

The above architecture assumes that power can be
measured and limits enforced at the application granu-
larity. Measurement of an application’s power consump-
tion may not be possible at a physical wire in virtualized
servers since the physical server components are shared
across multiple applications. The VPS system relies on
VM power measurement methods such as [8, 18] that re-
port the individual power usage of each VM on a shared
server, as well as, the base power that the hardware plat-
form consumes. The individual VM power measure-
ments are propagated up the VPS hierarchy to obtain
the power consumption of each application or applica-
tion tier.

Actual power reduction can only be realized at the
lowest layer that controls the power consuming resource.
In our implementation, the resource whose power is var-
ied is the processor since in current platforms, the proces-

2A data center may be divided into sections referred to as “colos”
where the power infrastructure and backup is separate for each colo: in
this case one data center level controller would operate in each colo.
The top level controller may be applied at any physical boundary rep-
resenting an independent unit in terms of application deployment and
power constraints.

3
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sor is the resource with the most advanced power man-
agement options. By controlling the CPU active time
allocated, i.e., the CPU utilization, the power consump-
tion of the processor can be varied from near zero to its
peak power. Similarly, DVFS also allows varying the
processor power over a large range. We use both these
knobs to control power. For memory, power varies di-
rectly with the number of IOs performed [8], which can
effectively be throttled by the number of CPU cycles al-
located. Additional power control knobs can be included
in our framework as they become available since it is
already designed to use multiple knobs. Applications
whose power use does not change with any available
power control knob can of course not be throttled. Their
power use is measured, similar to idle power and cooling
equipment power, and changes are compensated for by
VPS controllers.

The application-based hierarchy is more natural from
a performance perspective because resource allocation
decisions are typically made for an application as a
whole and each application has a different business func-
tionality with its own priority, revenue, and QoS expec-
tation. The implementation of such a hierarchy is how-
ever more sophisticated since it incorporates knowledge
about the application’s VM layout and the hypervisor’s
VM CPU time allocation. As a result, the VPS sys-
tem operates in the data center management plane rather
than in the server motherboard or blade-enclosure based
firmware.

The power budget at the highest layer, denoted PT (t),
is an input to VPS. This is the hard constraint that must
be satisfied at all times. It could be based on the static
capacity built for the facility, or could be dynamic, based
on time-of-day based power prices, or amount of envi-
ronmentally harvested energy [16, 2] available.

3.2 Top Level Controller

The data center level controller, placed the the top level
in the design, determines the amount of power allocated
to each application. If applications have different priori-
ties, the controller takes those into account.

Naı̈vely partitioning the power budget PT (t) among
applications, say based on statically assigned shares,
does not work well in practice because of the following
factors. First, the application workloads are dynamic.
An application may not be using its fixed allocation at
time t if incoming workload is low. The power alloca-
tion mechanism must adapt dynamically, to assign the
unused power to another application if needed. Second,
the measurement of application power consumption may
have some errors. Additionally, a measurable power al-
location increase to an application may lead to associ-
ated hidden power level increases in shared infrastruc-

ture, such as due to non-linear changes in transformation
losses across power supplies and changes in cooling load,
that are hard to assign to any single application. Such
errors directly affect the total power used and must be
compensated to satisfy the hard limit of PT (t).

VPS design uses feedback control to address the above
factors. The top level controller receives measurements
of each application’s power consumption from the re-
spective application level controllers. It also receives the
total data center power consumption from hardware in-
strumentation at the power circuits supplying the servers
and cooling equipment. This hardware measurement in-
cludes power consumption that is not directly attributed
to any specific application VM. The output is the power
allocation to each of the applications, at each time in-
stance, that is then enforced by the application level con-
trollers. Figure 2 shows the feedback loop involved.

Data 
Center 
Level 

Controller 

App 1 App m … 

Data Center Power 
(Hardware measurement) 

PT(t) PA1(t) 
PAm(t) 

PM(t) 

Figure 2: Block diagram of data center level feedback.

The only output action available at this controller is the
power allocation and hence the performance objective is
only to allocate the maximum possible power, up to the
application demands, and minimize the workload throt-
tling. Any controller that can closely track the available
power limit and is robust to errors in measurements can
be used, and a PID controller is thus appropriate at this
layer. Other control algorithms that make optimal deci-
sions by choosing among multiple control knobs are em-
ployed in VPS at lower layers. Ad hoc algorithms such
as those based on rules that actuate power increases and
decreases based on observed consumption levels may be-
come unstable or oscillate as shown in [21]. VPS uses
a control theoretic framework that enables stable opera-
tion by design, over the range of practical operating con-
straints (the specific methods used to tune the controllers
in our prototype are outlined in Section 3.5).

3.2.1 Application Budgets and Priorities

Note that while the control algorithm adapts total power
consumption to operate close to PT , the PID controller
output here is the sum of all the applications’ power con-
sumptions. There is no knob available to control this
sum; only the power consumptions of individual applica-
tions can be affected through their respective application
level controllers. The control output is split across the

4
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application level controllers using application priorities
as well as the measured application and total hardware
power consumptions, as follows.

At power provisioning time, each application is as-
signed a maximum budget, based on expected usage at,
say, 99-th percentile peak load. While in non-virtualized
settings, application budgets are typically assigned sim-
ply based on number of servers allocated and measured
power for those servers when running the relevant appli-
cation, with virtualization the actual power impact must
be profiled on the appropriate infrastructure. When a new
application is accepted, its power can be profiled for each
type of VM instance used, and extrapolated to number of
VM instances at 99-th percentile of peak load. Such pro-
visioning is typically required by a data center before it
can accept an application to be hosted. Suppose the as-
signed power is denoted P 0

Ai.
Suppose ∆(t + 1) denotes the desired change in to-

tal power at the next time step (PID controller output).
To determine the per application power split, the amount
of uncontrollable power, denoted PU (t), is first esti-
mated by subtracting the sum of application power con-
sumptions from the measured total power consumption,
PM (t):

PU (t) = PM (t)−
m∑
i=1

PAi(t) (1)

where PAi(t) represents the power consumption of ap-
plication i, and m is the number of applications. This
uncontrolled portion of power includes all shared infras-
tructure power as well as errors in application power
measurement. The estimate of the total power consump-
tion at the next time step becomes PM (t) + ∆(t + 1).
The power budget available to be allocated to the appli-
cations, denoted Papp, at the next time step, is estimated
as:

Papp(t+ 1) = PM (t) + ∆(t+ 1)− PU (t) (2)

This is only an estimate since it does not include the un-
known change in PU (t) at the next time step, and that
change will act as an error for the feedback controller, to
be compensated as the controller converges. Papp(t+1)
is distributed among the applications according to the de-
sired priortization policy.

In our implementation, the priortization policy is as
follows. The controller allocates power to each applica-
tion based on its current demand, subject to a maximum
of P 0

Ai, starting with the highest priority applications. If
at any priority level, there is not enough power budget
to satisfy all application power demands, then we use
weighted fair sharing to distribute the remaining power,
with weights set proportional to the initial provisioned

application budgets. With this policy, lower priority ap-
plications are affected first. Similarly, any excess power
left over is also assigned using weighted fair sharing to
applications with unsatisfied demand (excess power may
be available when some applications are below their ini-
tial budget). The assigned shares are sent to each appli-
cation level controller to be enforced. Effectively, prior-
ity levels determine the split of Papp across applications
while the feedback controller tunes the value of Papp to
meet the target total power.

3.3 Application Level Controller

The VMs comprising an application are typically di-
vided into a number of tiers. Each tier has a different
role, and consequently a different power requirement.
The application-level controller distributes the applica-
tion power budget received from the top level controller
among each of its application tiers. This controller only
communicates with a small number of tier level con-
trollers and is thus scalable in number of VMs.

The controller must determine the correct proportion
in which power is allocated to the different tiers. One
design option for this controller is to learn a model of
power usage across tiers, and use that to determine the
appropriate ratio in which power should be split among
the tiers. This approach can be used when a detailed
model of application performance and resource utiliza-
tion at each tier can be learned. This is feasible for a spe-
cific power control knob at a given workload volume [7].
However, as illustrated in Section 2.3, the best power
sharing proportion changes with workload volume. The
model may also depend on the power control knob used
at the lower layer, such as DVFS or CPU time allocation.
Further, the application behavior may change over time
with software upgrades. In a virtualized infrastructure
supporting multiple applications, with little control over
application internals, learning this model is difficult.

VPS design dynamically tunes the power allocations
without relying on previously learned models. The key
challenge of course is to determine the correct sharing ra-
tio. Our design is based on the observation that the multi-
ple application tiers are arranged in a pipeline, and throt-
tling one tier will directly affect the workload flowing
into other tiers. The relationship among power changes
at different tiers need not be known a-priori, as long as
the pipeline assumption holds. The VPS application-
level controller measures the total application power us-
age but controls only one of the tiers. As the power al-
location to the controlled tier is changed, the power con-
sumed by other tiers changes in the right proportion re-
quired to serve the throttled workload volume passed on
by the controlled tier. This automatically maintains the
optimal power sharing proportion.
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An experimental illustration of the pipeline assump-
tion is shown in Figure 3, using a two tier application
described in Section 3.5. As the power usage of the con-
trolled tier is reduced, the power usage of the uncon-
trolled tier changes as well. The figure also shows that
the ratio of power consumptions is not constant at differ-
ent power levels and further depends on the lower layer
power control knob used (the figure shows two different
DVFS levels), implying that learning a model for this re-
lationship would be non-trivial.
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Figure 3: Server power variation with throttling of the
controlled tier VM CPU time.

While the pipeline assumption holds in many practi-
cal cases and is used in our description, theoretically,
the only assumption required is controllability, which is
a less stringent requirement. The analysis of controlla-
bility conditions is beyond the scope of this paper.

The specific feedback controller used here is based on
proportional-integral-derivative (PID) control (Figure 4),
governed by:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (3)

where u(t) represents the change in power allocated to
the controlled tier, e(t) represents the difference between
the desired application power budget and the currently
measured application power consumption, and the pa-
rameters Kp, Ki and Kd are PID controller parameters
for the proportional, integral, and derivative terms re-
spectively. The tuning of the controller parameters fol-
lows known control theoretic methods and is discussed
in Section 3.5.

Controller 

Tier 1 
(Controlled 

Tier) 
Tier n 

- Budget 

… 

u(t) 

e(t) 

Pa(t) 

Figure 4: Application level feedback controller.

Conceptually, any of the tiers in the pipeline can be
used as the controlled tier. From a practical standpoint,
selecting the tier with the largest power variation is desir-
able as that will provide finer control over the power con-
sumption, leading to lower error in tracking the power
budget. The controlled tier can be selected by record-
ing the power variation changes with workload from the
power readings provided by each tier.

3.4 Tier Level Controller

The tier level controller, at the controlled tier, controls
each of its VMs to track the tier power budget. It commu-
nicates with the servers hosting the tier’s VMs, to actuate
the power control knobs.

The control algorithm at this tier may have multiple
power control knobs at its disposal. In our prototype, we
use two knobs: VM CPU time allocation and DVFS.

VM CPU time allocation controls the maximum CPU
time allocated to a VM, and the processor can enter low
power sleep states (also known as C-states) for the un-
allocated time, reducing the CPU utilization and power
consumption [11]. This knob can control the power con-
sumption of an individual VM without affecting other
VMs sharing the same processor.

DVFS controls the processor frequency (P-state) to
scale CPU power. This knob affects all CPU cores sup-
plied from a single power rail, and thus impacts all VMs
sharing those cores.

While we use only CPU-based power knobs, these in-
directly influence other components such as the storage
subsystem by limiting the workload volume processed
and in our experiments we found that power consump-
tion of the storage intensive database tier does vary with
CPU power scaling. However, in the future, if the stor-
age subsystem provides direct power control knobs those
can be directly used in the VPS framework.

Performance Optimization: Use of multiple power
control knobs opens up the opportunity to affect perfor-
mance. Figure 5 shows the performance of one of the
application VMs (StockTrader application, Section 4.1),
with different settings of the two knobs. Different types
of marks correspond to different DVFS levels while mul-
tiple marks of the same type correspond to different VM
CPU time allocations at one DVFS setting. The key ob-
servation is that a given power level may be achieved at
multiple combinations of the two control knobs, yielding
different performance levels3.

3The absolute power variation here is small compared to typical
server power because the graph only shows the power variation of one
VM, and the range of power is restricted to the changes in power of
one core. Power is measured in hardware with only one VM allocated.
Only change in power is shown.
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Figure 5: Performance vs power at different DVFS and
VM CPU time allocation combinations.

One of the challenges here is to select the power set-
tings for optimal performance. Another challenge is to
coordinate the use of the hardware level DVFS knob with
power budgeting at application and VM boundaries. A
practical constraint for VPS design is that an application
performance model and a real time measurement of per-
formance may not be available. This is often the case
when data center power and the hosted applications are
managed by different entities, and is especially true for
cloud platforms.

We study three design options for the tier level con-
troller, making different trade-offs in terms of perfor-
mance achieved and implementation constraints. All of
these designs assume that VMs within a tier are largely
homogeneous and load balanced, though they may have
small instantaneous variation in their activity.

3.4.1 Open Loop Control

The open loop design assumes that a power model re-
lating the power consumption to the power control knob
setting is available for the server hardware. Such models
could be learned in-situ using known methods [8]. For
instance, if the power knob is VM CPU time, this model
may be represented as:

PVM = cfreq ∗ ucpu (4)

where PVM denotes VM power, ucpu is the CPU uti-
lization of the VM, and cfreq is a processor frequency
dependent power model parameter. Any single control
knob can be handled similarly. Multiple simultaneous
knobs are considered in Section 3.4.3.

No visibility into application performance is assumed.
Only the VM CPU time allocation knob, that acts at VM
granularity, is used. VM power allocation is obtained by
uniformly dividing the tier power among the tier VMs.
For each VM, the assigned power is converted to VM
CPU time allocation using (4). The controller is easy
to implement and acts instantaneously, but it does not
compensate for errors in the model equation (4).

3.4.2 PID Control

Accuracy of the open loop controller can be improved us-
ing feedback. Since a feedback controller uses real time
power measurements to tune the power setting, it can in
fact work even without a power model. VPS uses a PID
controller (Figure 6), with one variation that the control
output is sent to multiple homogeneous VMs. The con-
trol output, u(t), is the VM CPU time allocated to each
VM and is assumed to be the same across all VMs within
the tier. Small instantaneous differences in VM activity
are acceptable since the controller uses only the sum of
the powers of all VMs as feedback (small VM variations
are averaged out), but the overall VM CPU time to power
relationship must be similar for all VMs, implying that a
common hardware configuration is used and the software
running is the same (since different software functional-
ity can lead to different power consumption even at the
same CPU utilization [8]).

Controller 

VM1 VM k 

- Tier 
Budget 

… 

u(t), VM CPU Time 

e(t) 

Sum of VM power consumptions 

Figure 6: Tier level controller PID feedback loop.

The PID based design provides the advantage of ac-
curate power control. However, since it relies on feed-
back measurements to reach the desired setting (i.e., tier
power budget), it is slower than an open loop control
leading to longer control intervals at higher levels of the
hierarchy. Also, since it manipulates a single variable, it
does not incorporate any notion of optimality for appli-
cation performance.

3.4.3 Model Predictive Control

The third design option used is based on model predic-
tive control (MPC). MPC allows computing an optimal
setting among multiple power control knobs. The opti-
mum is defined in terms of application performance, and
hence this design option requires a mechanism to mea-
sure application performance.

The cost function optimized by MPC typically con-
sists of two terms: an error term that quantifies the dif-
ference from the desired state, and a performance term.
The MPC objective function includes not just the current
time step but the system state at future time steps, requir-
ing a system model that relates the control knobs to the
system state, in this case the target power level and per-
formance. At each time step, the controller solves for the
optimal outputs for the next N time steps, applies the so-
lution for only the next time step, and repeats the process
to ensure smooth convergence to the desired state.
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Cost Function: Suppose dvfs(i) denotes the DVFS,
and v(i) denotes the VM CPU time limit, at time step i
for a VM. Suppose fpower denotes the power model, e.g.,
equation (4), and fperf the performance model. The cost
function, J , is:

J =

N∑
i=1

||fpower(dvfs(i), v(i))− PVM ||+

w
N∑
i=1

||fperf (dvfs(i), v(i))− αmax|| (5)

where PVM is the VM power to be tracked, αmax is the
maximum possible performance, and w is a weight that
determines the relative importance of the two terms. The
first term optimizes the error between the target and pre-
dicted power levels, and the second term optimizes per-
formance along the predicted N step control trajectory.

The cost function is minimized to find dvfs(i) and
v(i) for best performance. The optimization is solved in-
dividually for each VM to keep the size of the optimiza-
tion search space independent of the number of VMs,
ensuring scalability to applications with large number of
VMs within a tier.

Hardware Coordination: A block diagram of the
control system is shown in Figure 7. The DVFS knob
acts at the hardware level and may not respect VM
boundaries. Thus, the settings computed above are
not applied directly but through a coordination service,
hosted at each physical server. The service receives
DVFS requests from the MPC output for each VM on the
server (potentially belonging to different applications)
and sets the server DVFS to the highest frequency among
the DVFS levels requested. This ensures that no VM is
unduly throttled down. The applied DVFS level is re-
ported back. The MPC controllers that receive back a
different DVFS setting than the one requested, solve their
optimization problem again, with the reported DVFS set-
ting added as a constraint, tuning the VM CPU time knob
for the current DVFS setting. The process is repeated at
each control iteration yielding the combination of DVFS
and VM CPU time allocations that maximizes perfor-
mance within hardware sharing constraints.

MPC 
Optimizer 

VM Power 
Budget 

PVM 

VM Server 

dvfs 
v  

fpower 

Figure 7: Tier level controller MPC block diagram.

While the MPC based design can yield higher per-
formance than the previous two options, it requires the

application performance to be exposed to VPS. Cer-
tain cloud platforms such as Microsoft Azure do pro-
vide APIs for applications to expose custom performance
counters and can be used when available. Power and
performance models are also needed. A third considera-
tion is that while the PID controller will always provide a
best effort solution within the range of the power settings
available, the optimization step in MPC can fail if the
optimization is infeasible, and a backup control method
may have to be employed. Table 1 summarizes the pros
and cons of the above design options.

Pros Cons
Open Fast Needs power models
Loop Higher error
PID Low error No performance optimization

Slower
MPC Optimizes Needs system models

performance Needs performance measurement

Table 1: Summary of controller design options.

3.5 Implementation

VPS controllers are implemented as network services
on the same physical servers as running the workload.
The tier level controller also runs a service in the priv-
ileged VM (root VM in Windows Hyper-V) on each
physical server to actuate the VM CPU time allocations
and DVFS. The network services implementing the con-
trollers also log power and performance data for the ex-
periments. The various parameters and system models
needed in the implementation as acquired as follows.

Controller Parameters: The feedback controllers
used in the implementation are tuned using known meth-
ods from control system design literature. For the PID
controllers employed at various layers, the parameters
Kp, Ki, and Kd are tuned using the Ziegler-Nichols
method [25], on test runs with one of our applications.
This method is known to yield robust parameters, keep-
ing the controller stable as workloads change. However,
this method does not necessarily yield the fastest con-
vergence or minimum overshoot. Other tuning heuristics
available for control system design may be employed as
desired. The MPC controller is tuned to operate with a
prediction horizon of N = 1. Longer time horizons are
helpful for ensuring smoother convergence. In VPS, the
MPC control is applied only at the individual VM level,
where the models are relatively accurate, and hence a
short time horizon suffices. The optimization effectively
uses the error term as a constraint and maximizes the per-
formance, implying a weight factor w that emphasizes
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accurate power tracking over application performance.
The detailed optimization and tuning of controller pa-
rameters is beyond the scope of this work.

Power and Performance Models: For MPC, the per-
formance model fperf (dvfs(i), v(i)) is learned using a
test run where each dvfs(i) and v(i) setting is exercised.
For each application, this is simply represented as a ta-
ble with the performance metric listed at each DVFS
and VM CPU time setting of the controlled tier. Only
a few discrete DVFS levels are available in hardware,
and for VM CPU time, nine discrete levels ranging from
10% to 100% are measured. The power model fpower

is learned using the methods from [8] and is represented
using an equation of the form (4). These models need
to be learned for each application only if the MPC de-
sign option is used. The models depend on hardware
used. Large data centers typically have a large numbers
of servers for each configuration, and servers are updated
in bulk with a single configuration. This means that the
models have to be learned on a small number of servers
and updated only incrementally.

Additionally, the server infrastructure provides for
measuring the total power (from the circuits supplying
the servers, cooling, and network equipment). The root
VM in each server implements the VM power measure-
ment technique from [8]. The maximum power allowed
for each application, denoted P 0

Ai, is assumed known and
may be determined using the technique described in Sec-
tion 3.2.1. If multiple applications have different prior-
ities, these are assumed known. In practice, customer
facing interactive applications may be assigned one pri-
ority level, and batch processing tasks such as MapRe-
duce jobs, data mining, test and development, and inter-
nal enterprise applications, could be assigned a second,
lower, priority level.

Coordination Across Levels: The controllers at mul-
tiple levels are coordinated by setting the control inter-
val of the higher layer controllers to be larger than the
convergence time of the lower layer ones. This ensures
that the lower layer controller has converged before the
higher layer controller receives feedback and actuates,
thus avoiding instability. In our prototype, we found the
lowest layer controller, when using PID, has a conver-
gence time of 6 seconds and hence, the application level
controller uses 6 seconds as its control interval. The
application level controller also uses 6 control steps to
converge, leading to a control interval of 36 seconds at
the data center layer controller. The control algorithm
at each layer updates its output at the assigned control
interval.

4 Evaluation

4.1 Workloads and Experiment Setup

We use two types of applications for our experiments –
an interactive multi-tier application that represents online
services subjected to variable user workload, and a set of
computationally-intensive batch processing tasks:

StockTrader: StockTrader [17] is an open source
multi-tier clustered web application benchmark that
mimics a stock trading website, provided for Windows
platforms. It is functionally and behaviorally equiva-
lent to IBM WebSphere Trade 6.1 benchmark that runs
on other platforms. The application has two significant
tiers: a middle tier that implements business logic and
a database tier that provides the storage backend. The
front-end is a lightweight presentation layer. The incom-
ing requests can be load balanced among multiple VMs
hosting the application.

We modified the workload generator provided with the
Stocktrader source code to generate workload volume
based on a trace file. The application reports its perfor-
mance in a graphical user interface that we modified to
expose the performance as a performance counter sent to
the relevant network services implementing the control
algorithms in our experiment.

SPEC: We use multiple applications from the SPEC
CPU 2006 benchmark suite [15] to represent background
jobs that would typically run with lower priority in a data
center.

To simulate realistic workloads that vary with time,
we use real world data center traces from Windows
Live Messenger, an online service with millions of users
worldwide. Sample traces from two of its servers are
shown in Figure 8. Each instance of the StockTrader ap-
plication was loaded using a separate data center trace.
While the StockTrader application is different from Live
Messenger, generating load proportional to production
traces helps simulate realistic variations in workload vol-
ume.
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Figure 8: Windows Live Messenger workload trace.

Our testbed consists of seventeen servers, eleven of
which host the applications and are subjected to VPS,
while the others generate user workload. These are quad
core HP ProLiant servers, virtualized using Windows
Hyper-V.
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Application Deployment: The testbed hosts 4 clus-
tered applications: 3 instances of StockTrader labeled A,
B, and C, and a SPEC CPU task set. StockTrader A and
StockTrader B are each composed of 13 VMs. Stock-
Trader C is composed of 6 VMs, and the SPEC CPU task
set is given 10 VMs. Each VM is assigned one core on
one of the quad core servers. StockTrader VMs are al-
located to multiple tiers such that each tier reaches high
resource utilization at peak load.

Stocktrader B and C are treated as high priority ap-
plications while StockTrader A and SPEC are given low
priority. The VMs are mixed up across servers such that
some servers host both high and low priority VMs while
others host VMs only from a single priority level. Each
server hosts VMs from more than one application.

Measurements: Power measurements for the hosted
VMs are obtained using [8]. This technique obtains a
mapping between resource usage, which can be moni-
tored for each VM by the hypervisor, to actual VM power
use, since VM power cannot be measured in hardware.
Power measurements for the entire testbed are obtained
in hardware, using a set of WattsUp PRO [24] meters,
connected to each of the servers. This hardware measure-
ment includes the base power consumption of the servers
(power consumed when powered on but idle) that is not
attributed to any specific VM, and is treated as PM (t)
for equations (1) and (2). Cooling equipment is not part
of this testbed. When using MPC at the tier level, the
SPEC application’s tier level controller is still PID, be-
cause the SPEC CPU applications does not expose per-
formance metrics in real time.

Comparison: In addition to the VPS controllers with
multiple options from Table 1, we also implemented a
power budgeting system that simply follows the hierar-
chy of the physical layout of the testbed, for compari-
son. This controller uses only DVFS as its power con-
trol knob and operates at the server level, similar to prior
works [22]. Servers that are exceeding their allocated
budget, i.e., the ones with highest resource usage, are
throttled first.

Illustrative Run: We conduct multiple runs with dif-
ferent workload traces and take an average of the mea-
sured metrics (5 runs in each experiment). As an illus-
tration, Figure 9 shows the power consumption with and
without VPS controllers, for part of a run. Tracking is
enforced during time intervals where uncontrolled con-
sumption (dashed line) is above the tracked power level
(solid black line). Only two of the controllers are shown
for clarity. The controllers do exceed the tracked power
level at times, leading to tracking errors. Also, even
when the uncontrolled curve exceeds the tracked power
level, implying that the workload is high, the controllers
sometimes leave power unused below the tracked level,
taking an unnecessary performance hit.
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Figure 9: A workload run against various control systems
with dynamic power budget.

The figure also illustrates the use of a time varying
power capacity availability, as may be useful in scenar-
ios where the utility power is supplemented with envi-
ronmentally harvested power [16, 2].

4.2 Results
The performance metrics of interest are: total (data cen-
ter level) and application level power budgeting errors,
application performance differentiation (ability to oper-
ate interactive applications on shared infrastructure with
low priority tasks), and performance achieved within the
power budget.

4.2.1 Power Budgeting Errors

Error is defined as the excess power consumed above the
assigned power budget, normalized by the power budget:

TrackingError = MAX

{
PM (t)− PT (t)

PT (t)
, 0

}

where PM (t) represents the measured data center power
consumption. Consumption below the target level may
result from workload being low or the controller being
overly conservative. Being overly conservative is not
an error from a budgeting perspective, but penalizes the
controller in terms of achieved application performance.

Figure 10 shows the average and standard deviation
of the mean error across all experiment runs, for each
design choice. The PID-based system has higher error
because the PID controller has higher overshoots during
its convergence time, compared to MPC and Open Loop
systems, and is as expected. Higher oscillations for PID
compared to MPC were also seen in [21]. The physi-
cal hierarchy based controller has higher error primarily
because the control knob it uses, DVFS, is not as fine
grained as VM CPU time allocation. Processors have
only a few discrete DVFS levels as opposed to CPU time
allocation that can varied in fine grained steps. Over-
all however, each of the design choices yields fairly low
error and the choice will thus depend on the other im-
plementation constraints or performance considerations.
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Figure 10: Total power errors of each control system.

It is worth noting that the overall error is low even
when using open loop control, because some of its er-
ror is compensated by higher layer controllers. The error
in open loop control is more apparent at the lower lay-
ers. Figure 11 shows the mean error for each hosted ap-
plication (ST-x refers to StockTrader-x). Here, the PID
and MPC based systems have similar application power
errors, and both fare better than the open loop VPS sys-
tem. ST-A and SPEC being the lower priority applica-
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Figure 11: Application power enforcement errors.

tion are subject to greater power reduction. However,
the open loop controller has a poorer power model for
StockTrader applications than SPEC (the power model
accuracy can vary across applications since different ap-
plications may use resources differently [8]). As a re-
sult, it underestimates the power consumption of ST-A,
and does not throttle it sufficiently, leading to high error.
Due to this error, the higher layer controller reduces the
total power available to all applications, resulting in the
higher priority applications, StockTrader B and C, see-
ing lower budgets under open loop design than their ac-
tual limits in other designs. These are throttled more than
necessary and stay well below the target level, resulting
in tracking error being virtually eliminated for B and C.
The physical hierarchy based controller does not apply
to individual applications and is omitted in this figure.

4.2.2 Power Differentiation

VPS is designed to respect application priorities and QoS
constraints in a shared infrastructure. Figure 12 shows
the differentiation between different applications enabled
by VPS. Power reduction compared to uncontrolled op-
eration is shown, normalized by the uncontrolled con-
sumption.
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Figure 12: Average application power reduction under
each control system. SPEC and ST-A are the lower pri-
ority applications and ideally only these two should have
their power reduced.

The physical hierarchy based controller, which oper-
ates at the hardware level without consideration of appli-
cation VM boundaries, is unable to differentiate between
applications: higher and lower priority applications have
their power reduced by similar amounts. In contrast, the
PID and MPC based VPS systems show marked applica-
tion power differentiation.

The open loop system does differentiate, and SPEC is
throttled by similar amount as with MPC and PID. How-
ever, the power model used does not work as well for the
StockTrader applications and we see that StockTrader A
is throttled much less, causing the higher priority appli-
cations to be throttled more, as explained with Figure 11.

4.2.3 Application Performance

We saw above that both the PID and MPC based VPS
systems can perform appropriate application differentia-
tion and achieve low errors. The distinguishing feature of
MPC however, is its ability to improve application per-
formance by intelligently selecting the appropriate com-
bination of power settings that yields higher performance
for a given power level.

An illustration of this effect is shown in Figure 13,
which shows the throughput and response time achieved
by StockTrader A, under both MPC and PID based ap-
proaches, for the same power budget. MPC yields higher
throughput and lower response times, showing a notice-
able performance advantage.

Quantitatively, the performance difference is mea-
sured as follows. The degradation, δ, in performance is
defined as the fractional reduction in performance com-
pared to when run with unlimited power:

δ =

∣∣∣∣
Perfunlimited − PerfV PS

Perfunlimited

∣∣∣∣
for both response time and throughput. For each experi-
ment run, we calculate the mean degradation for each ap-
plication. The degradations in throughput and response
time are compared in Figure 14. In each case, the MPC
based system shows lower performance degradation, im-
plying higher performance. StockTrader B and C being
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Figure 13: Application performance of a low priority
(throttled) application, for MPC and PID, with the same
power budget.

higher priority applications, are not affected much in ei-
ther PID or MPC, but StockTrader A shows a marked
performance advantage for using MPC.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

ST-A ST-B ST-C

Th
ro

ug
hp

ut
 D

eg
ra

da
tio

n 
(%

) 

PID MPC

(a) Throughput Degradation

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%
140.00%
160.00%

ST-A ST-B ST-C

Re
sp

on
se

 T
im

e 
De

gr
ad

at
io

n 
(%

) 

PID MPC

(b) Response Time Degradation

Figure 14: Performance degradation: MPC vs PID.
The high priority applications (ST-B and ST-C) are not
throttled much but ST-A suffers lower degradation when
throttled using MPC than with PID for the same power
budget.

We also noted in Section 3.4.3 that MPC is restricted
in its use of the DVFS control knob because the hard-
ware is shared among multiple VMs. While the VM
CPU time limit can be applied to any VM, the DVFS
knob can only be used when allowed by the coordina-
tion service. To study the impact of coordination, we
track the DVFS and VM CPU time limit settings used
at two of StockTrader A’s VMs. One of these VMs, la-

beled VM1, is co-located with VMs from higher priority
applications while the other, VM2, is placed on a server
where all other VMs belong to lower priority applica-
tions. Figures 15(a) and 15(b) show the power control
knob settings used by these two VMs during the MPC
experiment, at different times during an entire run. We
see that VM1 is unable to use the DVFS knob (DVFS is
always 100%) because the other VMs on that server re-
quire the highest DVFS setting. VM2 on the other hand
does use multiple DVFS levels, and its spread of VM
CPU time limits is thus different from VM1.
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Figure 15: Power control knob settings used for VM1
(co-located with high priority application VMs) and
VM2 (co-located with low priority application VMs).

The performance advantage shown by MPC in Fig-
ures 14(a) and 14(b) is obtained using the DVFS knob
only in cases where the VM placement allowed its use.
The performance advantage may be higher in scenarios
where all low priority VMs do not share servers with
higher priority VMs.

5 Discussion and Future Work

VPS enables performance aware power budgeting in
multi-application virtualized scenarios. The system can
be extended to incorporate additional features and appli-
cation scenarios, as follows.

Server Shutdown: In this paper, we only used two
power control knobs: DVFS and VM CPU time allo-
cation. Both these knobs can be applied in real time
with low latency. However, these knobs only influence
the portion of server power consumption that varies with
processor power settings. A significant portion of server
power, as high as 50-60%, is spent to simply power up
a server, and is referred to as idle power. Therefore, an
effective means to reduce power is to shut down some
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servers, instead of throttling down servers that are pow-
ered up. Consider as a toy example, a set of 10 servers,
each of which consumes 50W at idle and 100W at peak
load (i.e., server power increases from 50W to 100W as
CPU utilization increases from 0 to 100%). The total
power consumption is 1000W at peak load. Suppose a
reduction of 250W is desired. One option is to reduce the
CPU utilization of each server from 100% to 50%, reduc-
ing the power level of each server to 75W. The number of
CPU cycles available is reduced by 50% in this case. An-
other option is to shut down three of the servers, reducing
the power by 300W but reducing the CPU cycles by only
30% (instead of 50%). The second approach achieves
part of its power reduction by eliminating idle power of
three servers and can offer higher performance.

Clearly, exploiting server shutdown as a power con-
trol knob has a performance advantage. However, server
shutdown has high latency. Also, since it is a hardware
level knob, coordination among all VMs located on a
server to be shut down is required. Commercial prod-
ucts that can automatically migrate or shutdown VMs
and servers as resource utilization changes are already
available [20]. Incorporating such techniques into ap-
plication power budgeting presents interesting research
challenges and will likely yield significant performance
benefits when power throttling is required for longer time
durations.

Additional Applications: We explained the choice of
control intervals in Section 3.5. The latencies achieved
are acceptable for over-subscription with a static power
capacity, since the only dynamics come from user work-
loads and these vary only gradually over the course of a
day [1]. Such latencies are also acceptable for additional
power budgeting scenarios. VPS may be used to control
power usage in a multi-application server cluster pow-
ered wholly or in part from environmentally-harvested
energy, such as solar power, since it varies relatively
slowly. VPS may also be employed when the data cen-
ter wishes to change its power budgets with demand re-
sponse based or time of day based power prices. The
power prices are adjusted for periods of at least an hour
or 30 minutes in most electricity markets, allowing am-
ple time for controller convergence.

6 Related Work

Several prior works have considered the problem of
power and performance control of data center servers.
Power budgeting for a single server has been considered
in [9]. Multi-server power budgeting, sometimes referred
to as power shifting, has also been discussed [23, 21,
3, 22]. The power controllers proposed in [21, 23] dis-
tribute power proportional to CPU utilization in a cluster
of servers. In [3], workload differences among multiple

nodes are used to allocate different power limits. In [22],
a hierarchical approach is used where the controller hi-
erarchy follows the physical server and rack layout. In
all these works, only DVFS is used as the power con-
trol knob and application differentiation is not consid-
ered. The use of multiple power control knobs is also
not considered. The controller centrally measures and
actuates each server, limiting scalability. Optimal allo-
cation of available power to maximize performance was
also considered in [4], where a choice was made be-
tween the number of active servers and their processor
frequencies. A single application running on homoge-
neous servers was considered and power allocations were
made centrally. We extend the above works to allow
multiple applications sharing a common server infras-
tructure. We also design a method to select an optimal
combination of power settings when multiple options ex-
ist for achieving the same power level, rather than always
using DVFS. We further adapt power allocations dynam-
ically across applications and application tiers to improve
performance.

The performance of multi-tier applications has also
been considered in [7, 10]. The method in [7] tunes
the power settings at each tier to meet an overall perfor-
mance objective by determining coordinated frequency
levels for each tier. In [10], one controller is used
to set the processor frequency of one of the tiers to
meet performance requirements and another controller
tunes the frequency of the other tier to minimize over-
all energy. These methods require detailed performance
models across multiple tiers. We optimize performance
across multiple tiers using low overhead mechanisms
that do not require learning multi-tier performance mod-
els. Our methods work with dynamic workloads and can
also use multiple power control knobs.

Partitioning of power due to limitations of power dis-
tribution may also lead to inefficient operation because
unused power capacity in one part of the data center can-
not be delivered to other parts. Solutions to this prob-
lem have been discussed before [13]. We assume that
such solutions have been deployed, and the distribution
infrastructure is not a limiting factor.

In addition to the above works, several others have
addressed various related aspects of power control. Co-
ordination of multiple controllers for joint objectives of
power capacity, energy consumption, and thermal man-
agement was presented in [14]. Our solution addresses
multi-application scenarios with dynamic workloads and
application performance optimization. Design time anal-
ysis of coordinated controllers for detecting unwanted
positive feedbacks and instability was presented in [6].
We use multiple coordinated controllers in a hierarchy
such that they do not lead to positive feedbacks and
ensure stability through known methods. Design time
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methods for efficient power provisioning, based on sta-
tistical profiling, have also been studied [5] but are com-
plementary to our work. VPS power tracking methods
are designed to be employed at run time, after the design
time provisioning limits have been determined. Model-
ing and control of application performance and resource
usage in a virtualized infrastructure has also been con-
sidered before [12]. Our focus is specifically on power
tracking, with appropriate mechanisms for performance
differentiation and optimization.

We also consider several practical aspects not previ-
ously considered. For instance, the platform providing
and controlling the power limits has very limited visibil-
ity into the application performance metrics. This is es-
pecially true for cloud environments where the applica-
tions may not be owned by the same entity that manages
the data center and its power usage. Further, the work-
load for one application may change, causing the power
availability for other applications to change and hence we
dynamically adapt to such changes. We also do not as-
sume that detailed models for power distribution across
multiple application tiers can always be learned.

7 Conclusion

We presented a power budgeting system, VPS, for virtu-
alized data centers hosting multiple applications. VPS
can significantly improve the power capacity utiliza-
tion by providing effective power budgeting in multiple
scenarios including over-subscription, energy harvesting
data centers, and variable power pricing. VPS allocates
available power efficiently among multiple applications
sharing the same servers and adapts to dynamic work-
load variations. The pipelined organization of large scale
applications into tiers is used to automatically distribute
power among the application tiers in appropriate propor-
tions. Multiple power control knobs are exploited for
optimizing performance. The algorithms used are based
on control theoretic techniques to help ensure stable and
robust operation. VPS offers multiple implementation
options to adapt to practical design constraints such as
lack of detailed system models and limited visibility into
application performance.
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Abstract
Direct device assignment, where a guest virtual ma-

chine directly interacts with an I/O device without host
intervention, is appealing, because it allows an unmodi-
fied (non-hypervisor-aware) guest to achieve near-native
performance. But device assignment for unmodified
guests suffers from two serious deficiencies: (1) it re-
quires pinning all of the guest’s pages, thereby disal-
lowing memory overcommitment, and (2) it exposes the
guest’s memory to buggy device drivers.

We solve these problems by designing, implementing,
and exposing an emulated IOMMU (vIOMMU) to the
unmodified guest. We employ two novel optimizations
to make vIOMMU perform well: (1) waiting a few mil-
liseconds before tearing down an IOMMU mapping in
the hope it will be immediately reused (“optimistic tear-
down”), and (2) running the vIOMMU on a sidecore, and
thereby enabling for the first time the use of a sidecore by
unmodified guests. Both optimizations are highly effec-
tive in isolation. The former allows bare-metal to achieve
100% of a 10Gbps line rate. The combination of the two
allows an unmodified guest to do the same.

1 Introduction

I/O activity is a dominant factor in the performance of
virtualized environments [29, 37], motivating direct de-
vice assignment whereby a guest virtual machine (VM)
sees a real device and interacts with it directly. As di-
rect access does away with the software intermediary that
other I/O virtualization approaches require, it can pro-
vide much better performance than the alternative I/O
virtualization approaches. This increased performance
comes at a cost of complicating virtualization use-cases
where the hypervisor interposes on guest I/O, such as
live migration [20, 50]. Nonetheless, the importance of
increased I/O performance cannot be overstated, as it
makes virtualization applicable to common I/O-intensive
workloads that would otherwise experience unacceptable
performance degradation [26, 28, 33, 45, 48].

1.1 Motivation
Despite its advantages, direct device assignment suffers
from at least three serious deficiencies that limit its ap-
plicability. First, it requires the entire memory of the un-

modified guest to be pinned to the host physical memory.
This is so because I/O devices typically access the mem-
ory by triggering DMA (direct memory access) trans-
actions, and those can potentially target any location of
the physical memory; importantly, unlike regular mem-
ory accesses, computer systems are technically unable to
gracefully tolerate DMA page misses, reacting to them
by either ignoring the problem, by restarting the offend-
ing domain, or by panicking. The hypervisor cannot tell
which pages are designated by the unmodified guest for
DMA transactions, and so, to avoid such unwarranted be-
havior, it must pin all the guest’s pages to physical mem-
ory. This necessity negates a primary reason for using
virtualization—server consolidation—because it hinders
the ability of the hypervisor to perform memory over-
commitment, whereas memory is the main limiting fac-
tor for server consolidation [16, 41, 47].

The second deficiency of direct device assignment is
that the unmodified guest is unable to utilize the IOMMU
(I/O memory management unit) so as to protect itself
against bugs in the corresponding drivers. It is well-
known that device drivers constitute the dominant source
of OS (operating system) bugs [5, 17, 25, 38, 43]. No-
tably, the devices’ ability to perform DMA to arbitrary
physical memory locations is a main reason why such
bugs are detrimental. IOMMUs were introduced by all
major chip manufacturers to solve exactly this problem.
They allow the OS to restrict DMA transactions to spe-
cific memory locations by having devices work with IO-
VAs (I/O virtual addresses) instead of physical addresses,
such that every IOVA is validated by the IOMMU hard-
ware circuitry upon each DMA transaction and is then
redirected to a physical address according to the IOMMU
mappings. The hypervisor cannot allow guests to pro-
gram the IOMMU directly (otherwise every guest would
be able to access the entire physical memory), and so
all the related work that provided ways for guests to en-
joy the IOMMU functionality [12, 13, 25, 35, 44, 49] in-
volved paravirtualization. Namely, the guest’s OS was
modified to explicitly inform the hypervisor regarding
the DMA mappings it requires. Clearly, such an ap-
proach is inapplicable to unmodified (fully virtualized)
guests.

A third deficiency of direct device assignment is that,
in general, it prevents the unmodified guest from taking
advantage of the IOMMU remapping capabilities, which
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are useful in contexts other than just defending against
faulty device drivers. One such context is legacy devices
that do not support memory addresses wider than 32bit,
an issue that can be easily resolved by programming the
IOMMU to map the relevant 32bit-addresses to higher
memory locations [18]. Another such context is “nested
virtualization”, which allows one hypervisor to run other
hypervisors as guests [11] and, hence, mandates granting
a nested hypervisor the ability to program the IOMMU
to protect its guests from one another (when those utilize
directly-assigned devices).

1.2 Contributions and Preview of Results
IOMMU Emulation The root cause of all of the above
limitations is the fact that current hypervisors do not pro-
vide unmodified guests with an emulated IOMMU. Our
initial contribution is therefore to implement and evalu-
ate such an emulation, for the first time. We do so within
KVM on Intel x86, following the proposal made by In-
tel [1]. We denote the emulation layer “vIOMMU”. And
we note in passing that we are aware of a similar effort
that is currently being done for AMD processors [31].

By emulating the IOMMU, our patched hypervi-
sor intercepts, monitors, and acts upon DMA remap-
ping operations. Knowing which of the unmodified
guest’s memory pages serve as DMA targets allows it
to: (1) pin/unpin the corresponding host physical pages,
and only these pages, thereby enabling memory over-
commitment; (2) program the physical IOMMU to en-
able device access to the said physical pages, and only
to these pages, thereby enabling the guest to protect its
memory image against faulty drivers; and (3) redirect
DMA transactions through the physical IOMMU accord-
ing the unmodified guest’s wishes, thereby retrieving the
indirection level needed to support legacy 32bit devices,
certain user-mode DMA usage models, and nested virtu-
alization. (See Section 2 for details.)

Utilizing the IOMMU without relaxing the protection
it offers is costly, even for a bare metal (unvirtualized)
OS. Our experiments using Netperf [19] show that bare
metal Linux 2.6.35 achieves only 43% of the line-rate
of a 10Gbps NIC when the IOMMU is used with strict
protection; the corresponding unmodified guest achieves
less than one fourth of that with the vIOMMU.

Optimistic Teardown The default mode of Linux,
however, relaxes IOMMU protection. It does so by
batching the invalidation of stale IOTLB entries and by
collectively purging them from the IOTLB every 10ms
(IOTLB is the I/O translation look-aside buffer within
the IOMMU). The protection is relaxed, because, dur-
ing this short interval, a faulty device might success-
fully perform a DMA transaction through a stale entry.
Nonetheless, for bare metal, the resulting improvement

is dramatic, transforming the aforesaid 43% throughput
to 91% and arguably justifying the risk. Alas, the corre-
sponding unmodified guest does not experience such an
improvement, as its throughput remains more or less the
same when the protection is relaxed.

To improve the performance of the vIOMMU, our sec-
ond contribution is investigating a set of optimizations
that exercise the protection/performance tradeoff in var-
ious ways (see Section 3 for details). We find that the
“optimistic teardown” optimization is the most effective.

While the default mode of Linux removes stale IOTLB
entries en masse at 10ms intervals, it nevertheless tears
down individual invalidated IOVA translations with no
delay, immediately removing them from the IOMMU
page table. The rationale of optimistic teardown rests
on the following observation. If a stale translation exists
for a short while in the IOTLB anyway, we might as well
keep it alive (for the same period of time) within the OS
mapping data structure, optimistically expecting that it
will get reused (remapped) during that short time inter-
val. As significant temporal reuse of IOVA mappings has
been reported [3, 44], one can be hopeful that the newly
proposed optimization would work. Importantly, for
each reused translation, optimistic teardown would avoid
the overhead of (1) tearing the translation down from the
IOMMU page table, (2) invalidating it in the IOTLB,
(3) immediately reconstructing it, and (4) reinserting it
back to the IOTLB; all of which are costly operations, as
each IOTLB modification involves updating uncacheable
memory and teardown/reconstruction involves nontrivial
logic and several memory accesses.

Optimistic teardown is remarkably successful, push-
ing the throughput of bare metal from 91% to 100%
(and reducing its CPU consumption from 100% to 60%).
The improvement is more pronounced for an unmodified
guest with vIOMMU: from 11% throughput to 82%.

Sidecore Emulation To further improve the per-
formance of the unmodified guest, we implement the
vIOMMU functionality on an auxiliary sidecore. Tradi-
tional “samecore” emulation of hardware devices (where
hypervisor invocations occur on the guest’s core) has
been extensively studied in the literature [6, 10, 21, 37].
Likewise, offloading of computation to a sidecore for
speeding up I/O in a paravirtualized system has been ex-
plored as well [15, 23, 27]. But in this paper, for the
first time, we present “sidecore emulation”, which com-
bines the best of both approaches. Specifically, sidecore
emulation maintains the exact same hardware interface
between the guest and the sidecore as exists in a non-
virtualized setting between a bare metal OS and the real
hardware device. Consequently, sidecore emulation is
able to offload the computation while requiring no guest
modifications. (See details in Section 4.)

By running the vIOMMU on a sidecore, we triple the
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setting strict relaxed optimistic
(default) teardown

samecore 10% 11% 82%
sidecore 30% 49% 100%

bare metal 43% 91% 100%

Table 1: Summary of preview of results (percent of line-rate
throughput on 10GbE).

throughput of the strict unmodified guest, quintuple its
throughput if its protection is relaxed, and achieve 100%
of the line-rate if employing optimistic teardown. The
results mentioned so far are summarized in Table 1.

Roadmap We describe: our “samecore” vIOMMU
design (§2); the set of optimizations we explore and
the associated performance/protection tradeoffs (§3); our
“sidecore” vIOMMU design (§4); how to reason about
risk and protection (§5); evaluation of the performance of
our proposals using micro and macro benchmarks (§6);
the related work (§7); and our conclusions (§8).

2 Samecore IOMMU Emulation

I/O device emulation for virtualized guests is usually im-
plemented by trapping guest accesses to device registers
and emulating the appropriate behavior [2, 10, 37]. Cor-
respondingly, in this section, we present the rudiments
of emulating an IOMMU. We choose to emulate Intel’s
VT-d IOMMU [18], as it is commonly available and as
most x86 OSes/hypervisors have drivers for it. Con-
veniently, Intel’s VT-d specification [18] proposes how
to emulate an IOMMU. We largely follow their sugges-
tions.

The emulated guest BIOS uses its ACPI (Advanced
Configuration and Power Interface) tables to report to
the guest that the (virtual) hardware includes Intel’s
IOMMU. Recognizing that the hardware supports an
IOMMU, the guest will ensure that any DMA buffer in
use will first be mapped in the IOMMU for DMA [12].
The emulated IOMMU registers reside in memory pages
that the hypervisor marks as “not present”, causing any
guest access to them to trap to the hypervisor. The hy-
pervisor monitors the emulated registers and configures
the platform’s physical IOMMU accordingly. The hyper-
visor further monitors changes in related data structures
such as the IOMMU page tables in guest memory.

Figure 1 illustrates the flow of a single DMA trans-
action in an emulated environment: a guest I/O device
calls the IOMMU mapping layer when it wishes to map
an I/O buffer (1); the layer accordingly allocates an
IOVA region and, within the emulated IOMMU, maps
the corresponding page table entries (PTEs) to point to
the GPA (guest physical address) given by the I/O de-
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Figure 1: IOMMU emulation architecture (samecore).

vice driver (2); the layer performs an explicit mapping
invalidation of these PTEs (3), thereby triggering a write
access to a certain IOMMU register, which traps to the
hypervisor; the hypervisor then updates the status of the
emulated IOMMU registers (4), reads the IOVA-to-GPA
mapping from the updated emulated IOMMU PTEs (5),
pins the relevant page to the host physical memory (not
shown), and generates physical IOMMU PTEs to per-
form IOVA-to-HPA (host physical address) mapping (6);
when the physical hardware requires it, the hypervisor
also performs physical IOTLB invalidation (7); the guest
is then resumed, and the I/O device driver initiates the
DMA transaction, delivering the IOVA as the destina-
tion address to the device (8); the device performs mem-
ory access to the IOVA (9), which is appropriately redi-
rected by the physical IOMMU (10-11); the guest OS
can then unmap the IOVA, triggering a flow similar to
the mapping flow except that the hypervisor unmaps the
I/O buffer and unpins its page-frames.

3 Optimizing IOMMU Mapping Strategies

Operating systems can employ multiple mapping strate-
gies when establishing and tearing down IOMMU map-
pings. Different mapping strategies tradeoff performance
vs. memory consumption vs. protection [13, 44, 49].

3
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Taking Linux as an example, the default mapping strat-
egy of the Intel VT-d IOMMU driver is to defer and
batch IOTLB invalidations, thereby improving perfor-
mance at the expense of reduced protection from er-
rant DMAs. Batching IOTLB invalidations helps perfor-
mance because IOTLB invalidations are expensive. Un-
like an MMU TLB, which resides on a CPU core, an
IOMMU and its IOTLB usually reside away from the
CPU on the PCIe bus.

An alternative mapping strategy is the strict mapping
strategy. In the strict strategy Linux’s IOMMU mapping
layer executes IOTLB invalidations as soon as device
drivers unmap their I/O buffers and waits for the inval-
idations to complete before continuing.

In this section we investigate the different tradeoffs
possible on bare metal and in a virtualized system em-
ploying an emulated IOMMU, where both the guest and
the host may employ different mapping strategies. We
discuss different IOMMU mapping performance opti-
mizations and their effect on system safety, starting with
the least dangerous strategy and ending with the best
performing—but also most dangerous—strategy.

3.1 Approximate Shared Mappings

Establishing a new mapping in the IOMMU translation
table and later tearing it down are inherently costly op-
erations. Shared mappings can alleviate some of the
costs [44]. We can reuse a mapping when another valid
mapping which points to the same physical page frame
already exists. Using the same mapping for two map-
ping requests saves the time required for the setup and
eventual teardown of a new mapping.

Willmann, Rixner and Cox propose a precise lookup
method for an existing mapping. Their approach relies
on an inverted data structure translating from physical
address to IOVA for all mapped pages [44]. This ap-
proach is problematic with modern IOMMUs that can
map all of physical memory and employ a separate I/O
virtual address space for each protection context (usu-
ally for each I/O device). Maintaining a direct-map data
structure to enable precise lookups is impractical for such
IOMMUs as it would require too much memory. We ex-
pect that using a smaller but more complex data struc-
ture, such as a red-black tree, will incur prohibitively
high overhead [32].

To avoid the overhead associated with complex data-
structures, we propose approximate shared mappings.
Instead of maintaining a precise inverted data struc-
ture, we perform reverse lookups using heuristics which
may fail to find a translation from physical address to
IOVA, even though there exists a mapping of that physi-
cal address. Our implementation of approximate shared
mappings used a software LRU cache, which requires

temporal locality in I/O buffers allocation in order to
perform well, in addition to spatial locality of the I/O
buffers. Many applications experience such temporal lo-
cality [44].

3.2 Asynchronous Invalidations
IOTLB invalidation is a lengthy process that on bare
metal takes over 40% of the overall unmapping process.
Asynchronous invalidation is an invalidation scheme tar-
geted at alleviating the cost of the lengthy IOTLB inval-
idation process by a minor relaxation of protection. The
default IOTLB invalidation scheme is synchronous: the
OS writes an invalidation request to the IOMMU’s inval-
idation register or (when the hardware supports it) to an
invalidation queue [18] and blocks the execution thread
until the IOMMU completes the invalidation. In asyn-
chronous invalidation, the OS does not wait for the in-
validation to complete before continuing. Doing so on
bare metal can save the few hundred cycles it takes the
IOMMU to write the invalidation completion message
back to memory after the invalidation is done.

Asynchronous invalidation enables multiple in-flight
invalidations when the hardware supports an invalidation
queue. However, to maintain correctness, asynchronous
invalidation must not permit an IOVA range which is be-
ing invalidated to be mapped again to a different phys-
ical address until the invalidation process is completed.
Unfortunately there is no practical way to ensure with
Linux that the page allocator will not reuse the physical
memory backing those IOVAs while the invalidation is
outstanding [49].

On bare metal asynchronous invalidation relaxes pro-
tection only slightly, since the IOMMU hardware per-
forms the invalidation process in silicon, taking only
hundreds of cycles to complete. In our experiments with
asynchronous invalidation, the invalidation queue never
held more than two pending invalidations at the same
time.

3.3 Deferred Invalidation
Deferring IOTLB invalidations, as currently imple-
mented by Linux, makes it possible to aggregate IOTLB
invalidations together and possibly coalesce multiple in-
validation requests so that they will be invalidated in a
single request, if the hardware supports it. Instead of the
OS invalidating each translation entry as it is torn down,
the OS collects multiple invalidations in a queue, which
it then flushes periodically. The current Linux implemen-
tation coalesces up to 250 invalidations for periods of no
longer than 10ms.

Holding back the invalidations makes the deferred
method less secure than the asynchronous method, where
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the “window of vulnerability” for an errant DMA is only
hundreds of cycles. But deferred invalidation reduces the
number of software/hardware interactions, since a whole
batch of invalidations is executed at once. This savings
is more pronounced when the hardware is emulated by
software, in which case deferred invalidation can save
multiple, expensive guest/host interactions.

3.4 Optimistic Teardown

Reusing IOVA translations is key to IOMMU perfor-
mance [3, 13, 44, 49]. Reusing a translation avoids
the overhead of (1) tearing a translation down from
the IOMMU page table, (2) invalidating it from the
IOTLB, (3) immediately reconstructing it in the page
table, and (4) reinserting it back to the IOTLB; all of
which are costly operations, as each IOTLB modifica-
tion involves updating uncacheable memory and tear-
down/reconstruction involves nontrivial logic and several
memory accesses.

Even when approximate shared mapping is used, the
opportunities to reuse IOVA translations are limited. The
default Linux deferred invalidation scheme removes stale
IOTLB entries en masse at 10ms intervals, but never-
theless tears down individual unmapped IOVA transla-
tions with no delay, immediately removing them from
the IOMMU page tables.

The rationale of optimistic teardown rests on the fol-
lowing observation. If a stale translation exists for a
short while in the IOTLB anyway, we might as well
keep it alive (for the same period of time) within the
IOMMU page table, optimistically expecting that it will
get reused (remapped) during that short time interval. As
significant temporal reuse of IOVA mappings has been
reported [3, 44, 49], one can be hopeful that the newly
proposed optimization would work.

We thus developed an optimistic teardown mapping
strategy, which keeps mappings around even after an un-
mapping request for them has been received. Unmap-
ping operations of I/O buffers are deferred and executed
at a later, configurable time. If an additional mapping
request of the same physical memory page arrives to the
IOMMU mapping layer while a mapping already exists
for that page, the old mapping is reused. If an old map-
ping is not used within the pre-defined time limit, it is
unmapped completely and the corresponding IOMMU
PTEs are invalidated, limiting the overall window of vul-
nerability for an errant DMA to the pre-defined time
limit. We determined experimentally that on our system
a modest limit of ten milliseconds is enough to achieve a
92% hit rate.

We keep track of all cached mappings in the same soft-
ware LRU cache, regardless of how many times each
mapping is shared. Mappings which are not currently

in use are also kept in a deferred-unmappings first-in
first-out (FIFO) queue with a fixed size limit. The queue
size and the residency constraints are checked whenever
the queue is accessed, and also periodically. Invalida-
tions are performed when mappings are removed from
the queue.

4 Sidecore IOMMU Emulation

Samecore emulation uses the classical approach of trap-
ping device register access and switching to the hypervi-
sor for handling. We now present an alternative, novel
approach for device emulation which uses a second core
to handle device register accesses, thus avoiding expen-
sive VM-exits. We call this sidecore emulation. While
the discussion below focuses on Intel’s VT-d, our ap-
proach is generic and can be applied to most other IOM-
MUs and I/O devices.

Samecore hardware emulation suffers from an inher-
ent limitation. Each read or write access to the hard-
ware registers requires a VM-transition to the hypervi-
sor, which then emulates the hardware behavior. VM-
transitions are known to be expensive, partly due to cache
pollution [2, 11].

Offloading computation to a sidecore for speeding up
I/O for modified (paravirtualized) guests has been ex-
plored by Kumar et al. [23], Gavrilovska et al. [15], and
Liu and Abali [27]. Sidecore emulation offloads de-
vice emulation to a sidecore. In contrast with previous
paravirtualized sidecore approaches, which require guest
modifications, sidecore emulation maintains the same
hardware interface between the guest and the sidecore as
between a bare-metal OS and the real hardware device,
and thus requires no guest modifications. As we show
in Section 6, sidecore emulation on its own can achieve
69% of bare metal performance—for unmodified guests
and without any protection relaxation.

In general, hardware emulation by a sidecore follows
the same principles as samecore emulation. The guest
programs the device, the hypervisor detects that the guest
has accessed the device, decodes the semantics of the ac-
cess, and emulates the hardware behavior. But sidecore
emulation differs from samecore emulation in two funda-
mental aspects. First, there are no expensive traps from
the guest to the hypervisor when the guest accesses de-
vice registers. Instead, the device register memory areas
are shared between the guest and the hypervisor, and the
hypervisor polls the emulated control registers for up-
dates. Second, the guest code and the hypervisor code
run on different cores, leading to reduced cache pollution
and improved utilization of each core’s exclusive caches.

Efficient hardware emulation by a sidecore is depen-
dent on the interface between the I/O device and the guest
OS, since the sidecore polls memory regions instead of
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receiving notifications on discrete register access events.
In general, efficient sidecore emulation requires that the
physical hardware have the following (commonly found)
properties.

Synchronous Register Write Protocol Sidecore
emulation relies on a synchronous protocol between the
device driver and the device for a single register’s up-
dates, in the sense that the device driver expects some
indication from the hardware before writing to a register
a second time. Such a protocol ensures that the sidecore
has time to process the first write before a second write
to the same register overwrites the first write’s contents.

A Single Register Holds Only Read-Only or Write
Fields Registers which hold both read-only and write
fields are challenging for a sidecore to handle, since the
sidecore has no efficient way of ensuring the guest device
driver would not change read-only fields.

Loose Response Time Requirements Sidecore em-
ulation is likely to be slower than physical hardware.
If the device has strict specifications of the “wall time”
device operations take (e.g., “this operation completes
within 3ns”) or the device driver makes other strong tim-
ing assumptions which hold for real hardware but not for
emulated hardware, then the device driver might assume
that the hardware is malfunctioning when operations take
longer than expected. This property must hold for device
emulation in general.

Explicit Update of Memory-Resident Data Struc-
tures Since the sidecore cannot poll large memory
regions efficiently, update to its memory-resident data
structures should be explicit, by requiring the device-
driver to perform a write-access to the device control reg-
isters indicating exactly which data structure it updated.

An additional, optional property that can boost
sidecore emulation performance is a limited number of
control registers. Since the sidecore needs to sample the
control registers of the emulated hardware, a large num-
ber of registers would result in long latency between the
time the guest sets the control register and the time the
sidecore detects the change. In addition, polling a large
number of registers may result in cache thrashing.

Intel’s IOMMU has all of the properties required
for efficient sidecore emulation. This is in contrast to
AMD’s IOMMU, which cannot require the OS’s map-
ping layer to explicitly update the IOMMU registers
upon every change to the memory-resident page tables.
We note, however, that the emulated IOMMU and the
platform’s physical IOMMU are orthogonal, and Intel’s
IOMMU can be emulated when only AMD’s IOMMU is
physically present or even when no physical IOMMU is
present and bounce buffers are used instead [12].

5 Reasoning About Risk and Protection

5.1 Risk and Protection Types

The IOMMU was designed to protect those pages which
do not hold I/O buffers from errant DMA transactions.
To achieve complete protection, the IOMMU mapping
layer must ensure a page is accessible for DMA transac-
tions only if it holds an I/O buffer that may be used for
DMA transaction and only while a valid DMA transac-
tion may target this page [49].

However, IOMMU mapping layer optimizations may
relax protection by completing the synchronous unmap
function call by the I/O device driver (logical unmap-
ping) before tearing down the mapping in the physi-
cal IOMMU page-tables and completing the physical
IOTLB invalidation (physical unmapping).

Deferring physical unmapping this way, as done by the
deferred invalidation scheme, the asynchronous invalida-
tion scheme, and the optimistic teardown scheme, could
potentially compromise protection for any page which
has been logically unmapped but not yet physically un-
mapped. We differentiate, however, between inter-guest
protection, protection between different guest OS in-
stances, and intra-guest protection, protection within a
particular guest OS [44].

vIOMMU maintains full inter-guest protection—full
isolation between VMs—in all configurations. It main-
tains inter-guest protection by keeping pages pinned in
physical memory until they have been physically un-
mapped. vIOMMU pins a page in physical memory be-
fore mapping it in the IOMMU page table, and only un-
pins it once the IOMMU mapping of that page is torn
down and the IOTLB invalidation is complete. Conse-
quently, any page that is used for a DMA transaction by
a guest OS will not be re-allocated to any other guest OS
as long as it may be the target of a valid DMA transaction
by the first guest OS.

Full intra-guest protection—protecting a guest OS
from itself—is arguably less important than inter-guest
protection in a virtualized setting. Intra-guest protection
may be relaxed by both the host’s and the guest’s map-
ping layer optimizations. Maintaining complete intra-
guest protection with optimal performance in an oper-
ating system such as Linux without modifying all drivers
remains an open challenge [49], since Linux drivers as-
sume that any page that has been logically unmapped is
also physically unmapped. Consequently, such pages are
often re-used by the driver or the I/O stack for other pur-
poses as soon as they have been logically unmapped.
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5.2 Quantifying Risk

We do not assess the risk posed by arbitrary malicious
adversaries, since such adversaries might sometimes be
able exploit even very short vulnerability windows [40].
In our discussion of protection and risk we focus instead
on the “window of vulnerability”, when an errant DMA
may sneak in and read or write an exposed I/O buffer
through a stale mapping. A stale mapping is a mapping
which exists after a page has been logically unmapped
but before it has been physically unmapped. A stale
mapping occurs when the device driver asks to unmap
an IOVA translation and receives an affirmative response,
despite the actual teardown of the physical IOMMU PTE
or physical IOTLB invalidation having been deferred.

We quantify risk along two axes: the duration of vul-
nerability during which an I/O buffer is open for reading
or writing through a stale mapping, and the stale map-
ping bound, which indicates the maximum number of
stale mappings at any given point in time.

We classify the mapping strategies mentioned above
into four classes according to their duration: no risk,
nanosecond risk, microsecond risk, and millisecond risk.

No Risk The only times when there is no risk are
when an OS on bare metal uses the strict mapping strat-
egy, or when both guest and host use the strict mapping
strategy. Since buffers are unmapped and their mappings
invalidated without any delay, there can be no stale map-
pings regardless of whether we run on bare metal, use
samecore emulation, or sidecore emulation. The use of
approximate shared mappings does not affect the risk.

Nanosecond Risk The time that elapses between the
moment when the host posts an invalidation request to
the invalidation queue and the invalid translation is ac-
tually flushed from the physical IOTLB can be mea-
sured in nanoseconds. Since the flush happens in sili-
con, this duration is a physical property of the platform
IOMMU, and the risk only applies to bare metal with
asynchronous invalidation. With samecore or sidecore
emulation, guest/host communication costs overshadow
this duration. We determined experimentally that on our
system the stale mapping bound for nanosecond risk is at
most two mappings, and the duration of vulnerability is
128 cycles per entry on average.

Microsecond Risk Microsecond risk only applies to
sidecore emulation and comes into play when the guest
does not wait for the host to process an invalidation (i.e.,
when the guest uses asynchronous invalidation). Here,
inter-core communication costs determine the window of
vulnerability, since the host must realize that the guest
posted an invalidation before it can handle it. In general,
the stale mapping bound for microsecond risk is the num-
ber of outstanding invalidation requests in the emulated

invalidation queue. In our experimental setup the queue
was sized to hold at most 128 outstanding entries.

Millisecond Risk Millisecond risk applies when ei-
ther the guest or the host uses the deferred invalidation
or optimistic teardown strategies. Regardless of whether
the guest or the host defers invalidations or keeps around
cached mappings, the window of vulnerability is likely to
be in the order of milliseconds. Software configures the
stale mappings bounds by setting a quota on the number
of cached mappings and a residency time limit on each
mapping.

Overall Risk When a guest OS uses an emulated
IOMMU, the combination of the guest’s and host’s map-
ping strategies determines the overall protection level.
The hypervisor cannot override the guest mapping strat-
egy to provide greater protection, since the hypervisor is
unaware of any cached mappings or deferred invalida-
tions in the guest until the guest unmaps them and exe-
cutes the invalidations. Therefore, the hypervisor can ei-
ther keep the guest’s level of protection by using a strict
invalidation scheme, or relax it for better performance.

6 Performance Evaluation

6.1 Methodology

Experimental Setup We implement the samecore and
sidecore emulation of Intel IOMMU, as well as the map-
ping layer optimizations presented above. We use the
KVM hypervisor [21] and Ubuntu 9.10 running Linux
2.6.35 for both host and guest. Our experimental setup is
comprised of an IBM System x3550 M2, which is a dual-
socket, four-cores per socket server equipped with Intel
Xeon X5570 CPUs running at 2.93GHz. The Chipset is
Intel 5520, which supports VT-d. The system includes
16GB of memory and an Emulex OneConnect 10Gbps
NIC. We use another identical remote server (connected
directly by 10Gbps optical fiber) as a workload genera-
tor and a target for I/O transactions. In order to obtain
consistent results and to avoid reporting artifacts caused
by nondeterministic events, all power optimizations are
turned off, namely, sleep states (C-states) and DVFS (dy-
namic voltage and frequency scaling).

To have comparable setups, guest-mode configura-
tions execute with a single VCPU (virtual CPU), and
native-mode configurations likewise execute with a sin-
gle core enabled. In guest-mode setups, the VCPU and
the sidecore are pinned to two different cores on the same
die, and 2GB of memory is allocated to the guest.

Microbenchmarks We use two well-known Net-
perf [19] instances in order to assess the overheads in-
duced by vIOMMU in terms of throughput, CPU cycles,
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guest/native guest/native guest/native host native guest duration
config. invalidation reuse Linux invalidation max stale# max stale# magnitude
strict strict none unpatched strict none none 0
shared strict shared patched strict none none 0
async async shared patched async 32 128+32 µsec
deferred deferred none unpatched deferred 32 250+32 ms
opt256 async shared+tear patched deferred 256+32 256+128+32 ms
opt4096 async shared+tear patched deferred 4096+32 4096+128+32 ms
off n/a n/a unpatched deferred all all ∞

Table 2: Evaluated configurations. The host column is meaningless when running the native configuration. The maximal number
of stale mappings for async and deferred host is the size of the IOTLB, namely, 32.

and latency. The first instance—Netperf TCP stream—
attempts to maximize the amount of data sent over a sin-
gle TCP connection, simulating an I/O-intensive work-
load. The second instance–Netperf UDP RR (request-
response)—models a latency-sensitive workload by re-
peatedly sending a single byte and waiting for a matching
single byte response. Latency is calculated as the inverse
of the number of transactions per second.

Macrobenchmarks We use two macrobenchmarks
to asses the performance of vIOMMU on real ap-
plications. The first is MySQL SysBench OLTP
(version 0.4.12; executed with MySQL database ver-
sion 5.1.37), which was created for benchmarking the
MySQL database server by generating OLTP inspired
workloads. To simulate high-performance storage, the
database is placed on a remote machine’s RAM-drive,
which is accessed through NFS and mounted in syn-
chronous mode. The database contains two million
records, which collectively require about 1GB. We dis-
able data caching on the server by using the InnoDB en-
gine and the O DIRECT flush method.

The second macrobenchmark we use is Apache
Bench, evaluating the performance of the Apache web
server. Apache Bench is a workload generator that is dis-
tributed with Apache to help assess the number of con-
current requests per second that the server is capable of
handling. The benchmark is executed with 25 concurrent
requests. The logging is disabled to avoid the overhead
of writing to disk.

Configurations There are many possible combina-
tions of emulation approaches, which are comprised of
the guest and host mapping layers and their reuse and
invalidation strategies. Each such combination is as-
sociated with different protection and performance lev-
els. We cannot evaluate all combinations. We instead
choose to present several meaningful ones in the hope
that they provide reasonable coverage. The configura-
tions are listed in Table 2. Each line in the table per-
tains to two scenarios: a virtualized setting, with a guest

serviced by a host, and a “native” setting with only the
bare metal OS running. The latter scenario provides a
baseline. It is addressed because our optimizations apply
to virtualized settings and bare metal settings alike. We
next describe the configurations one by one, from safest
to riskiest.

The strict configuration involves no optimizations in
guest, host, or native modes, and hence it involves no
risk; it is the least performant configuration. While strict
is not the default mode of Linux, it requires no OS mod-
ification, but rather setting an already-existing config-
urable parameter. Hence it is marked as “unpatched”.

The shared configuration is nearly identical to strict
except that it adds the approximate shared mapping op-
timization (Section 3.1); it is still risk-free, merely at-
tempting to avoid allocating more than one IOVA for a
given physical location and preferring instead to reuse.
Notice that for the virtualized setting this optimization is
meaningless for the host, as the hypervisor cannot over-
ride the IOVA chosen by the guest. The OS is patched be-
cause Linux does not natively support shared mappings.

The async configuration is similar to the shared con-
figuration, yet in addition it utilizes the asynchronous
IOTLB invalidation optimization (Section 3.2). The lat-
ter immediately invalidates unmapped translations, but
does not wait for the IOTLB invalidation to complete, re-
ducing invalidation cost by the time it takes the IOMMU
to write its invalidation completion message back to
memory. Realistically, the risk exists only for the
sidecore setting, which is dominated by inter-core com-
munication cost that is approximated by not more than
a handful of µsecs. The theoretical maximal number of
stale entries is the size of the IOTLB (32) in the host and
native settings; in this guest’s case, this is supplemented
by the default size of the invalidation queue (128).

The deferred configuration is the default configura-
tion of Linux, whereby IOTLB invalidations are aggre-
gated and processed together every 10ms (Section 3.3).
In the guest’s case, stale entries might reside in the
IOTLB (32) or in the deferred entries queue (up to 250 by
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Figure 2: Average breakdown of (un)mapping a single page
using the strict invalidation scheme.

default). While the entries are in the guest’s queue, the
host does not know about them and hence cannot inval-
idate them. As both guest and host use a 10ms interval,
the per-entry maximal vulnerability window is 20ms for
the guest and half that much for the host and bare metal.

The opt configuration (short for “optimistic”) deploys
all optimizations save deferred invalidation, which is
substituted by optimistic teardown (Section 3.4). The
maximal number of stale entries we keep alive (for up
to 10ms) is 256, similarly to the 250 of deferred; in a
more aggressive configuration we increase that number
to 4096.

Finally, the off configuration does not employ an
IOMMU in the native setting, and does not employ a
vIOMMU in the virtualized setting. (In the latter case the
physical IOMMU is nevertheless utilized by the host, be-
cause the device is still assigned to the guest.) In this con-
figuration, neither the guest nor the native bare metal en-
joy any form of protection, which is why we marked “all”
the mappings as unsafe for their entire lifetime (“∞”).

6.2 Overhead of (Un)mapping

The IOMMU layer provides exactly two primitives: map
and unmap. Before we delve into the benchmark results,
we first profile the overhead induced by the vIOMMU
with respect to these two operations. Figure 2 presents
the cycles breakdown of each operation to IOTLB “inval-
idation”, which is the direct interactions of the OS with
the IOMMU, and to “logic”, which encapsulates the rest
of the code that builds and destroys the mappings within
the I/O page tables.

Notice that guest invalidation overhead is induced
even when performing the map operation; this happens
because the hypervisor turns on the “caching mode bit”,
which, by the IOMMU specification, means that the OS

is mandated to first invalidate every new mapping it cre-
ates (which allows the hypervisor to track this activity).
Most evident in the figure is the fact that the sidecore
dramatically cuts down the price of invalidation when
compared to samecore, which is a direct result of elim-
inating the associated VM exits and associated world
switches. The other interesting observation is that the
rest of the (un)map logic can be accomplished faster by
the vIOMMU. This better-than-native performance is a
product of the vIOMMU registers being cacheable, as
opposed to those of the physical IOMMU.

6.3 Benchmark Results

Figure 3(a) depicts the throughput of Netperf/TCP for
each configuration, from safest to riskiest, along the X
axis. The values displayed are normalized by the max-
imal throughput achieved by bare metal and off, which
in this case is 100% of the attainable bandwidth of the
10Gbps NIC. Figure 3(b) presents the very same data,
but the normalization is done against native on a per-
configuration basis; accordingly, the native curve coin-
cides with the “1” grid line. Figure 3(c) presents the CPU
consumed by Netperf/TCP while doing the correspond-
ing work; observe that the sidecore is associated with two
curves in this figure, the lower one corresponds to the
useful work done by the sidecore (aside from polling)
and the upper one pertains to the main core.

The safe (shared) or nearly safe (async) configura-
tions provide no benefit for the samecore setting, but
they can slightly improve the performance of sidecore
and native by 2–5 percentage points each. Deferred de-
livers a much more pronounced improvement, especially
in the native case, which manages to attain 91% of the
line-rate. By consulting Figure 3(c), we can see that na-
tive/deferred is not attaining 100%, because the CPU is
a bottleneck. Utilizing opt solves this problem, not only
for the native setting, but also for the sidecore; opt allows
both to fully exploit the NIC. The sidecore/CPU curve
(bottom of Figure 3(c)) implies that the work required
form the IOMMU software layer is little when optimal
teardown is employed, allowing the sidecore to catch up
with native performance and the samecore to reduce to
gap to 0.82x the optimum.

Similarly to the above, Figure 4 depicts the latency
as measured with Netperf/UDP-RR and the associated
CPU consumption. The results largely agree with what
we have seen for Netperf/TCP. Deferring the IOTLB in-
validation allows the native setting to achieve optimal
latency, but only slightly improves the virtualized set-
tings. However, when optimistic teardown is employed,
the latency of both sidecore and samecore drops signif-
icantly (by about 60 percentage point in the latter case),
and they manage attain the optimum. Importantly, the
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Figure 3: Measuring throughput with Netperf TCP; the baseline for normalization is the optimal throughput attainable by our
10Gbps NIC.
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Figure 4: Measuring latency with the Netperf UDP request-response benchmark; the baseline for normalization (latency of bare
metal with no IOMMU) is 41 µsecs.

optimum for the samecore and sidecore settings is not
the “1” that is shown in Figure 4(a); rather, it is the value
that is associated with the off configuration of the virtual-
ized settings (guest with no IOMMU protection), which
is roughly 1.2 in this case.

Examining Figure 4(c), we unsurprisingly see that the
CPU is not a bottleneck for this benchmark. We further
see that optimistic teardown is the most significant opti-
mization for this metric, allowing the virtualized settings
to nearly reach the bare metal optimum.

Figures 5–6 present the results of the macrobench-
marks, showing trends that are rather similar. Optimistic
teardown is most meaningful to the samecore setting,
boosting its throughput by about 1.5x. For sidecore,
however, the optimization has a lesser effect. Specifi-
cally, opt4096 improves upon deferred by 1.07x in the
case of MySQL, and by 1.04x in the case of Apache.
Before the optimistic teardown is applied, the sidecore
setting delivers 1.52x and 1.63x better throughput than

samecore for MySQL and Apache, respectively. But
once it is applied, then these figures respectively drop to
1.12x and 1.10x. In other words, for the real applications
that we have chosen, sidecore is better than samecore
by 50%–60% for safe configurations (as well as for de-
ferred), but when optimistic teardown is applied, this gap
is reduced to around 10%. This should come as no sur-
prise as we have already established above that optimistic
teardown dramatically reduces the IOMMU overhead.

It is important to note, once again, that the optimum
for sidecore and samecore is the off configuration in the
virtualized setting, namely 0.86 and 0.68 for MySQL and
Apache in Figures 5(a) and 6(a), respectively. Thus, it is
not that the optimistic teardown all of a sudden became
less effective for the macrobenchmarks; rather, it is that
in comparison to the microbenchmarks the applications
attain much higher throughput to begin with, and so the
optimization has less room to shine.

The bottom line is that combining sidecore and op-
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Figure 5: Measuring MySQL throughput; the baseline for normalization is 243 transactions per second.
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Figure 6: Measuring Apache throughput; the baseline for normalization is 6828 requests per second.

Throughput(Mbps) VCPUs load Sidecore load
samecore 1345 (+49%) 76%
sidecore 4312 (+54%) 83% 49% (+50%)

Table 3: Measuring the Netperf TCP throughput of 2-VCPUs
with strict configuration compared to a single VCPU.

timistic teardown brings both MySQL and Apache
throughputs to be only 3% less than their respective op-
tima.

6.4 Sidecore Scalability and Power-
Efficiency

Performance gain from the sidecore approach requires
the emulating sidecore to be co-scheduled with the VC-
PUs to achieve low-latency IOMMU emulation. There-
fore, it is highly important that the sidecore performs its
tasks efficiently with high utilization.

One method for better utilizing the sidecore is to set
one emulating sidecore to serve multiple VCPUs or mul-

tiple guest CPUs. Table 3 presents the performance of
a 2 VCPUs setup, using the strict configuration, relative
to a single VCPU setup. As shown, sidecore emulation
scales up similarly to samecore emulation, and the per-
formance of both improves by approximately 50% in 2
VCPUs setup.

This method, however, may encounter additional la-
tency in a system that consists multiple sockets (dies),
as the affinity of the sidecore thread has special impor-
tance in such systems. If both the virtual guest and the
sidecore are located on the same die, fast cache-to-cache
micro-architectural mechanisms can be used to propa-
gate modifications of the IOMMU data structures, and
the interconnect imposes no additional latency. In con-
trast, when the sidecore is located on a different die, the
latency of accessing the emulated IOMMU data struc-
tures is increased by interconnect imposed latency. The
Intel QuickPath Interconnect (QPI) protocol used on our
system requires write-backs of modified cache lines to
main memory, which results in latency that can exceed
100ns—over four times the latency of accessing a modi-
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fied cache line on the same die [30].
Another method for better utilizing the sidecore is to

use its spare cycles productively. Even though the nature
of the sidecore is that it is constantly working, a sidecore
can have spare cycles—those cycles in which it polled
memory and realized it has no pending emulation tasks.
One way of improving the system’s overall efficiency is
to use such cycles for polling paravirtual devices in ad-
dition to emulated devices. Another way is to allow the
sidecore to enter a low-power sleep state when it is oth-
erwise idle. We can make sidecore IOMMU emulation
more power-efficient by using the CPU’s monitor/mwait
capability, which enables the core to enter a low-power
state until a monitored cache range is modified [4].

However, current x86 architecture only enables mon-
itoring of a single cache line, and the Linux scheduler
already uses the monitoring hardware for its internal pur-
poses. Moreover, the sidecore must monitor and respond
to writes to multiple emulated registers which do not re-
side in the same cache line.

We overcame these challenges by using the mapping
hardware to monitor the invalidation queue tail (IQT)
register of the IOMMU invalidation queue while we peri-
odically monitored the remaining emulated IOMMU reg-
isters. (This is possible because the IOMMU mapping
layer performs most of its writes to a certain IQT regis-
ter.) We also relocated the memory range monitored by
the scheduler (the need resched variable) to a mem-
ory area which is reserved according to the IOMMU
specifications and resides in the same cache line as the
IQT register.

Nonetheless, entering a low-power sleep state is suit-
able only in an extended quiescence period, in which
no accesses to the IOMMU take place. This is because
entering and exiting low power state takes considerable
time [39]. Thus, sidecore emulation is ideally suited for
an asymmetric system [22]. Such systems, which include
both high power high performance cores and low power
low performance cores, can schedule the hardware emu-
lation code to a core which will provide the desired per-
formance/power consumption tradeoff.

The impact of these two scaling related methods, us-
ing sidecore to serve a guest whose VCPU is located on
another package, and entering low power state instead
of polling, appear in Figure 7. According to our experi-
ments, when the sidecore was set on another package, the
mapping and unmapping cost increased by 23%, result-
ing in 25% less TCP throughput than when the sidecore
was located on the same package. Entering low-power
state increased the cycle cost of mapping and unmapping
by 13%, and optimally would decrease performance very
little using good heuristics for detecting idle periods. Re-
gardless, in both cases, the cost of sidecore emulation is
still considerably lower than that of samecore emulation.
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Figure 7: The effect of power-saving and CPU affinity on the
mapping/unmapping cost of a single page.

7 Related Work

We survey related work along the following dimensions:
I/O device emulation for virtual machines, IOMMU
mapping strategies for paravirtualized and unmodified
guests, and offloading computation to a sidecore.

All common hypervisors in use today on x86 sys-
tems emulate I/O devices. Sugerman, Venkitachalam,
and Lim discuss device emulation in the context of
VMware’s hypervisor [37], Barham et al. discuss it in
the context of the Xen hypervisor [6], Kivity et al. dis-
cuss it in the context of the KVM hypervisor [21], and
Bellard discusses it in the context of QEMU [10]. In all
cases, device emulation suffered from prohibitive per-
formance [11], which led to the development of par-
avirtualized I/O [6, 34] and direct device assignment
I/O [25, 26]. To our knowledge, we are the first to
demonstrate the feasibility of high-speed I/O device em-
ulation with performance approaching that of bare metal.

Maximizing OS protection from errant DMAs by min-
imizing the DMA vulnerability duration is important, be-
cause devices might be buggy or exploited [9, 14, 25, 46].
Several IOMMU mapping strategies have been sug-
gested for trading off protection and performance [44,
49]. For unmodified guests, the only usable mapping
strategy prior to this work was the direct mapping strat-
egy [44], which provides no protection to the guest OS.
Once we expose an emulated IOMMU to the guest OS,
the guest OS may choose to use any mapping strategy it
wishes to protect itself from buggy or malicious devices.

Additional mapping strategies were possible for par-
avirtualized guests. The single-use mapping and the
shared mapping strategies provide full protection at siz-
able cost to performance [44]. The persistent mappings
strategy provides better performance at the expense of
reduced protection. In the persistent mapping strategy
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mappings persist forever. The on-demand mapping strat-
egy [49] refines persistent mapping by tearing down
mappings once a set quota on the number of mappings
was reached. On-demand mapping, however, does not
limit the duration of vulnerability. Optimistic teardown
provides performance that is equivalent to that of persis-
tent and on-demand mapping, but does so while limiting
the duration of vulnerability to mere milliseconds.

Offloading computation to a dedicated core is a well-
known approach for speeding up computation [7, 8, 36].
Offloading computation to a sidecore in order to speed
up I/O for paravirtualized guests was explored by Kumar
et al. [23], Gavrilovska et al. [15], and in the virtualiza-
tion polling engine (VPE) [27]. In order to achieve near
native performance for 10GbE, VPE required modifica-
tions of the guest OS and a set of paravirtualized drivers
for each emulated device. In contrast, our sidecore emu-
lation approach requires no changes to the guest OS.

Building in part upon vIOMMU, the SplitX
project [24] takes the sidecore approach one step
further. SplitX aims to run each unmodified guest and
the hypervisor on a disjoint set of cores, dedicating a
set of cores to each guest and offloading all hypervisor
functionality to a disjoint set of sidecores.

8 Conclusions

We presented vIOMMU, the first x86 IOMMU emula-
tion for unmodified guests. By exposing an IOMMU to
the guest we enable the guest to protect itself from buggy
device drivers, while simultaneously making it possible
for the hypervisor to overcommit memory. vIOMMU
employs two novel optimizations to perform well. The
first, “optimistic teardown”, entails simply waiting a few
milliseconds before tearing down an IOMMU mapping
and demonstrates that a minuscule relaxation of protec-
tion can lead to large performance benefits. The second,
running IOMMU emulation on a sidecore, demonstrates
that given the right software/hardware interface and de-
vice emulation, unmodified guests can perform just as
well as paravirtualized guests.

The benefits of IOMMU emulation rely on the guest
using the IOMMU. Introducing software and hardware
support for I/O page faults could relax this requirement
and enable seamless memory overcommitment even for
non-cooperative guests. Likewise, introducing software
and hardware support for multiple levels of IOMMU
page tables [11] could in theory provide perfect protec-
tion without any decrease in performance. In practice,
multiple MMU levels cause more page-faults and higher
TLB miss-rates, resulting in lower performance for many
workloads [42]. Similarly, a single level of IOMMU
emulation may perform better than multiple levels of
IOMMU page tables, depending on workload.
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Abstract 

Although Big Data Cloud (e.g., MapReduce, Hadoop 

and Dryad) makes it easy to develop and run highly 

scalable applications, efficient provisioning and fine-

tuning of these massively distributed systems remain a 

major challenge. In this paper, we describe a general 

approach to help address this challenge, based on 

distributed instrumentations and dataflow-driven 

performance analysis. Based on this approach, we have 

implemented HiTune, a scalable, lightweight and 

extensible performance analyzer for Hadoop. We report 

our experience on how HiTune helps users to efficiently 

conduct Hadoop performance analysis and tuning, 

demonstrating the benefits of dataflow-based analysis 

and the limitations of existing approaches (e.g., system 

statistics, Hadoop logs and metrics, and traditional 

profiling). 

1. Introduction 

There are dramatic differences between delivering 

software as a service in the cloud for millions to use, 

versus distributing software as bits for millions to run 

on their PCs. First and foremost, services must be 

highly scalable, storing and processing an enormous 

amount of data. For instance, in June 2010, Facebook 

reported 21PB raw storage capacity in their internal 

data warehouse, with 12TB compressed new data added 

every day and 800TB compressed data scanned daily 

[1]. This type of “Big Data” phenomenon has led to the 

emergence of several new cloud infrastructures (e.g., 

MapReduce [2], Hadoop [2], Dryad [4], Pig [5] and 

Hive [6]), characterized by the ability to scale to 

thousands of nodes, fault tolerance and relaxed 

consistency. In these systems, the users can develop 

their applications according to a dataflow graph (either 

implicitly dictated by the programming/query model or 

explicitly specified by the users). Once an application is 

cast into the system, the cloud runtime is responsible for 

dynamically mapping the logical dataflow graph to the 

underlying cluster for distributed executions.  

With these Big Data cloud infrastructures, the users are 

required to exploit the inherent data parallelism exposed 

by the dataflow graph when developing the applications; 

on the other hand, they are abstracted away from the 

messy details of data partitioning, task distribution, load 

balancing, fault tolerance and node communications. 

Unfortunately, this abstraction makes it very difficult, if 

not impossible, for the users to understand the cloud 

runtime behaviors. Consequently, although Big Data 

Cloud makes it easy to develop and run highly scalable 

applications, efficient provisioning and fine-tuning of 

these massively distributed systems remain a major 

challenge. To help address this challenge, we attempt to 

design tools that allow users to understand the runtime 

behaviors of Big Data Cloud, so that they can make 

educated decisions regarding how to improve the 

efficiency of these massively distributed systems – just 

as what traditional performance analyzers do for a 

single execution of a single program.  

Unfortunately, performance analysis for Big Data Cloud 

is particularly challenging, because these applications 

can potentially comprise several thousands of programs 

running on thousands of machines, and the low level 

performance details are hidden from the users by using 

a high level dataflow model. In this paper, we describe 

a specific solution to this problem based on distributed 

instrumentations and dataflow-driven performance 

analysis, which correlates concurrent performance 

activities across different programs and machines, 

reconstructs the dataflow-based, distributed execution 

process of the Big Data application, and relates the low 

level performance activities to the high level dataflow 

model. 

Based on this approach, we have implemented HiTune, 

a scalable, lightweight and extensible performance 

analyzer for Hadoop. We report our experience on how 

HiTune helps users to efficiently conduct Hadoop 

performance analysis and tuning, demonstrating the 

benefits of dataflow-based analysis and the limitations 

of existing approaches (e.g., system statistics, Hadoop 

logs and metrics, and traditional profiling). For instance, 

reconstructing the dataflow execution process of a 

Hadoop job allows users to understand the dynamic 

interactions between different tasks and stages (e.g., 

task scheduling and data shuffle; see sections 7.1 and 

7.2). In addition, relating performance activities to the 

dataflow model allows users to conduct fine-grained, 
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dataflow-based hotspot breakdown (e.g., for identifying 

application hotspots and hardware problems; see 

sections 7.2 and 7.3).  

The rest of the paper is organized as follows. In section 

2, we introduce the motivations and objectives of our 

work. We give an overview of our approach in section 3, 

and present the dataflow-based performance analysis in 

section 4. In section 5, we describe the implementation 

of HiTune, a performance analyzer for Hadoop. We 

experimentally evaluate HiTune in section 6, and report 

our experience in section 7. We discuss the related work 

in section 8, and finally conclude the paper in section 9. 

2. Problem Statement 

In this section, we describe the motivations, challenges, 

goals and non-goals of our work.  

2.1 Big Data Cloud 

In Big Data Cloud, the input applications are modeled 

as directed acyclic dataflow graphs to the users, where 

graph vertices represent processing stages and graph 

edges represent communication channels. All the data 

parallelisms of the computation and the data 

dependencies between processing stages are explicitly 

encoded in the dataflow graph. The users can develop 

their applications by simply supplying programs that 

run on the vertices to these systems; on the other hand, 

they are abstracted away from the low level details of 

the distributed executions of their applications. The 

cloud runtime is responsible for dynamically mapping 

the logical dataflow graph to the underlying cluster, 

including generating the optimized dataflow graph of 

execution plans, assigning the vertices and edges to 

physical resources, scheduling and executing each 

vertex (usually using multiple instances and possibly 

multiple times due to failures). 

For instance, the MapReduce model dictates a two-

stage group-by-aggregation dataflow graph to the users, 

as shown in Figure 1. A MapReduce application has 

one input that can be trivially partitioned. In the first 

stage a Map function, which specifies how the grouping 

is performed, is applied to each partition of input data. 

In the second stage a Reduce function, which performs 

the aggregation, is applied to each group produced by 

the first stage. The MapReduce framework is then 

responsible for mapping this logical dataflow graph to 

the physical resources. For instance, the Hadoop 

framework automatically executes the input MapReduce 

application using an internal dataflow graph of 

execution plan, as shown in Figure 2. The input data is 

divided into splits, and a distinct Map task is launched 

for each split. Inside each Map task, the map stage 

applies the Map function to the input data, and the spill 

stage stores the map output on local disks. In addition, a 

distinct Reduce task is launched for each partition of the 

map outputs. Inside each Reduce task, the copier and 

merge stages run in a pipelined fashion, fetching the 

relevant partition over the network and merging the 

fetched data respectively; after that, the sort and reduce 

stages merge the reduce inputs and apply the Reduce 

function respectively. 

 





























 
Figure 1. Dataflow graph of a MapReduce application 






























































 

 
Figure 2. Dataflow graph of the Hadoop execution plan 

 

 
Figure 3. The Pig program [5] and Hive query example 

In addition, the Pig and Hive systems allow the users to 

perform ad-hoc analysis of Big Data on top of Hadoop, 

using dataflow-style scripts and SQL-like queries 

respectively. For instance, Figure 3 shows the Pig 

program (an example in the original Pig paper [5]) and 

Hive query for the same operation (i.e., finding, for 

each sufficiently large category, the average pagerank 

of high-pagerank urls in that category). In these two 

systems, the logical dataflow graph of the operation is 

implicitly dictated by the language or query model, and 

Pig Script 

good_urls = FILTER urls BY pagerank > 0.2; 

groups = GROUP good_urls BY category; 

big_groups = FILTER groups BY COUNT(good_urls)>1000000; 

output = FOREACH big_groups GENERATE category,  

              AVG(good_urls.pagerank); 

Hive Query 

SELECT category, AVG(pagerank)  

FROM (SELECT category, pagerank, count(1) AS recordnum  

             FROM urls WHERE pagerank > 0.2  

             GROUP BY category) big_groups  

WHERE big_groups.recordnum > 1000000 
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is automatically compiled into the physical execution 

plan (another dataflow graph) that is executed on the 

underlying Hadoop system. 

Unlike the aforementioned systems that restrict their 

applications’ dataflow graph, the Dryad system allows 

the users to specify an arbitrary directed acyclic graph 

to describe the application, as illustrated in Figure 4 (an 

example in the Dryad website [7]). The cloud runtime 

then refines the input dataflow graph and executes the 

optimized execution plan on the underlying cluster. 

 
Figure 4. Dataflow graph of a Dryad application [7] 

2.2 Motivations and Challenges 

By exposing data parallelisms through the dataflow 

model and hiding the low level details of the underlying 

cluster, Big Data Cloud allows users to work at the 

appropriate level of abstraction, which makes it easy to 

develop and run highly scalable applications. 

Unfortunately, this abstraction makes it very difficult, if 

not impossible, for users to understand the cloud 

runtime behaviors. Consequently, it remains as a big 

challenge to efficiently provision and tune these 

massively distributed systems, which entails requesting 

and allocating the optimal number of (physical or 

virtual) resources, and optimizing the system and  

applications for better resource utilizations. 

As Big Data Cloud grows in pervasiveness and scale, 

addressing this challenge becomes critically important 

(for instance, tuning Hadoop jobs is considered as a 

very difficult problem and requires a lot of efforts on 

understanding Hadoop internals in Hadoop community 

[8]; in addition, lack of tuning tools for Hadoop often 

forces users to resort to trial and error tuning [9]). This 

motivates our work to design tools that allows users to 

understand the runtime behaviors of Big Data 

applications, so that they can make educated decisions 

regarding how to improve the efficiency of these 

massively distributed systems – just as what traditional 

performance analyzers (e.g., gprof [10] and Intel VTune 

[11]) do for a single execution of a single program. 

Unfortunately, performance analysis for Big Data Cloud 

is particularly challenging due to its unique properties.  

• Massively distributed systems: Each Big Data 

application is a complex distributed application, 

which may comprise tens of thousands of 

processes and threads running on thousands of 

machines. Understanding system behaviors in this 

context would require correlating concurrent 

performance activities (e.g., CPU cycles, retired 

instructions, lock contentions, etc.) across many 

programs and machines with each other. 

• High level abstractions: Big Data Cloud allows 

users to work at an appropriately high level of 

abstraction, by hiding the messy details of 

parallelisms behind the dataflow model and 

dynamically instantiating the dataflow graph 

(including resource allocations, task scheduling, 

fault tolerance, etc.). Consequently, it is very 

difficult, if not impossible, for users to understand 

how the low level performance activities can be 

related to the high level abstraction (which they 

have used to develop and run their applications). 

In this paper, we address these technical challenges 

through distributed instrumentations and dataflow-

driven performance analysis. Our approach allows users 

to easily associate different low level performance 

activities with the high level dataflow model, and 

provide valuable insights into the runtime behaviors of 

Big Data Cloud and applications.  

2.3 Goals and Non-Goals 

Our goal is to design tools that help users to efficiently 

conduct performance analysis for Big Data Cloud. In 

particular, we want our tools to be broadly applicable to 

many different applications and systems, and to be 

applicable to even production systems (because it is 

often impossible to reproduce the cloud behaviors given 

the scale of Big Data Cloud). Several concrete design 

goals result from these requirements. 

• Low overhead: It is critical that our tools have 

negligible (e.g., less than a few percent) 

performance impacts on the running applications. 

• No source code modifications: Our tools should 

not require any modifications to the cloud runtime, 

middleware, messages, or applications. 

• Scalability: Our tools need to handle applications 

that potentially comprise tens of thousands of 

processes/threads running on thousands of servers. 

• Extensibility: We would like our tools to be 

flexible enough so that it can be easily extended to 

support different cloud systems. 

We also have several non-goals. 

• We are not developing tools that can replace the 

need for developers (e.g., by automatically 



90 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

allocating the right amount of resources). 

Performance analysis for distributed systems is 

hard, and our goal is to make it easier for users, 

not to automate it. 

• Our tools are not meant to verify the correct 

system behaviors, or diagnose the cause of faulty 

behaviors.  

3. Overview of Our Approach 

Our approach relies on distributed instrumentations on 

each node in the cloud, and then aggregating all the 

instrumentation results for dataflow-based analysis. The 

performance analysis framework consists of three major 

components, namely tracker, aggregation engine and 

analysis engine, as illustrated in Figure 5.  

 
Figure 5. Performance analysis framework 

Timestamp Type Target Value 

Figure 6. Format of the sampling record 

The tracker is a lightweight agent running on every 

node. Each tracker has several samplers, which inspect 

the runtime information of the programs and system 

running on the local node (either periodically or based 

on specific events), and sends the sampling records to 

the aggregation engine. Each sampling record is of the 

format shown in figure 6. 

• Timestamp is the sampling time for each record. 

Since the nodes in the cloud are usually in the 

same administrative domain and highly connected, 

it is easy to have all the nodes time-synchronized 

(e.g., in Hadoop all the slaves exchange heartbeat 

messages with the master periodically and the 

time synchronization information can be easily 

piggybacked); consequently the sampler can 

directly record its sampling time. Alternatively, 

the sampler can send the sampling record to the 

aggregation engine in real-time, which can then 

record the receiving time. 

• Type specifies the type of the sampling record 

(e.g., CPU cycles, disk bandwidth, log files, etc.).  

• Target specifies the source of the sampling record. 

It contains the name of the local node, as well as 

other sampler-specific information (e.g., CPUID, 

network interface name or log file name). 

• Value contains the detailed sampling information 

of this record (e.g., CPU load, network bandwidth 

utilization, or a line/record in the log file). 

The aggregation engine is responsible for collecting the 

sampling information from all the trackers in a 

distributed fashion, and storing the sampling 

information in a separate monitoring cluster for analysis. 

Any distributed log collection tools (e.g., Chukwa [12], 

Scribe [13] and Flume [14]) can be used as the 

aggregation engine. In addition, the analysis engine runs 

on the monitoring cluster, and is responsible for 

conducting the performance analysis and generating the 

analysis report, using the collected sampling 

information and a specification file describing the 

logical dataflow model of the specific Big Data cloud. 

4. Dataflow-Based Performance Analysis 

In order to help users to understand the runtime 

behaviors of Big Data Cloud, our framework presents 

the performance analysis results in the same dataflow 

model that is used in developing and running the 

applications. The key technical challenge is to re-

construct the high level, dataflow-based, distributed and 

dynamic execution process for each Big Data 

application, based on the low level sampling records 

collected across different programs and machines. We 

address this challenge by: 

1) Running a task execution sampler on every node 

to collect the execution information of each task 

in the application. 

2) Describing the high level dataflow model of Big 

Data Cloud in a specification file provided to the 

analysis engine. 

3) Constructing the dataflow execution process for 

the application based the dataflow specification 

and the program execution information. 

4.1 Task Execution Sampler 

To collect the program execution information, the task 

execution sampler instruments the cloud runtime and 

tasks running on the local node, and stores associated 

information into its sampling records at fixed time 
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intervals as follows. 

• The Target field of the sampling record needs to 

store the identifier (e.g., application name, task 

name, process ID and/or thread ID) of the 

program that is instrumented to collect this piece 

of sampling information. 

• The Value field of the sampling record must 

contain the execution position of the program (e.g., 

thread name, stack trace, basic-block ID and/or 

instruction address) at which the program is 

running when it is instrumented to collect this 

piece of sampling information. 

In practice, the task execution sampler can be 

implemented using any traditional instrumentation tool 

(which runs on a single machine), such as Intel VTune. 

4.2 Dataflow Specification 

In order for the analysis engine to efficiently conduct 

the dataflow-based analysis, the dataflow specification 

needs to describe not only the dataflow graph (e.g., 

vertices and edges), but also the high level resource 

mappings of the dataflow model (e.g., physical 

implementations of vertices/edges, parallelisms between 

different phases/stages, and communication patterns 

between different stages). Consequently, the dataflow 

specification does require a priori knowledge of the 

cloud system. On the other hand, the users are not 

required to write the specification; instead, the dataflow 

specification is provided by the cloud system or the 

performance analyzer, and is either written by the 

developers of the cloud system (and/or the performance 

analyzer), or dynamically generated by the cloud 

runtime (e.g., by the Hive query compiler). The format 

of the dataflow specification is illustrated in Figure 7 

and described in detail below. 

• The Input (Output) section contains a list of 

<inputId: storage location> (<outputId: storage 

location>), where the storage location specifics 

which storage system (e.g., HDFS or MySQL) is 

used to store the input (output) data. 

• The Vertices section contains a list of <vertexId: 

program location>, where the program location 

specifies the portion of program (e.g., the 

corresponding thread or function) running on this 

graph vertex (i.e., processing stage). It is required 

that each execution position collected by the task 

execution sampler can be mapped to a unique 

program location in the specification, so that the 

analysis engine can determine which vertex each 

task execution sampling record belongs to. 

 
Figure 7. Dataflow specification of Big Data Cloud 

• The Edges section contains a list of <edgeId: 

inputId/vertexIdvertexId/outputId>, which defines 

all the graph edges (i.e., communication channels). 

• The Vertex Mapping section describes the high level 

resource mappings and parallelisms of the graph 

vertices. This section contains a list of Task Pool 

subsections; for each Task Pool subsection, the 

cloud runtime will launch several tasks (or processes) 

that can potentially run on the different nodes in 

parallel. The Task Pool subsection contains an 

ordered list of Phase subsections, and each task 

belonging to this task pool will sequentially execute 

these phases in the specified order. 

• The Phase subsection contains a list of Thread Pool 

or Thread Group Pool subsections; for each of these 

subsections, the associated task will spawn several 

//dataflow graph 

Input { //list of <inputId: storage location> 

In1: storage location 

… 

} 

Output { //list of <outputId: storage location> 

Out1: storage location 

… 

} 

Vertices { //list of <vertexId: program location> 

V1: program location 

… 

} 

Edges { //list of <edgeId: inputId/vertexIdvertexId/outputId> 

E1: In1V1 

E2: V1V2 

… 

} 

//resource mapping 

Vertex Mapping { //list of Task Pool 

Task Pool [(name)] <(cardinality)> { //ordered list of Phase  

Phase [(name)] { //list of Thread Pool or Thread Group Pool 

Thread Pool [(name)] <(cardinality)> { 

//ordered list of vertexId 

V1, V2, … 

} //end of Thread Pool 

Thread Group Pool [(name)] <(cardinality, group size)> { 

//a single vertexId 

V3 

} //end of Thread Group Pool 

.. 

} //end of Phase 

Phase [(name)] { … } 

… 

} //end of Task Pool 

Task Pool [(name)] <(cardinality)> { … } 

… 

} 

Edge Mapping { //list of <edgeId: edge type, endpoint location> 

E1: edge type, endpoint location  

… 

} 
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threads or thread groups in parallel. The Thread 

Pool subsection contains an ordered list of vertexId, 

and each thread belonging to this thread pool will 

sequentially execute these vertices in the specified 

order. On the other hand, a number of threads (as 

determined by group size) in the thread group will 

run in concert with each other, executing the vertex 

specified in the Thread Group Pool subsection. 

• The cardinality of the Task Pool, Thread Pool or 

Thread Group Pool subsections determines the 

numbers of instances (i.e., processes, threads or 

thread groups) to be launched. It can have several 

values as follows. 

(1) N – exactly N instances will be launched. 

(2) 1~N – up to N instances will be launched. 

(3) 1~ – the number of instances to be launched is 

dynamically determined by the cloud runtime. 

• The Edge Mapping section contains a list of 

<edgeId: edge type, endpoint location>. The edge 

type specifies the physical implementation of the 

edge, such as network connection, local file or 

memory buffer. The endpoint location specifies the 

communication patterns between the vertices, which 

can be intra-thread/intra-task/intra-node (i.e., data 

transfer exists only between vertex instances running 

in the same thread, the same task and the same node 

respectively), or unconstrained. 

It is possible to extend the specification to support even 

more complex dataflow model and resource mappings 

(e.g., Process Group Pool); however, the current model 

is sufficient for all the Big Data cloud infrastructures 

that we have considered. For instance, the dataflow 

specification for our Hadoop cluster is shown in Figure 

8. 

4.3 Dataflow-Based Analysis 

As described in the previous sections, the program 

execution information collected by task execution 

samplers is generic in nature, and the dataflow model of 

the specific Big Data cloud is defined in a specification 

file. Based on these data, the analysis engine can re-

construct the dataflow execution process for the Big 

Data applications, and associate different performance 

activities with the high level dataflow model. In this 

way, our framework can be easily applied to different 

cloud systems by simply changing the specification file. 

We defer the detailed description of the dataflow 

construction algorithm to section 5.3. 

 
Figure 8. Hadoop dataflow specification 

5. HiTune: A Dataflow-Based Hadoop 
Performance Analyzer 

Based on our general performance analysis framework, 

we have implemented HiTune, a scalable, lightweight 

and extensible performance analyzer for Hadoop. In this 

section, we describe the implementation of HiTune, and 

in particular, how it is carefully engineered to meet our 

design goals that are described in section 2.3. 

5.1 Implementation of Tracker  

In our current implementation, all the nodes in the 

//Hadoop dataflow graph 

Input { //list of <inputId: storage location> 

Input:HDFS 

} 

Output { //list of <outputId: storage location> 

Output:HDFS 

} 

Vertices { //list of <vertexId: program location> 

map: MapTask.run 

spill: SpillThread.run 

copier: MapOutputCopier.run 

merge: InMemFSMergeThread.run or 

 LocalFSMerger.run 

sort: ReduceCopier.createKVIterator#ReduceCopier.access 

reduce:  runNewReducer or runOldReducer 

} 

Edges { //list of <edgeId: inputId/vertexIdvertexId/outputId> 

E1: Inputmap 

E2: mapspill 

E3: spillcopier 

E4: copiermerge 

E5: mergesort 

E6: sortreduce 

E7: reduceOutput 

} 

Vertex Mapping { //list of Task Pool 

Task pool (Map) (1~) { //ordered list of Phase  

Phase { //list of Thread Pool or Thread Group Pool 

Thread Pool (1) {map} 

Thread Pool (1) {spill} 

} 

} 

Task Pool (Reduce) (1~) { 

Phase (shuffle) { 

Thread Group Pool (copy) (1, 20) {copier} 

Thread Group Pool (merge) (1, 2) {merge} 

} 

Phase { Thread Pool (1) {sort, reduce} } 

} 

} 

Edge Mapping { //list of <edgeId: edge type, endpoint location> 

    E1: HDFS, unconstrained 

E2: memory buffer, intra-task 

E3: HTTP, unconstrained  

E4: memory buffer, intra-task 

E5: memory buffer or local file, intra-task 

E6: memory buffer or local file, intra-thread 

E7: HDFS, unconstrained 

} 
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Hadoop cluster are time synchronized (e.g., using a time 

service), and a tracker runs on each node in the cluster. 

Currently, the tracker consists of three samplers (i.e., 

task execution sampler, system sampler and log file 

sampler), and each sampler directly stores the sampling 

time in the Timestamp field of its sampling record. 

We have chosen to implement the task execution 

sampler using binary instrumentation techniques, so that 

it can instrument and collect the program execution 

information without any source code modifications. 

Specifically, the task execution sampler runs as a Java 

programming language agent [15]; whenever the 

Hadoop framework launches a JVM to be instrumented, 

it dynamically attaches to the JVM the sampler agent, 

which samples the Java thread stack trace and state for 

all the threads in the JVM at specified intervals (during 

the entire lifetime of the JVM). 

For each sampling record generated by the task 

execution sampler, its Target field contains the node 

name, the task name and the Java thread ID; and its 

value field contains the current execution position (i.e., 

the Java thread name and thread stack trace) as well the 

as the Java thread state. That is, the Target field is 

specified using the identifier of the runtime program 

instance (i.e., the thread ID), which allows the analysis 

engine to construct the entire sampling trace of each 

thread; in addition, the execution position is specified 

using the static program names (i.e., the Java thread 

name and method names), which allows the dataflow 

model and resource mappings to be easily described in 

the specification file. 

In addition, the system sampler simply reports the 

system statistics (e.g., CPU load, disk I/O, network 

bandwidth, etc.) periodically using the sysstat package, 

and the log sampler reports the Hadoop log information 

(including Hadoop metrics and job history files) 

whenever there is new log information. 

Since the tracker (especially the task execution sampler) 

needs to instrument the Hadoop tasks running on each 

node, it is the major source of performance overheads in 

HiTune. We have carefully designed and implemented 

the tracker (e.g., the task execution sampler caches the 

stack traces in memory and batches the write-out to the 

aggregation engine), so that it has very low (less than 

2% according to our measurement) performance 

impacts on Hadoop applications. 

5.2 Implementation of Aggregation Engine 

To ensure its scalability, the aggregation engine is 

implemented as a distributed data collection system, 

which can collect the sampling information from 

potentially thousands of nodes in the Hadoop cluster. In 

the current implementation, we have chosen to use 

Chukwa (a distributed log collection framework) as our 

aggregation engine. Every sampler in HiTune directly 

sends its sampling records to the Chukwa agent running 

on the local node, which in turn sends data to the 

Chukwa collectors over the network; the collector is 

responsible for storing the sampling data in a (separate) 

monitoring Hadoop/HDFS cluster. 

5.3 Implementation of Analysis Engine 

The sampling data for a Hadoop job can be potentially 

very large in size (e.g., about 100GB for TeraSort 

[16][17] in our cluster). We address the scalability 

challenge by first storing the sampling data in HDFS (as 

described in section 5.2), and then running the analysis 

engine as a Hadoop application on the monitoring 

Hadoop cluster in an offline fashion. 

Based on the Target field (i.e., the node name, the task 

name and the Java thread ID) of every task execution 

sampling record, the analysis engine first constructs a 

sampling trace for each thread (i.e., the sequence of all 

task execution sampling records belonging to that 

thread, ordered by the record timestamps) in the 

Hadoop job. 

The program location (used in the dataflow 

specification) can therefore be defined as a range of 

consecutive sampling records in one thread trace (or, in 

the case of thread group, multiple ranges each in a 

different thread). Each record range is identified by the 

starting and ending records, which are specified using 

their execution positions (i.e., partial stack traces). For 

instance, all the records between the first appearance 

and the last appearance of MapTask.run (or simply the 

MapTask.run method) constitute one instance of the 

map vertex. See Figure 8 for the detailed dataflow 

specification of our Hadoop cluster. 

Based on the Target and Timestamp fields of the two 

boundary records of corresponding program locations, 

the analysis engine then determines which machine each 

instance of a vertex runs on, when it starts and when it 

ends. Finally, it associates all the system and log file 

sampling records to each instance of the dataflow graph 

vertex (i.e., the processing stage), again using the 

Target and Timestamp information of the records. 

With the algorithm and dataflow specification described 

above, the analysis engine can easily reconstruct the 
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dataflow execution for the Hadoop job and associates 

different sampling records with the dataflow graph. In 

addition, the performance analysis algorithm is itself 

implemented as a Hadoop application, which processes 

the sampling records for each JVM simultaneously. 

Consequently, we can generate various analysis reports 

that provide valuable insights into the Hadoop runtime 

behaviors (presented in the same dataflow model used 

in developing and running the Hadoop job). For 

instance, a timeline based execution chart for all task 

instances, similar to the pipeline space-time diagram 

[18], can be generated so that users can get a complete 

picture about the dataflow-based execution process of 

the Hadoop job. It is also possible to generate the 

hotspot breakdown (e.g., disk I/O vs. network transfer 

vs. computations) for each vertex in the dataflow, so 

that users can identify the possible bottlenecks in the 

Hadoop cluster. We show some analysis reports and 

how they are used to help our Hadoop performance 

analysis and tuning in section 7. 

6. Evaluations 

In this section, we experimentally evaluate the runtime 

overheads and scalability of HiTune, using three 

benchmarks (namely, Sort, WordCount and Nutch 

indexing) in the HiBench Hadoop benchmark suite [17], 

as shown in Table 1. The Hadoop cluster used in our 

experiment consists of one master (running JobTracker 

and NameNode) and up to 20 slaves (running 

TaskTracker and DataNode); the detailed server 

configurations are shown in Table 2. Every server has 

two GbE NICs, each of which is connected to a 

different gigabit Ethernet switch, forming two different 

networks; one network is used for the Hadoop jobs, and 

the other is used for administration and monitoring tasks 

(e.g., the Chukwa aggregation engine in HiTune). 

Table 1. Hadoop benchmarks 
Benchmark Input Data 

Sort 60GB generated by RandomWriter example. 

WordCount 60GB generated by RandomTextWriter example 

Nutch 

indexing 

19GB data generated by crawling an in-house 

Wikipedia mirror 
 

Table 2. Server configurations 
Processor Dual-socket quad-core Intel Xeon processor 

Disk 4 SATA 7200RPM HDDs   

Memory 24 GB ECC DRAM 

Network 2 Gigabit Ethernet NICs 

OS Redhat Enterprise Linux 5.4 
 

We evaluate the runtime overheads of HiTune by 

measuring the Hadoop performance (speed and 

throughput) as well as the system resource (e.g., CPU 

and memory) utilizations of the Hadoop cluster. The 

speed is measured using the job running time, and the 

throughput is defined as the number of tasks completed 

per minute when the Hadoop cluster is at full utilization 

(by continuously submitting multiple jobs to the cluster). 

In addition, we evaluate the scalability of HiTune by 

analyzing that, when there are more nodes in the 

Hadoop cluster, whether the runtime overheads increase 

and whether it becomes more complex for HiTune to 

conduct the dataflow-based performance analysis. 

6.1 Runtime Overheads 

As mentioned in section 5.1, the tracker (especially the 

task execution sampler) is the major source of runtime 

overheads in HiTune. This is because the task execution 

sampler needs to instrument the Hadoop tasks running 

on each node, while the aggregation and analysis of 

sampling data are performed on a separate monitoring 

cluster in an offline fashion. 

We first compare the instrumented Hadoop 

performance (measured when the tracker is running) 

and the baseline performance (measured when the 

tracker is completely turned off). In our experiment, 

when the tracker is running, the task execution sampler 

dumps the Java thread stack trace every 20 milliseconds, 

the system sampler reports the system statistics every 5 

seconds, and the Hadoop cluster is configured to output 

its metrics to the log file every 10 seconds. Figures 9 

and 10 show the ratio of the instrumented performance 

over the baseline performance for job running time 

(lower is better) and throughput (higher is better) 

respectively. It is clear that the overhead of running the 

tracker is very low in terms of performance – the 

instrumented job running time is longer than the 

baseline by less than 2%, and the instrumented 

throughput is lower than the baseline by less than 2%. 

In addition, we also compare the instrumented system 

resource utilizations (measured when the tracker is 

running) and the baseline utilizations (measured when 

only the system sampler is running, which is needed to 

report the system resource utilizations periodically). 

Since the sampling records are aggregated using a 

separate network, we only present the CPU and memory 

utilization results of the Hadoop cluster in this paper. 

Figures 11 and 12 show the ratio of the instrumented 

CPU and memory utilizations over the baseline 

utilizations respectively. It is clear that the overhead of 

running the tracker is also very low in terms of resource 

utilizations – either the instrumented CPU or memory 

utilization is higher than the baseline by less than 2%. 
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Figure 9. Ratio of instrumented job running time over 

baseline job running time 
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Figure 10. Ratio of instrumented cluster throughput 

over baseline cluster throughput 
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Figure 11.  Ratio of instrumented cluster CPU 

utilization over baseline cluster CPU utilization 
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Figure 12. Ratio of instrumented cluster memory 

utilization over baseline cluster memory utilization 

In summary, HiTune is a very lightweight performance 

analyzer for Hadoop, with very low (less than 2%) 

runtime overheads in terms of speed, throughput and 

system resource utilizations. In addition, HiTune scales 

very well in terms of the runtime overheads, because it 

instruments each node in the cluster independently and 

consequently the runtime overheads remain the same 

even when there are more nodes in the cluster (as 

confirmed by the experimental results).   

6.2 Complexity of Performance Analysis 

Since the analysis engine needs to re-construct the 

dataflow execution of a Hadoop job and associate the 

sampling records to each vertex instance in the dataflow, 

the complexity of analysis can be evaluated by 

comparing the sizes of sampling data and the numbers 

of vertex instances between different sized clusters. 

Figure 13 shows the sampling data sizes for the 5-, 10- 

and 20-slave clusters. It is clear that the sampling data 

sizes remain about the same (or increase very slowly) 

for different sized clusters (e.g., only less than 18% 

increase in the sample data size even when the cluster 

size is increased by 4x). Intuitively, since HiTune 

samples each instance of the processing stages at fixed 

time intervals, the sampling data size is proportional to 

the sum of the running time of all vertex instances. As 

long as the underlying Hadoop framework scales well 

with the cluster sizes, the sum of the vertex instance 

running time will remain about the same (or increase 

very slowly), and so does the sampling data size. In 

practice, even with very large (1000s of nodes) clusters, 

a MapReduce job usually runs on about 100s of worker 

machines [19], and the Hadoop framework scales 

reasonably well with that number (100s) of machines. 
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Figure 13.  Comparison of sampling data sizes 

In addition, assume M and R are the total numbers of 

the map and reduce tasks of a Hadoop job respectively. 

Since in the Hadoop dataflow model (as shown in 

Figure 8) each map task contains two stages and each 

reduce task contains four stages, the total number of 

vertex instances can be computed as 2*M+4*R. In 

practice, the number of map tasks is about 26x of that of 

reduce tasks in average for each MapReduce job [20], 

and therefore the vertex instance count is about 2.15*M. 

Since the number of map tasks (M) of a Hadoop job is 

typically determined by its input data size (e.g., by the 

number of HDFS file blocks), the number of vertex 

instances will also remain about the same for different 

sized clusters in practice. 
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In summary, the complexity for HiTune to conduct the 

dataflow-based performance analysis will remain about 

the same even when there are more nodes in the cluster 

(or, more precisely, the dataflow-based performance 

analysis in HiTune scales as well as Hadoop does with 

the cluster sizes), because the sampling data sizes and 

the vertex instance counts will remain about the same 

even when there are more nodes in the cluster. In 

addition, we have implemented the analysis engine as a 

Hadoop application, so that the dataflow-based 

performance analysis can be parallelized using another 

monitoring Hadoop cluster. For instance, to process the 

100GB sampling data generated when running TeraSort 

in our cluster, it takes about 16 minutes on a single-

slave monitoring cluster, and about 5 minutes on a 4-

slave monitoring cluster. 

7. Experience 

HiTune has been used intensively inside Intel for 

Hadoop performance analysis and tuning (e.g., see [17]). 

In this section, we share our experience on how we use 

HiTune to efficiently conduct performance analysis and 

tuning for Hadoop, demonstrating the benefits of 

dataflow-based analysis and the limitations of existing 

approaches (e.g., system statistics, Hadoop logs and 

metrics, and traditional profiling). 

7.1 Tuning Hadoop Framework  

One performance issue we encountered is extremely 

low system utilizations when sorting many small files 

(3200 500KB-sized files) using Hadoop 0.20.1 – system 

statistics collected by the cluster monitoring tools (e.g., 

Ganglia [21]) show that the CPU, disk I/O and network 

bandwidth utilizations are all below 5%. That is, there 

are no obvious bottlenecks or hotspots in our cluster; 

consequently, traditional tools (e.g., system monitors 

and program profilers) fail to reveal the root cause. 

 
Figure 14. Dataflow execution for sorting many small 

files with Hadoop 0.20.1 

To address this performance issue, we used HiTune to 

reconstruct the dataflow execution process of this 

Hadoop job, as illustrated in Figure 14. The x-axis 

represents the elapse of wall clock time, and each 

horizontal line in the chart represents a map or reduce 

task. Within each line, bootstrap represents the period 

before the task is launched, idle represents the period 

after the task is complete, map represents the period 

when the map task is running, and shuffle, sort and 

reduce represent the periods when (the instances of) the 

corresponding stages are running respectively.  

As is obvious in the dataflow execution, there are few 

parallelisms between the Map tasks, or between the 

Map tasks and Reduce tasks in this job. Clearly, the task 

scheduler in Hadoop 0.20.1 (Fair Scheduler [22] is 

used in our cluster) fails to launch all the tasks as soon 

as possible in this case. Once the problem is isolated, 

we quickly identified the root cause – by default, the 

Fair Scheduler in Hadoop 0.20.1 only assigns one task 

to a slave at each heartbeat (i.e., the periodical keep-

alive message between the master and slaves), and it 

schedules map tasks first whenever possible; in our job, 

each map task processes a small file and completes very 

fast (faster than the heartbeat interval), and 

consequently each slave runs the map tasks sequentially 

and the reduce tasks are scheduled after all the map 

tasks are done.  

To fix this performance issue, we upgraded the cluster 

to Fair Scheduler 2.0 [23][24], which by default 

schedules multiple tasks (including reduce tasks) in 

each heartbeat; consequently the job runs about 6x 

faster (as shown in Figure 15) and the cluster utilization 

is greatly improved. 

 
Figure 15. Dataflow execution for sorting many small 

files with Fair Scheduler 2.0 

7.2 Analyzing Application Hotspots 

In the previous section, we demonstrate that the high 

level dataflow execution process of a Hadoop job helps 

users to understand the dynamic task scheduling and 

assignment of the Hadoop framework. In this section, 
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we show that the dataflow execution process helps users 

to identify the data shuffle gaps between map and 

reduce, and that relating the low level performance 

activities to the high level dataflow model allows users 

to conduct fine-grained, dataflow-based hotspot 

breakdown (so as to understand the hotspots of the 

massively distributed applications). 

Figure 16 shows the dataflow execution, as well as the 

timeline based CPU, disk and network bandwidth 

utilizations of TeraSort [16][17] (sorting 10 billion 100-

byte records). It has high CPU utilizations during the 

map tasks, because the map output data are compressed 

(using the default codec in Hadoop) to reduce the disk 

and network I/O. (Compressing the input or output of 

TeraSort is not allowed in the benchmark specs).  

 

 

 

 
Figure 16. TeraSort (using default compression codec) 

However, the dataflow execution process of TeraSort 

shows that there is a large gap (about 15% of the total 

job running time) between the end of map tasks and the 

end of shuffle phases. According to the communication 

patterns specified in the Hadoop dataflow model (see 

Figure 2 and Figure 8), shuffle phases need to fetch the 

output from all the map tasks in the copier stages, and 

ideally should complete as soon as all the map tasks 

complete. Unfortunately, traditional tools or Hadoop 

logs fail to reveal the root cause of the large gap, 

because during that period, none of the CPU, disk I/O 

and network bandwidth are bottlenecked, the “Shuffle 

Fetchers Busy Percent” metric reported by the Hadoop 

framework is always 100%, while increasing the 

number of copier threads does not improve the 

utilization or performance.  

To address this issue, we used HiTune to conduct 

hotspot breakdown of the shuffle phases, which is 

possible because HiTune has associated all the low 

level sampling records with the high level dataflow 

execution of the Hadoop job. The dataflow-based 

hotspot breakdown (see Figure 17) shows that, in the 

shuffle stages, the copier threads are actually idle 80% 

of the time, waiting (in the ShuffleRamManager. 

reserve method) for the occupied memory buffers to be 

freed by the memory merge threads. (The idle vs. busy 

breakdown and the method hotspot are determined 

using the Java thread state and stack trace in the task 

execution sampling records respectively). On the other 

hand, most of the busy time of the memory merge 

thread is due to the compression, which is the root cause 

of the large gap between map and shuffle. To fix this 

issue and reduce the compression hotspots, we changed 

the compression codec to LZO [25], which improves the 

TeraSort performance by more than 2x and completely 

eliminates the gap (see Figure 18). 

 
Figure 17. Copier and Memory Merge threads 

breakdown (using default compression codec) 

 
Figure 18. TeraSort (using LZO compression) 

7.3 Diagnosing Hardware Problems 

By examining Figure 18 in more detail, we also found 

that the reduce stage running time is significantly 

skewed among different reduce tasks – a small number 

of stages are much slower than the others, as shown in 

Figure 19.  

 
Figure 19. Reduce tasks of TeraSort (using LZO 

compression) 

gap 



98 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

Based on the association of the low level sampling 

records and the high level dataflow model, we use 

HiTune to generate the normalized average running 

time and the idle vs. busy breakdown of the reduce 

stages (grouped by the Tasktrackers that the stages run 

on) in Figure 20. It is clear that reduce stages running 

on the 3
rd

 and 7
th

 TaskTrackers are much slower (about 

20% and 14% slower than the average respectively). In 

addition, while all the reduce stages have about the 

same busy time, the reduce stages running on these two 

TaskTrackers have more idle time, waiting in the 

DFSOutputStream.writeChunk method (i.e., writing 

data to HDFS). Since the data replication factor in 

TeraSort is set to 1 (as required by the benchmark 

specs), the HDFS write operations in the reduce stage 

only writes to the local disks. By examining the average 

write bandwidth of the disks on these two TaskTrackers, 

we finally identified the root cause of this problem – 

there is one disk on each of these two nodes that is 

much slower than other disks in the cluster (about 44% 

and 30% slower than the average respectively), which is 

later confirmed to have bad sectors through a very 

expensive fsck process. 
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Figure 20. Normalized average running time and busy 

vs. idle breakdown of reduce stages  

7.4 Extending HiTune to Other Systems 

Since the initial release of HiTune inside Intel, it has 

been extended by the users in different ways to meet 

their requirements. For instance, new samplers are 

added so that processor microarchitecture events and 

power state behaviors of Hadoop jobs can be analyzed 

using the dataflow model.  

In addition, HiTune has also been applied to Hive (an 

open source data warehouse built on top of Hadoop), by 

extending the original Hadoop dataflow model to 

include additional phases and stages, as illustrated in 

Figure 21. The map stage is divided into 5 smaller 

stages – namely, Stage Init, Hive Init, Hive Active, Hive 

Close and Stage close; in addition, the reduce stage is 

divided into 4 smaller stages – namely, Hive Iinit, Hive 

Active, Hive Close and Stage Close. This is 

accomplished by providing to the analysis engine a new 

specification file that describes the dataflow model and 

resource mappings in Hive. 
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Figure 21. Extended dataflow model for Hive 
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Figure 22. Dataflow execution of the Hive query 
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Figure 23. Map stage breakdown 
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Figure 24. Reduce stage breakdown 

Figure 22 shows the dataflow execution process for the 

aggregation query in Hive performance benchmarks 

[26][9]. In addition, Figures 23 and 24 show the 

dataflow-based breakdown of the map/reduce stages for 

the aggregation query (both the map and reduce Hive 

active stages are further broken into 3 portions: Hive 

Input, Hive Operation and Hive Output based on the 

Java methods). As shown in Figures 23 and 24, the 

query spends only about 32% of its time performing the 

Hive Operations; on the other hand, it spends about 

68% of its time on the data input/output, as well as the 

initialization and cleanup of the Hadoop/Hive 

frameworks. Therefore, to optimize this Hive query, it 

is more critical to reduce the size of intermediate results, 
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to improve the efficiency of data input/output, and to 

reduce the overheads of the Hadoop/Hive frameworks.  

8. Related Work 

There are several distributed system tracing tools (e.g., 

Magpie [27], X-Trace [28] and Dapper [29]), which 

associates and propagates the tracing metadata as the 

request passes through the system. With this type of 

path information, the tracing tools can easily construct 

an event graph capturing the causality of events across 

the system, which can be then queried for various 

analyses [30]. Unfortunately, these tools would require 

changes not only to source codes but also to message 

schemas, and are usually restricted to a small portion of 

the system in practice (e.g., Dapper only instruments the 

threading, callback and RPC libraries in Google [29]). 

In contrast, our approach uses binary instrumentations 

to sample the tasks in a distributed and independent 

fashion at each node, and reconstructs the dataflow 

execution process of the application based on a priori 

knowledge of Big Data Cloud. Consequently, it requires 

no modifications to the system, and therefore can be 

applied more extensively to obtain richer information 

(e.g., the hottest function) than these tracing tools. 

Our distributed instrumentations are similar to Google-

Wide Profiling (GWP) [31], which samples across 

machines in multiple data centers for production 

applications. In addition, the current Hadoop framework 

can profile specific map/reduce tasks using traditional 

Java profilers (e.g., HPROF [32]), which however have 

very high overheads and are usually applied to a small 

(2 or 3) number of tasks. More importantly, both GWP 

and the existing profiling support in Hadoop focus on 

providing traditional performance analysis to the 

distributed systems (e.g., by allowing the users to 

directly query the low level sampling data). In contrast, 

our key technical challenge is to reconstruct the high 

level dataflow execution of the application based on the 

low level sampling data, so that users can work on the 

same dataflow model used in developing and running 

their Big Data applications. 

In the industry, traditional cluster monitoring tools (e.g., 

Ganglia [21], Nagios [33] and Cacti [34]) have been 

widely used to collect system statistics (e.g., CPU load) 

from all the machines in the cluster; in addition, several 

large-scale log collection systems (e.g., Chukwa [12], 

Scribe [13] and Flume [14]) have been recently 

developed to aggregate log data from a large number of 

servers. All of these tools focus on providing a 

distributed framework to collect statistics and logs, and 

are orthogonal to our work (e.g., we have actually used 

Chukwa as the aggregation engine in the current 

HiTune implementation). 

Existing diagnostic tools for Hadoop and Dryad (e.g., 

Vaidya [35], Kahuna [36] and Artemis [37]) focus on 

mining the system logs to detect performance problems. 

For instance, it is possible to construct the task 

execution chart (as shown in section 7.1) using the 

Hadoop job history files. Compared to these tools, our 

approach (based on distributed instrumentation and 

dataflow-driven performance analysis) has many 

advantages. First, it can provide much more insights, 

such as dataflow-based hotspot breakdown (see sections 

7.2 and 7.3), into the cloud runtime behaviors. More 

importantly, performance problems of massively 

distributed systems are very complex, and are often due 

to issues that the developers are completely unaware of 

(and therefore are not exposed by the existing codes or 

logs). For instance, in section 7.2, the Hadoop 

framework shows that the shuffle fetchers are always 

busy, while detailed breakdown provided by HiTune 

reveals that copiers are actually idle most of the time. 

Finally, our approach is much more general, and 

consequently can be easily extended to support other 

systems such as Hive (see section 7.4). 

9. Conclusions 

In this paper, we propose a general approach of 

performance analysis for Big Data Cloud, based on 

distributed instrumentations and dataflow-driven 

performance analysis. Based on this approach, we have 

implemented HiTune (a Hadoop performance analyzer), 

which provide valuable insights into the Hadoop 

runtime behaviors with every low overhead, no source 

code changes, very good scalability and extensibility. 

We also report our experience on how to use HiTune to 

efficiently conduct performance analysis and tuning for 

Hadoop, demonstrating the benefits of dataflow-based 

analysis and the limitations of existing approaches. 
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or accurate estimates of network costs, or comparing the
general merits of HyperX vs. FatTree networks, that we
do not intend to solve in this paper.

The actual bandwidth attainable in a multipath net-
work depends on how flows are routed, and is likely to
be less than the network’s bisection bandwidth. Various
papers have described computationally-feasible methods
for routing in such networks [3, 5]. However, without a
realistic traffic model, it is hard to choose routes or pre-
dict actual bandwidths; we therefore follow the lead of
others (e.g., [13]) in using bisection bandwidth as a crude
approximation of a network’s useful capacity.

We developed our framework in response to a re-
quest from product architects and engineers, who must
make cost vs. performance tradeoffs. The engineers we
work with have accurate volume-cost estimates for parts,
which we cannot use in this paper, because these costs
are subject to non-disclosure agreements. In this paper,
so as to provide an illustration of the results of our ap-
proach, we use Web-retail prices instead of the true parts
costs. Further, such retail prices would be a meaningless
basis for comparing between (say) HyperX and FatTree
topologies for a 1K-server cluster, because the ratios be-
tween these prices do not reflect the ratios between actual
costs; therefore, we do not attempt to make such compar-
isons. (Popa et al. [13] have made the attempt.)

We also note that the choice between topology fam-
ilies (FatTree, HyperX, BCube, etc.) depends on other
considerations beyond bandwidth and parts costs – e.g.,
which topologies best support energy proportionality at
data-center scale [1], or whether a server-based topology
such as BCube is acceptable to customers. This paper
does not address those considerations.

Although there are similar design constraints for the
network that connects multiple pods into a data-center-
wide network, quantitatively this is a significantly differ-
ent problem, and appears to require qualitatively differ-
ent networking solutions (e.g., hybrid electrical/optical
switch architectures [7]). Therefore, we do not currently
attempt to extend our approach to this scale.

2 Defining the problem
Our goal is to help a data-center network designer in

a world with too many choices, both for how to design a
network, and for how to evaluate a set of designs.

2.1 Points of view
We know of several different types of network design-

ers, with somewhat different points of view: large-scale
data-center operators, and external design consultants,
with sufficient expertise to design their own networks;
moderate-scale data-center operators who prefer to stick
to well-understood choices; and system vendors.

Our goal is to serve all of these points of view, al-

though the full flexibility of our approach may be of most
interest to a system vendor, who has the most ability
to choose the low-level parts. System vendors are in-
creasingly asked, by large customers, to do rack-scale or
container-scale pre-integration of servers and networks.
Vendor designers have a lot of freedom in terms of the
parts they can use; however, they are constrained by the
need to choose designs that apply to a large number of
customers.

Our work on this problem was, in fact, inspired by a
request from pod system designers, who need to know
how to design rack-level switches that will be useful for
a wide variety of customers (and thus must evaluate net-
work design tradeoffs long before knowing the traffic
matrix for any specific customers).

2.2 Design choices
At an abstract level, a data-center network is com-

posed of hosts, switches, and links. We focus our atten-
tion on flat Layer-2 designs; the use of IP subnets within
data centers complicates some of the design choices and
is worth further work.

Recent papers have described a variety of scalable,
multi-path Ethernet-based data-center network topolo-
gies. These designs use a regular topology (we discuss
topologies in Sec. 3) and are typically intended to exploit
low-cost, “merchant silicon”-based Ethernet switches.

Generally, these topologies have several free parame-
ters, including the number of end-hosts (“terminals”) at-
tached to edge switches (in some designs, all switches
are edge switches), the number of ports per switch (the
switch “radix”), and link speeds, both of which can vary
even within a single network. Switch port count, link
speeds, and table sizes all affect overall system cost; we
defer detailed discussion of costs until Sec. 4.

For example, some existing merchant-silicon switch
products support at least 64 10GbE ports; we expect
more and faster ports in the relatively near future.

Each host may have one or more NICs, with per-NIC
link speeds of 10 Gbps or even higher. In this paper,
we generally ignore the details of end-hosts, including
issues such as host virtualization (and therefore the use
of virtual switches.)

At a level below the abstraction of switches and links,
the network designer must consider more mundane is-
sues, such as cables and connectors. These issues can
significantly affect costs (see Sec. 4).

The designer must also consider the physical layout
of the equipment. We assume that we will need multi-
ple switches per rack (since most inexpensive switches
do not have enough ports for all of the server-NIC down-
links in a rack, as well as for all of the necessary switch-
to-switch links in a modern topology). Even so, as we
will show, the designer then faces a choice between pack-
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ing the racks with as many servers as will fit, or avoiding
cables that connect a server in one rack with a switch in
another rack.

2.3 Design constraints
Network designers face not just choices, but con-

straints. These can include:
• number of connectors: connectors take up area on the

faceplates of switches; as cabling complexity increases,
this can become a limiting factor.

• copper cable length: Copper cables at multi-gigabit
speeds have practical length limits, typically 5–10 me-
ters or less.

There are other similar issues (e.g., the weight of copper
cables, the finite capacity of cable plenums, the propen-
sity of massive cable bundles to block airflow and com-
plicate cooling, and limits on the bending radius of all
kinds of cables) that we have not yet considered. In ad-
dition, switch power consumption is both a major con-
cern and beyond our current ability to model; see [1] for
relevant work.

The algorithms that we are developing for Perseus can
handle some of these constraints; we currently defer oth-
ers to future work.

2.4 Evaluation metrics
Given a set of candidate network designs, we must

compare them on some bases. There are usually numer-
ous metrics by which to compare two designs, and they
seldom agree. Rather than trying to find a single optimal
design, our approach is to narrow the design space and
then to expose the relative merits of the alternatives to a
human designer.

We focus on two primary performance metrics: band-
width and latency.

We use “bisection bandwidth” as a way to measure
the capacity of an entire network design.2 Following
Dally [6], we define “bisection bandwidth” as the “min-
imum bandwidth over all bisections of the network.” In
this paper, we do not consider any particular multipath
routing scheme, but instead assume that whatever routing
scheme is chosen can fully utilize the network hardware
and cables.

For reasons of cost, designers must often design net-
works with non-uniform oversubscription (NUO). Our
topology generators can easily create NUO networks, but
optimizing these designs and visualizing the results re-
quires us to define a scalar performance metric other than
network-wide bisection bandwidth. This is a straightfor-
ward change to our algorithms (although it can invalidate
some of our heuristics, such as H3 in Sec. 6.3), but space
does not permit us to discuss the various possible metrics
or how they change the results.

2Sometimes we use the related term “oversubscription ratio.”

We approximate latency in terms of hop count. Ignor-
ing the considerable latency in end-host stacks, switch
hops are still the primary source of delay in an uncon-
gested data-center network, and is of great importance to
applications such as scientific and financial computing.
Characterizing the actual per-switch delay is beyond the
scope of this paper.

In addition to performance, a network designer must
also consider other metrics, including reliability and
power. We discuss some prior work on power in Sec. 9.

Note that the topologies we discuss are all multi-path
and hence inherently redundant. One could quantify re-
liability in terms of the vulnerability of the network to
a certain number of randomly-chosen link and/or switch
failures, but we are not aware of prior work that describes
data-center network failure rates. Some researchers have
described their designs as fault-tolerant, but (for exam-
ple) Mysore et al. [11] discuss the reconvergence time of
PortLand, but do not quantify its underlying vulnerabil-
ity. However, Guo et al. [9] do show how the aggregate
throughput of several topologies, including FatTree and
their own BCube design, degrade under random failures.

We believe that it would be quite interesting to under-
stand how to simultaneously optimize the tradeoff be-
tween bandwidth, latency, fault tolerance, energy, and
cost – but this is beyond our current abilities.

3 Multipath topologies
In recent years, researchers have proposed a wide va-

riety of topologies for data-center networks, all with the
goal of providing high bisection bandwidth at low cost.
Most of these topologies also require choices to be made
for a variety of parameters.

Table 1: Symbols used in this paper

N total number of servers (or external connections)
R switch radix (port count)
T terminals connected to a single switch
S total number of switches
L levels of a tree
D dimensions in a HyperX network
K link bandwidth
W total number of links in a network
C number of top switches in a tree

In this paper, we consider these topology families:
• FatTree: Rather than limiting our approach to the

three-level k-ary fat tree structures described by Al
Fares et al. [4], we consider a generalized version of
the Clos topologies with parametrized levels and fat-
ness at each level, which were first defined by Öhring
et al. [12] as Extended Generalized Fat Trees (EGFTs).

We recursively define an L level EGFT as follows:
A level L = l EGFT connects Ml of L = l − 1 level
EGFTs with Cl top switches; each top switch has a Kl-
wide connection to each of the l−1 level EGFTs. (I.e.,
Kl is the Link Aggregation (LAG) factor.) A level L =
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1 EGFT has just one switch (C1 = 1), with M1 servers
directly connected to the switch with K1 = 1 (i.e., unit-
bandwidth) links. Note that the level-1 EGFT can be
generalized further to consider servers with multiple in-
terfaces. We represent an EGFT as EGFT(L, �M, �C, �K)
where �M, �C, �K are vectors of size L.

Properties: The total number of switches S, num-
ber of nodes N , and number of links W in a
EGFT(L, �M, �C, �K) can be computed as follows:

S = CL + ML(CL−1 +

ML−1(...(C3 + M3(C2 + M2))...))

N =

LY
l=1

Ml

W = CLMLKL + ML(CL−1ML−1KL−1 +

ML−1(...(C2M2K2 + M2(M1))...))

If all of the multiple links between two switches can
be aggregated into a single cable, then the cable count
W ′ will be:

W ′ = CLML + ML(CL−1ML−1 +

ML−1(...(C2M2 + M2(M1))...))

At a level l ∈ [1, L] of EGFT(L, �M, �C, �K), each of
the Cl top switches provides MlKl bandwidth to all the
terminal servers in that sub-fattree. Hence, the oversub-
scription ratio at level l, referred to as Ol is

Ol =

Ql
i=1 Mi

ClMlKl
(1)

The oversubscription ratio O of a EGFT(L, �M, �C, �K)
is O = maxL

l=1 Ol. The bisection bandwidth is N/O
and the maximum number of hops between any two
servers is 2L.

• HyperX: HyperX [3] is an extension of the hypercube
and flattened butterfly topologies. Switches are points
in a D-dimensional integer lattice, with Sk switches
in each dimension k = 1..D. The dimensions need
not be equal. A switch connects to all other switches
that share all but one of its coordinates. (E.g., in a 2-D
HyperX, a switch connects to all switches in the same
row and in the same column.) The link bandwidths
K1, ...,KD are assumed to be fixed in each dimension,
but can vary across dimensions. At each switch, T
ports are assigned to server downlinks.

We can describe a network as HyperX(D, �S, �K, T ),
with �S and �K as vectors. HyperX(D, �S, �K, T )
has

∏D
k=1 Sk switches, T.

∏D
k=1 Sk servers, and

(S/2).
∑D

k=1[(Sk − 1).Kk] links.
In this paper we focus on EGFT and HyperX topolo-

gies because they are considered attractive for high bi-
section bandwidth data-center networks. However, we
plan to support other interesting server-to-server topolo-
gies such as BCube [9] and CamCube [2], as well as tra-
ditional 2- or 3-tier topologies, to allow designers im-
proved flexibility.

4 Cost model
In order to optimize the total cost of a network, we

must have a cost model. Some costs are relatively easy
to model; these include:
• Parts costs: These cover things that a system vendor

would buy from other suppliers, such as switches, ca-
bles, and connectors.

• Manufacturing costs: Given the large physical size
of a container-based cluster and the relatively small
quantities manufactured, cables for these systems are
installed by hand. Sec. 4.2.1 discusses this cost.

Other costs are harder for us to model, especially since
they depend on factors beyond the costs to manufacture
a specific cluster:
• Design costs: A network designer must spend consid-

erable time understanding the requirements for a net-
work, then generating and evaluating specific options.
Our approach aims to reduce this cost, while improving
the designs produced.

A vendor of container-based clusters would prefer
to deal with a limited number of designs, since each
new design requires new Quality Assurance (QA) pro-
cesses, and each new design must be explained to jus-
tifiably skeptical customers.

• SKU costs: When a system vendor must deal with
a large variety of different parts (often called Stock-
Keeping Units or SKUs), this creates complexity and
generally increases costs. One of our goals, therefore,
is to generate network designs that require only a small
set of SKUs – generally this means only a few types
and lengths of pre-built cables.

• Cost to reconfigure the network: Some clusters are
born large; others have largeness thrust upon them,
later on. A good network design allows for the incre-
mental installation of capacity – for example, one rack
of servers at a time – without requiring the re-wiring of
the existing network. When such rewiring is required,
it should be minimized.

• Maintenance costs: Electronics, cables, and connec-
tors do fail. A network design that confuses repair peo-
ple will lead to higher repair costs and/or more frequent
mis-repairs.
In the current version of our framework, we model

only the parts costs. Because system vendors and their
suppliers are reluctant to reveal their actual volume-
purchase parts costs, in this paper we instead use Web-
published retail prices as proxies for real costs.

We do not claim that these are the costs that would
be paid by a system vendor, but they serve to illustrate
many of the important tradeoffs, and we can use them as
a plausible input to our topology cost evaluation.
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4.1 Switch costs
One can choose from a wide variety of switches for

use in a data-center network. Switch costs vary tremen-
dously based on feature set, port count, and performance.

For the sake of simplicity, based on a survey of vari-
ous switch list prices, we will arbitrarily model switches
at $500 per 10GbE port, consistent with the value of
$450/port used by Popa et al. [13]. (Our tool can eas-
ily use table-based inputs for specific switch configura-
tions if they are available.) We also assume that switches
are available with exactly the mix of connectors that we
would like to use, although these might not currently be
off-the-shelf configurations.

We assume that all switches are non-blocking – that
is, they do not impose a bandwidth limit beyond what is
imposed by their port speeds.

Some researchers have considered the use of
merchant-silicon Ethernet switch ASICs, along with the
associated supporting parts (CPU, PHYs, power supply
and fans, circuit board, etc.) to build low-cost special-
purpose switches for data-center networks. This might
also seem to be a way to model the cost of higher-radix
switches (for example, the Broadcom BCM56840 sup-
ports 64 10GbE ports). Farrington et al. [8] analyzes the
costs of one example of such an approach. However, it
turns out to be extremely difficult to estimate the parts
costs for such switches; prices for these ASICs are usu-
ally non-disclosure information, and it is tricky to esti-
mate the cost of the additional parts (not to mention the
cost of engineering, manufacturing, QA, and compliance
with standards and regulations). Therefore, in this paper
we do not attempt to estimate the costs of this approach,
although one could guess that it might not be a lot lower
until one is dealing with very large quantities of switches.

We note that some recent data-center network designs,
such as CamCube [2], dispense entirely with discrete
switch hardware. In such designs, all switching is done
within a multi-port server/NIC complex – “each server
connects directly to a small set of other services, with-
out using any switches or routers” [2]. We believe our
approach could easily be extended to model the costs of
switchless networks, by setting the switch cost to zero
and including appropriate costs for the required addi-
tional NIC ports. It might be harder to model the achiev-
able bandwidth and delay in these networks, since the
involvement of NICs or server CPUs at each hop could
affect performance in complex ways.

4.2 Cabling costs
High-performance cables are expensive, and can eas-

ily amount to a significant fraction of the cost of the
servers in a cluster. In Sec. 7.4, we will discuss the
problem of optimizing the choice among a number of
different cable options. In this section, we discuss cable-

cost issues, based on published prices.
There are many options for cabling a high-

performance network, and Perseus could easily be ex-
tended to cover them, but for this paper we have nar-
rowed our focus to a few likely choices: copper or single-
mode fiber, using SFP+ or QSFP+ connectors in either
case, with 10GbE connectivity in all cases.3

For simplicity of both manufacturing and presenta-
tion in this paper, we will assume that any given net-
work design uses only a single connector type. QSFP+
connectors have the benefit of working with either
electrical or optical cables, which allows flexibility in
cable choice without creating complexity in switch-
configuration choice. Fiber QSFP+ cables have the
electrical-optical conversion chips integral to the connec-
tors, which adds cost but supports this flexibility. There-
fore, we assume the use of single-channel SFP+ cables
between servers and switches (and sometimes between
switches, for short runs), and quad-channel QSFP+ ca-
bles for longer or wider paths between switches. 4

Table 2: Cable prices (dollars) for various lengths

Single channel Quad channel
Length SFP+ QSFP QSFP+ QSFP+

(M) copper copper copper optical
1 45 55 95 —
2 52 74 — —
3 66 87 150 390
5 74 116 — 400
10 101 — — 418
12 117 — — —
15 — — — 448
20 — — — 465
30 — — — 508
50 — — — 618

100 — — — 883
Sources: http://www.cablesondemand.com/ and

http://www.elpeus.com/

Table 2 shows cable prices, in dollars, for various
lengths of copper and fiber cables certified to run at 10
Gbps. Although these are quantity-50 list prices, not the
actual costs to a system vendor, for simplicity we will
treat cable costs as equal to cable prices.

One implication of these costs is that a container-sized
network might well need to use a mix of copper and opti-
cal cables to minimize total cost. This is because copper
cables are significantly cheaper than optical cables of the
same length; however, quad-channel copper cables can-
not support 10GbE over more than 5 meters (SFP+ ca-
bles can support longer lengths because they use thicker
cables, but consume more connector area as a result). 5

Above 5 meters, we must generally use optical cables.
3Popa et al. [13] advocate using CAT6 cables, which are cheaper

but which require perhaps 3 times more power, and may be harder to
use in dense wiring plans.

4Some cost-optimal configurations might “waste” channels in these
quad-channel cables.

5“Active” QSFP copper cables can span 20 meters, but cost almost
as much as fiber QSFP+ cables and so we do not consider them.
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Thus, the cost-optimal network might depend on finding
a topology that exploits short cables as much as possi-
ble, which in turn affects the optimization of the physical
wiring plan (see Sec. 7.1). On the other hand, physical
constraints might force the use of fiber cables even when
copper cables would be short enough; see Sec. 7.4.

Based on the prices in Table 2, we can model quad-
channel copper cables as costing ca. $16 per meter,
plus $20 for each connector. Similarly, we can model
quad-channel optical cables as costing ca. $5/meter, plus
$188/connector. We model single-channel copper ca-
bles at $6/meter, and $20/connector. Custom lengths in
small quantities will cost more than high-volume stan-
dard lengths, but we are offering these as only crude es-
timates of costs, and they will suffice for our purposes.

We cannot currently model the extra cost of using
more than the minimal number of cable SKUs. Instead,
our physical layout algorithm (see Sec.7.1) can either
generate networks using custom-length cables or using
only the standard cable lengths from Table 2, to illustrate
the effect on SKU count, which we quantify in Sec. 8.1.

4.2.1 Cable installation costs
Independent of the parts cost for cables, we also must

pay to install them. As far as we know, current manu-
facturing practices require manual installation of cables
between switches.

We estimated cable-installation costs based on a recent
experience in a 9-rack, 256-server cluster. A skilled in-
staller can install about 20 intra-rack cables per hour, and
about 8 inter-rack cables per hour, although the times de-
pend a lot on cable length and distance between racks.
(This experience also points out that the installation rate
drops a lot if the installer must deal with cables that are
cut too long – finding space for the excess cabling is
tricky – so an accurate 3-D model for cable runs could
be quite useful. Our algorithm in Sec. 7.1 attempts to
model cable lengths as accurately as possible.)

In our area, skilled cable installers can charge ca.
$50/hour, so for this paper, we assume a cost of $2.50
for installing an intra-rack cable, and $6.25 for an inter-
rack cable. These costs are significantly less than optical-
cable costs, but they are not negligible when compared
to copper-cable costs.6 In the long run, we expect cable
part costs to decline, but installation labor costs could
rise unless there are process improvements that make in-
stallation quicker.

5 The topology planning workflow
We can now describe a workflow by which a network

designer can explore the space of possible topologies. In
brief, the steps of this workflow are: (1) The user speci-

6Popa et al. [13] argue that labor costs dominate the costs of CAT6
cables.

fies the problem, and chooses one or more basic topolo-
gies to compare; (2) Perseus generates acceptable candi-
date topologies, generates optimized wiring plans, esti-
mates overall system cost, and generates a visualization
of the resulting space. We describe each of these steps in
more detail.

5.1 User-specified inputs
The process of network design starts with a set of

goals, constraints and other inputs, which must be pro-
vided by the user. These fall into several categories:

System parameters:
• Number of servers to support.
• Server NIC bandwidth (e.g., 1GbE or 10GbE).
While many systems include redundant NICs for fault
tolerance, we will consider only non-redundant NICs in
this paper. While our tools can handle a variety of NIC
and switch-port bandwidths, for simplicity we assume
10GbE throughout this paper.

System goals:
• Desired minimum bisection bandwidth, internal to the

cluster.
• Desired minimum outgoing bandwidth from the entire

cluster. To simplify the rest of the process, we convert
this into an equivalent number of “phantom” servers.
For example, if the designer wants a 1024-server clus-
ter with 10GbE NICs and 100 Gbps of external band-
width, we design a network for 1024 + (100/10) =
1034 server-equivalent ports. This gives the designer
freedom to attach external connections to any switch in
the cluster.

This approach to external bandwidth creates some
potential inaccuracy in our bandwidth calculations, as
we discuss in Sec. 10.

• Desired maximum hop count.
• Desired maximum number of racks.

Parts available:
• Server size, in rack units.
• Switch types: a set of possible switch parts, with port

counts and speeds (e.g., “48 1GbE ports + 4 10GbE
ports”), and their sizes in rack units.

• Cable types (copper or fiber) and available lengths and
bundling factors. We would also like to know a cable’s
cross-sectional dimensions.

For each kind of part, the user must also supply a cost
model. (See Sec. 4 for some example cost models.)

System constraints:
• The maximum number of uplink connectors per switch.

(If cables are bundled, a single connector supports mul-
tiple logical links.)

• Rack height.
• Desired physical layout of racks: maximum row

length, maximum number of rows, and width of aisles
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between rows.
• Plenum cross-section dimensions.

The user must also decide on one or more of the base
topology types that the tool supports (currently, just Fat-
Tree and HyperX). This choice might depend on consid-
erations that we cannot currently model, such as the ex-
pandability of a basic design, or the willingness of cus-
tomers to accept it.

5.2 Generating candidate topologies
The Perseus tool starts by generating a set of candidate

abstract topologies: those that meet the constraints and
requirements provided by the user. (If no such candidates
exist, the user will have to loosen the requirements and
try again.)

This step varies depending on the base topology type,
and we describe several appropriate algorithms in Sec. 6.

5.3 Converting abstract to physical wiring
plans

After choosing a set of candidate topologies, we must
then generate physically valid wiring plans before we can
assign costs, since cable costs depend on their lengths.
Sec. 7 describes this process in detail, including several
topology-specific algorithms. Once we have chosen a
physical topology for each candidate abstract topology,
we can calculate cable lengths and types.

The least-cost wiring plan might use copper cables for
shorter distances, since these could be cheaper than fiber
cables of the same lengths. Because plenum space might
be a concern, especially for copper cables, we then have
to calculate whether the cables will fit. If not, we must re-
place copper with fiber until everything fits. See Sec. 7.4
for more details.

5.4 Visualization of results
Once we have a list of parts, including specific cable

types and lengths, we can easily generate an estimate of
the total system cost.

Given the large design space, it would be nice to have a
clever multi-dimensional, navigable visualization of the
space, including costs, bandwidths, and latencies for a
large range of designs.

So far, however, we are using 2-D plots (e.g., network
cost vs. bisection bandwidth), with curves for a small
variety of parameter settings, as a way to approximate
slices of a fancy visualization. Sec. 8 includes some ex-
amples. We also have a simple tool that shows how wires
are laid out in 2-D space, but for any interesting-sized
network, the pictures are too dense to fit into this paper.

6 Generating candidate topologies
In this section, we describe our algorithms for gener-

ating candidate topologies of several basic types.

Algorithm 1 Generate HyperX candidate topologies
1: Given:
2: N : Number of servers in the pod
3: S: Number of switches
4: R: Number of ports per switch
5: T : Number of terminals per switch
6: Goal:
7: An HyperX config with the minimum cabling cost.
8: Rh = R − T /* number of HyperX ports per switch */
9: if Rh ≤ 1 then

10: return infeasible /* not enough ports */
11: /* Initialize the set of candidates with the 1-dim config */
12: C = {D = 1, S1 = S}
13: while C �= ∅ do
14: config = next config(C)
15:
16: if Rh ≥ (

P
i(Si) − D) then

17: assign Ks(config) /* see Sec. 6.2 */
18: output config details(config)
19:
20: C = C ∪ split dimensions(config)
21: End

6.1 Generating HyperX candidate topologies
When designing an abstract HyperX topology, the de-

signer must evaluate a potentially large space of candi-
dates. Recall that the parameters that characterize this
family of topologies are HyperX(D, �S, �K, T ), where D

is the number of dimensions, �S is the vector of num-
ber of switches along each dimension, �K is the vector
of link bandwidths along each dimension, and T is the
number of terminals (servers) attached to each switch.
(As noted in Sec. 5.1, we currently treat external band-
width requirements as additional phantom servers.)

The goal of the algorithm described in this section is to
generate all of the plausible candidate topologies (based
on several constraints), which can then be ranked accord-
ing to their costs. For the sake of simplicity, we assume
that all NICs and server ports have the same unit band-
width, and that all switches are identical and have the
same number of servers attached. (In Sec. 6.1.1 we dis-
cuss relaxing the last constraint.)

We state the problem formally: Given N servers (or
server-equivalents, to account for external bandwidth),
and S switches of radix (port count) R, generate a set of
the best feasible HyperX topologies.

Algorithm 1 shows our algorithm in pseudo-code. The
first step simply derives the number of ports per switch
available for intra-cluster links; we call these the “Hy-
perX ports” to distinguish them from terminal (server
and external) ports.

The algorithm then iterates over all possible dimen-
sionalities (values for D) and adds the feasible candi-
dates to the candidate set. For each iteration, we:
• Generate the candidate topologies for this dimension-

ality D. That is, we generate all possible values of �S
for D.

For D = 1, the only candidate is a linear topology.
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For each D > 1, we take each of the candidates for
D − 1 and, if possible, split one of its dimensions. For
example, a 6x6 2-dimensional lattice can be split into a
6x3x2 lattice, and on the next iteration into a 3x3x2x2
lattice.

• Test the structural feasibility of the candidate; each
switch must have enough HyperX ports to connect to
all the remaining switches along each dimension.

• For a feasible candidate, find the optimal trunking fac-
tor (LAG factor) along each dimension – that is, we
generate �K. The designer might prefer LAG factors
that are a multiple of the connector and cable width (for
example, QSFP connectors that support four-channel
cables). A naive approach would require us to examine∏D

i=1 (R − T − i) (which, in case of a 5-dimensional
HyperX with a 96-port switches, translates to about 3.8
billion) different configurations. Sec. 6.2 presents an
O(R) algorithm that derives the optimal trunking fac-
tors without exploring this huge space.

Note that when we split solutions from dimension D− 1
in order to generate new candidates for dimension D, we
must include as starting points all of the previous candi-
dates, including the infeasible ones – the progeny of an
infeasible candidate might themselves be feasible.

From the feasible candidates, we should then prune
out those that require too many connectors to fit on a
switch faceplate. We defer this step to future work, al-
though it is fairly simple.

The complexity of Algorithm 1 is determined by the
number of unique partitions of the set of prime factors
of S; this can be very large, but the algorithm runs fast
enough for practical values of S.

Once we have generated the entire set of feasible can-
didates, we can compute bisection bandwidths (using
min(SiKi)(S/4) [3]) , maximum hop counts, and con-
struction costs for each of these.

6.1.1 Optimizing HyperX by adding switches
In the description above, we generate a set of Hy-

perX topologies that exactly match the specific number
of switches S. We assume that the designer would like to
minimize the number of switches, hence the choice of S.
However, the construction in Alg. 1 finds only topologies
with exactly the requested number of switches.

Sometimes, adding a few switches might enable much
better configurations. For example, suppose the designer
specifies a 31-switch network. Since 31 is prime, this
forces a single linear design (effectively, a full mesh).
However, adding one switch allows a much wider vari-
ety of candidates (e.g., 8x4 or 4x4x2), which could make
the design feasible with fewer switch ports. Even if the
specified number of switches is not prime, it might have
inconvenient factors, that could be difficult to satisfy un-
less the number of ports per switch is quite large – e.g.,

Algorithm 2 Optimal �K assignment
1: Given:
2: D: Number of dimensions of HyperX
3: �S = (S1, S2, ..., SD): Size of each dimension of HyperX
4: R: Switch radix,
5: T : Number of terminals per switch,
6:
7: Initialize:
8: P = R − T
9: ∀i ∈ [1, D], Ki = 0

10: found=TRUE
11:
12: while (P > 0) AND (found=TRUE) do
13: minSK= minD

i=1 SiKi

14: found= FALSE
15: for i ∈ [1, D] do
16: if (SiKi = (minSK) AND (P ≥ Si − 1) then
17: Ki = Ki + 1
18: P = P − (Si − 1)
19: found=TRUE
20:
21: return �K = (K1, K2, ..., KD)

S = 94 would require switches with at least 49+T ports,
but S = 95 would work with 24 + T -port switches.

We have not yet designed an algorithm to help opti-
mize this parameter choice.

6.2 Optimal HyperX �K assignment
The bisection bandwidth of a HyperX(D, �S, �K, T )

depends both on the topology dimensions �S and the per-
dimension link bandwidth multipliers (LAG factors) �K.
Here we show how to optimize �K. This is the same as
finding an optimal distribution of each switch’s available
ports among the different dimensions, such that the bi-
section bandwidth is maximized.

Given: (i) switches with radix R, of which T ports
are used for links to servers and (ii) a HyperX network
with D dimensions, with sizes �S = (S1, S2, ..., SD).
Our goal is to distribute the remaining R − T ports of
each switch among the D dimensions such that the bi-
section bandwidth of the topology is maximized. Note
that for HyperX(D, �S, �K, T ), the bisection bandwidth
is minD

i=1 SiKi.
Problem: Maximize minD

i=1 SiKi under the follow-
ing constraints:

∀i, Ki ∈ Z (2)
DX

i=1

(Si − 1)Ki ≤ R − T (3)

Our algorithm for assigning the Kis is shown in Algo-
rithm 2. We first set Ki = 0 for all i, and initialize the
number of spare ports P to R − T . At every step, we
consider any dimension i with the minimal SiKi prod-
uct. If enough spare ports are available to increase the
bandwidth in that dimension, then we increment Ki by
1. Notice that we reduce the spare ports P by Si − 1, as
each switch connects to Si − 1 switches in that dimen-
sion. We continue this until we do not have enough spare
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ports left to increase the bisection bandwidth.
We have a proof that this algorithm returns the optimal

assignment of Kis, but it is too lengthy for this paper.

6.3 Generating Fat Tree topologies
As described in Section 3, we consider Extended Gen-

eralized Fat Trees (EGFTs) parametrized with number
of levels L, a vector for the number of modules aggre-
gated at each level �M , a vector for the number of top
switches at each level �C, and a vector for the lag fac-
tor at each level �K. The goal of the algorithm presented
here is to generate feasible EGFTs with a given number
of switches, each with a fixed radix, and connect a given
number of servers.

Construction constraints: Given switches with radix
R, a EGFT(L, �M, �C, �K) can be constructed only if the
following constraints hold:
• The top-most switches (level L top switches) should

have enough ports to connect to all ML L − 1 EGFTs
with KL links.

MLKL ≤ R (4)

• At each level 1 ≤ l < L, a top switch should have
enough ports to connect to all Ml l − 1 EGFTs with
Kl links, along with the ports to connect to the top
switches at the l + 1 level (we refer to these as “up-
links”). Note that there are Cl+1 top switches at level
l + 1 with Kl+1 downlinks, and the Cl top switches
should have enough uplink ports to account for those
downlinks.

1 ≤ l < L, MlKl +
Cl+1Kl+1

Cl
≤ R (5)

Finding suitable EGFTs: Given S switches with
radix R and N servers, there are various EGFTs possi-
ble with different oversubscription ratios, maximum hop-
counts, and numbers of cables required. We use a re-
cursive procedure (pseudocode shown in Algorithm 3)
to systematically explore the space of possible EGFTs.
This O(LS) algorithm constructs EGFTs bottom-up, and
currently it outputs all feasible EGFTs it finds. It is
easy to modify this algorithm to generate only those
EGFTs with oversubscription below a maximum thresh-
old. For instance, setting this threshold to 1 outputs only
the EGFTs with full bisection.

We start the recursion with the following inputs: an
empty EGFT=(0, , , ), the number of modules NM=N ,
the number of uplinks at this lowest level NUP=1, and
the number of remaining switches RS=S. If number of
terminals per switch T is also provided, we run recursion
with EGFT=(1, 〈T 〉, 〈1〉, 〈1〉), NM=�N

T �, NUP=R − T ,
and RS=S−NM.

In each recursive call, we add another level to the ex-
isting EGFT, until all modules are aggregated into one
single topology (base case for recursion: NM== 1).
Note that at each level l + 1, this routine systematically
explores all possible options for picking the number of
lower level modules to aggregate Ml+1, the number of

Algorithm 3 EGFTRecurse: Recursive function for con-
structing EGFTs
1: Input:
2: EGFT: Current topology (l, �M, �C, �K)
3: NM: Number of modules at this level
4: NUP: Number of uplinks available at each module
5: RS: Remaining switches
6: Global:
7: R: Switch radix
8:
9: /* Base case for recursion */

10: if NM == 1 then
11: Output EGFT as a possible topology
12:
13: /* For each possible aggregation size */
14: for 2 ≤ Ml+1 ≤MIN(NM, R) do
15: /* For each possible number of top switches */
16: for 1 ≤ Cl+1 ≤ MIN(NUP, RS/(NM/Ml+1)) do
17: /* For each possible K value */
18: for 1 ≤ Kl+1 ≤ MIN(R/Ml+1, NUP/Cl+1) do
19: EGFTRecurse(
20: EGFT(l + 1, �M ∪ Ml+1, �C ∪ Cl+1, �K ∪ Kl+1),
21: NM/Ml+1,
22: (R − (Ml+1 ∗ Kl+1)) ∗ Cl+1,
23: RS −(Cl+1∗NM/Ml+1)) ;

top switches to use Cl+1, and the bandwidth from each
top switch to each module Kl+1. We make sure that the
constraints in equations 4 and 5 are satisfied as we con-
sider possible values for Ml+1, Cl+1, and Kl+1.

This recursive exploration can generate a lot of topolo-
gies. For example, an execution with N = 1024, R =
48, T = 32 results in more than 1 billion possible topolo-
gies. However, many of these topologies are clearly infe-
rior, with respect to oversubscription ratios, to other sim-
ilar topologies. Therefore, we implemented four heuris-
tics to prune the output set:
• H1: If all modules are being aggregated (i.e.,

Ml+1 == NM in the pseudocode), then it does not
make sense to consider all possible values for Kl+1. To
minimize oversubscription, we need to consider only
the maximum possible value for Kl+1.

• H2: Note that the oversubscription ratio of a topology
is the maximum ratio across all levels. So, when build-
ing up a EGFT, we do not consider any assignment of
M,C, and K that achieves a lower ratio than that has
already been imposed by choices at the lower levels.

• H3: If all modules at a level can be aggregated into one
module, i.e., switch radix R is greater than the number
of modules NM at a level, then use the maximum ag-
gregation size instead of trying smaller sizes. Smaller
aggregation sizes increase the number of levels, con-
suming more switches and links without improving bi-
section bandwidth.

• H4: At the top-most level, we use the maximum possi-
ble and available top switches that use all uplinks at the
next lower level, instead of iterating over all possible
values for C.
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Table 3: Reduction in search space with heuristics

Parameter Heuristics used
N R T None H1 H2 H3 H4 All
1K 48 16 >1.8B 303.9M 64.3M 315.6K 56.2M 521
1K 48 32 1.0B 61.8M 17.8M 16 13.3M 1
2K 48 16 >1.8B 1.2B 205.5M 471.4M 95.8M 31.0K
2K 48 32 >1.8B 220.1M 64.4M 87.9K 21.5M 521
1K 144 16 >1.9B >1.5B 184.2M 128 >1.7B 1
1K 144 32 >1.9B >1.5B 331.8M 112 >1.7B 1
2K 144 16 >1.9B >1.5B 757.8M 128 >1.7B 1
2K 144 32 >1.8B >1.5B >994.5M 112 >1.7B 1

Values above are sizes of the search space

Table 3 shows how these heuristics, both independently
and together, reduce the search space for several exam-
ples of N,R and T – by at least five orders of magni-
tude, for N ≤ 2048. We explored up to 4 levels, and
terminated incomplete jobs (shown as “> x”) after 5
hours. Run-times when using all heuristics took less than
200msec, except for one case that took 6 sec.

7 Physical layout of data-center cables
In order to convert an abstract topology into a physical

wiring plan, we must know the physical dimensions of
the data center, including constraints on where cables can
be run between racks.

We use Manhattan routing, rather than trying to route
cables on diagonals, which could save some cable costs,
but might be infeasible given typical cable plenums.

In some cases, the designer must choose between
packing servers and switches as densely as possible
into racks (generally a good idea, since POD or data-
center floor space is often expensive), or ensuring that
all server-to-switch cables stay within the server’s rack
(which can be useful if racks are shipped pre-wired.) We
expose this policy choice, and its consequences (in terms
of the number of racks required) to the designer.

We assume the use of standard-size racks (about 24
inches wide, 36 inches deep, and 78 inches tall). We
assume that racks are arranged in rows; best practices
for cooling call for no space between each rack in a
row. Rows are separate either by “cold aisles” or “hot
aisles” (i.e., either sources of cool air or sinks of heated
air). Several considerations govern the choice of aisle
widths [14], but generally the cold aisle must be at least
4 feet wide and the hot aisle at least 3 feet wide. For
this paper, we assume that both aisles are 4 feet wide;
extending our algorithm to handle mixed widths requires
another set of decisions, and is future work.

In modern data centers, network cables do not run
under raised floors, because it becomes too painful to
trace underfloor cables when working on them. There-
fore, inter-rack cables run in ceiling-hung trays above the
racks. One tray runs directly above each row of racks,
but there are relatively few trays running between rows,
because too many cross trays are believed to excessively

restrict air flow. We believe that the minimum reasonable
separation between cross trays is about two rack widths.
(We have not yet done the airflow simulations to validate
this assumption.)

We note in passing that if the cables are cut much
longer than necessary, the bundles of excess cable can
create additional air-flow problems, and can also lead to
space problems (not enough room), weight problems (es-
pecially for overhead trays), and installation problems
(someone has to find a place to put these bundles, and
to tie them down).

One other issue to note is that rack dimensions, and
rack and tray spacings, are generally given in units of feet
and inches, while standard cable lengths are in meters.
We suspect this use of incommensurable units could lead
to some complications in avoiding excess cable loops.

Algorithm 4 Algorithm for wiring cost computation
1: Given:
2: Gl(Vl, El): Logical topology
3: PMap(v): maps v ∈ Vl to position (x, y, z)
4: RW : Rack Width
5: CHTH: Distance: top of the rack to ceiling-hung tray
6: GCT : Gap, in racks, between two cross trays
7: Cost(d): maps cable with length d to its cost
8:
9: Initialize:

10: CableCost= 0
11:
12: for e = (v1, v2) ∈ El do
13: len = 0
14: (x1, y1, z1) ← PMap(v1)
15: (x2, y2, z2) ← PMap(v2)
16:
17: /* Add length to pull the two ends of the cable to the side of the

rack */
18: len + = RW
19:
20: if x1 == x2 AND y1 == y2 then
21: /* both ends are in the same rack */
22: len + = |z1 − z2|
23: else
24: /* not in the same rack; add length to reach trays */
25: len + = z1 + z2 + 2 ∗ CHTH
26:
27: if x1 �= x2 AND y1 mod GCT > 0 AND y2 mod

GCT > 0 AND y1/GCT == y2/GCT then
28: /* Exception: Manhattan distance does not work */
29: distanceToCrossTray1 = RW ∗(y1 mod GCT +y2 mod

GCT )
30: distanceToCrossTray2 = RW ∗ (2 ∗ GCT − (y1 mod

GCT + y2 mod GCT ))
31: len + = |x1 − x2|+ MIN(distanceToCrossTray1, dis-

tanceToCrossTray2) ;
32: else
33: len + = |x1 − x2| + |y1 − y2|
34: CableCost += Cost(len)
35:
36: return CableCost
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7.1 A general algorithm to create wiring plans
In this section, we describe an algorithm (Algorithm 4,

in pseudo-code) to generate a physical wiring plans, in-
cluding specific cable lengths, from an abstract logical
topology. The algorithm also computes the total cost
of the cables in the wiring plan, including the server-to-
switch cables. The algorithm is generic; it works for all
topology types.

The logical topology is provided as a graph
Gl(Vl, El), where the set of vertices Vl contains both
servers and switches of the logical topology and edges
El represents the links. Also given is a function T (v)
that provides the size of node v ∈ Vl in terms of Rack
Units (RU). One RU is 1.75 inches.

We assume that the designer provides the number of
racks, their arrangement in rows (X rows with Y racks
per row), and their two-dimensional spacing (in particu-
lar, the widths of the cold and hot aisles).

Therefore, the wiring problem is to figure out a feasi-
ble distribution of the servers and switches in the logical
topology to the positions in the racks, such that the cable
cost is the lowest. We denote the position of a node that
is z RU from the top of the y-th rack in row x as (x, y, z).

Although Algorithm 4 is generic, it depends on a
topology-specific function PMap() that assigns servers
and switches from the logical topology to a point in
three-dimensional space. This is a difficult problem, and
we discuss it in detail in Sec. 7.2.

The algorithm also depends on a generic function
Cost(len) which, for a cable of length len, determines
the appropriate cable type and then computes a cable
cost. We discuss this issue in Sec. 7.3.

Note that given two vertices v1, v2 and their positions
(x1, y1, z1), (x2, y2, z2) the Manhattan distance metric
between these two positions is not enough to estimate
the length of the cable needed in practice because of sev-
eral reasons: (i) Switch ports and server NIC interfaces
can be located anywhere in the middle of the rack, (ii)
For proper airflow, cables are pulled to the side of the
rack before they are routed up or down in a rack, (iii)
Connections between racks have to run via ceiling-hung
cable trays, (iv) Cable trays are a few feet – we assume
24 inches – above racks, (v) There are fewer cross trays
(trays across the rows) than the number of racks in a row,
to allow sufficient air flow.

To account for (i) and (ii), we add half of the rack
width for each end of the link in cable length calcula-
tions. To account for (iii) and (iv), we consider the length
for reaching the trays above the racks.

We note that even with constraint (v), except in one
case, we can use the Manhattan distances between racks
to compute the length of cables within the trays them-
selves. The only exception is when connecting two racks
Ri and Rj in different rows, when neither rack is directly

under a cross tray, but both Ri and Rj are between a pair
of consecutive cross trays. In this case, we pick the cross
tray that minimizes the cable length.

7.2 Logical to physical mapping functions
Algorithm 4 imports a topology-specific function

PMap(v) that assigns physical space positions to
servers and switches in the logical topology (v ∈ Vl).
Finding a PMap(.) that minimizes cable cost is a hard
problem (we believe it is NP-hard, but we have not yet
worked out a reduction). The solution space is huge, be-
cause any permutation of nodes in the logical topology is
a legal assignment for any subset of rack positions with
size |Vl|.

We have designed heuristics for PMap(.) for the Hy-
perX and EGFT topology types.

For FatTree networks, we pack servers and switches
in order to fill racks as much as possible. For HyperX
networks, we chose instead to avoid any cable that runs
between a server in one rack and a switch in another;
this means that some of our HyperX results might require
more racks than strictly necessary. In the future we will
modify our algorithms to give the designer the choice
between these options.

HyperX: Note that a HyperX topology is symmetric
along its dimensions. Also, in HyperX topologies, all
switches are edge switches. We leverage these observa-
tions to treat all the switches within a dimension as iden-
tical, which reduces the search space for rack space as-
signments. We consider all permutations (orderings) of
the dimensions. Each permutation defines the sequence
in which switches are assigned to racks. Suppose rh de-
notes the rack height and eh denotes the height of an edge
switch plus the height of the associated servers. Then we
can pack �rh/eh� edge switches and associated servers
into each rack, using the chosen sequences.

We currently assume eh = 1+T RU (i.e., servers and
switches are all 1 RU high); this is probably wrong for
high-radix switches, but not significantly wrong.

EGFT: We employ a simple heuristic for packing the
nodes of an EGFT. We first pack the edge switches and
associated servers in a fashion similar to the one we de-
scribe for HyperX, except that we do not have any di-
mensions in an EGFT on which to randomize. We then
iterate from bottom to top and left to right of the log-
ical topology, distributing the switches at each level to
the first available space in each of the partially-populated
racks. If no such rack is available, then we choose an
empty rack. We fill rows before crossing between aisles;
this heuristic seems to give shorter cable lengths.

7.3 Cable cost calculation
For the function Cost(len) used in Algorithm 4, we

must compute the cost of a cable of length len. We
support either of two scenarios: standard-length cables,
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based on data such as in Table 2, or custom-length cables.
We first attempt to use a single-channel SFP copper

cable for any logical link with LAG factor 1. For wider
links, we use quad-channel QSFP copper cables for runs
up to 5 meters, or quad-channel QSFP+ fiber cables for
longer runs.

When using standard cables, we always choose a cable
from the list of standard parts whose length is at least as
long as required, and we obtain the cable cost from that
list. Sometimes this results in a lot of excess cabling to
hide, for longer cable runs.

When using custom cables, our current implementa-
tion calculates the cost for a cable of the exact length re-
quired.7 We use the cost model for connectors and cables
from Sec. 4.2. We then inflate these costs by an arbitrary
25% to account for the extra costs of purchasing custom
cables and carrying them in inventory.

7.4 Choosing between copper and optical
Because high-speed optical network cables cost more

than copper cables (see Table 2 for examples), normally
we would prefer to use copper cables – if the cable length
is below the limit on 10GbE copper cables, approxi-
mately 5 meters.

However, if plenum space is limited and we have to
route a lot of cables, copper cables might not fit. In this
case, we would need to replace some of the copper cables
with optical cables.

We have deferred the solution of this problem to fu-
ture work, especially because (based on some prelimi-
nary estimates) it does not appear to be a real problem
for moderately large networks.

8 Examples of Perseus results
In this section, we present some results showing the

ranges of cost vs. performance tradeoffs that Perseus ex-
poses to the network designer. (Remember, these results
are based on only semi-plausible parts costs, and should
never be quoted as realistic network costs.)

For reasons of space, we limit the results presented
here to configurations with N (servers) set to either 1024
or 8192. We consider a variety of switch radices: 32,
48, 64, 96, and 144, and we consider T (servers/switch)
values of 16, 24, and 32. For HyperX networks, we ex-
plored designs with “excess” bisection bandwidth, since
HyperX is not an “equal-cost multipath” topology, and
optimal routing could be difficult.

Figures 1 and 2 show cost vs. bandwidth curves for
HyperX and FatTree configurations for, respectively, 1K
and 8K servers. Cost is based on our models for switch

7We plan to modify this so that it quantizes the lengths in multiples
of perhaps 0.5 meters, thus reducing SKU count at the cost of having
to hide some slight excess cabling. This would also allow us to use
standard cables if they are available in the right length.

cost and for standard-length cables, including installa-
tion labor, and includes server-to-switch cables. For the
HyperX curves, we plot curves for just a few values of
S (number of switches) to preserve readability, and the
points on each curve reflect various choices for D and
�S. For the FatTree curves, the points on each curve re-
flect various choices for S, but we plot curves only for
selected values of T , to keep the graphs readable. In
all cases, we plot only the least-cost configuration that
achieves a target bisection bandwidth. The curves show
only the points for the least-cost physical layout for a
given abstract topology. Note that naive designs could
have much higher costs than the designs we generate.

Figures 1 and 2 lead to several observations. First,
total network cost generally increases with increasing
bandwidth, but not always; especially for larger HyperX
networks, one can often find a “better” configuration at
a much lower cost through a small parameter changes.
Second, for a given target bandwidth, there are often
several possible parameter choices with widely varying
costs. Finally, although the figures suggest that FatTree
networks might be somewhat less expensive than Hy-
perX networks for the same target bandwidth, our cost
models are currently too crude to support this as a gen-
eral conclusion.

Total costs obviously depend on our models for parts
costs; Fig. 3 shows how the HyperX(N = 8192) results
would change if switches cost just 20% as much as in
Fig. 2 (the same low-cost model as in [13]). Note that the
relative ranking of the curves usually does not change,
but some of the “sweet spots” do.

Figure 4 shows how cost varies with HyperX network
worst-case hop counts. (For FatTree networks, the worst-
case hop count is simply 2L; L=6 for all of the configura-
tions plotted in Fig. 2.) One can sometimes, by spending
more money, reduce the worst case hop count by one or
two, but generally high-bandwidth topologies also have
low hop counts.

Computation time: Computation costs are tolerable,
especially since generating these graphs parallelizes eas-
ily. Table 4 shows elapsed times for various N .

Table 4: Computation costs (wall times)
Network N Xeon CPUs Jobs Worst-case Total
HyperX 8K 3GHz 166 155s 3.4hr
HyperX 16K 3GHz 68 20min 14.6hr
FatTree 8K 2.33GHz 96 55min 28.8hr

8.1 Secondary metrics
We found that using custom cables does not increase

costs very much, based on our crude model for their parts
cost. (Space does not permit us to show these graphs.)

However, custom cables do significantly reduce the
amount of excess cable that must be tucked away
without blocking airflow. For example, for HyperX
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Figure 1: Cost vs. bisection bandwidth for 1024-server networks
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Figure 2: Cost vs. bisection bandwidth for 8192-server networks

with N=8192, the least-cost full-bandwidth configu-
ration with standard cables requires 9 SKUs, or 141
SKUs using custom cables. When using standard cables,
HyperX/N=8192 configurations end up with mean per-
cable excess lengths of between 23 and 265 in.

We also can quantify the number of wasted lanes in
quad-channel cables. For HyperX with N=8192, this
ranges from 0 to >55K, depending on the configuration.
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Figure 3: Cost vs. BW for $100 switch ports
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Figure 4: Cost vs. worst-case hop count

9 Related work
Traditional topology analyses did not focus on physi-

cal layout issues that arise in a data center; they mostly
considered only logical metrics such as bisection band-
width. Much of the prior work also does not address
the problem of efficiently sweeping through the logical
topology space [6].

Ahn et al. [3] presented an algorithm that minimizes
the number of switches needed to build a HyperX net-
work with a given bisection. However, they do not con-
sider any layout issues.

Popa et al. [13] compared the costs of several data-
center network architecture families. Their analysis cov-
ered the use of server cores for switching, and included
energy costs. However, they did not directly address the
problem of finding a least-cost network design within a
specific topology family, and they do not appear to have
tried to optimize the placement of switches in racks.

Farrington et al. [8] analyzed cabling issues for Fat-
Tree networks. They showed that much cost could be
eliminated by consolidating the upper levels of a FatTree,
replacing cables, connectors, and a physically distributed
set of low-radix commodity switches with a design using
merchant silicon. Many of the cables become traces on
circuit boards. They also show how to use higher-speed
links within a FatTree to reduce the cable count.

The Helios [8] design also addresses the costs of ca-
bling, switching, and especially the costs of electrical
to optical conversions. Helios focuses on the connec-
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tions between containers, and exploits low-cost, rela-
tively slow optical switches, so it covers a somewhat dif-
ferent domain than Perseus is aimed at.

Currently our tools do not model topology related en-
ergy costs. At one level, quantifying power is easy: we
simply add up the power consumption of the individ-
ual switches. However, as switch designers improve the
energy-proportionality of their products, switch power
becomes more dependent on traffic demands (that is
the goal of proportionality). An accurate estimate of
network-related power consumption requires a detailed,
time-varying traffic model, and also requires accurate
models for switch power consumption at various traf-
fic levels. These data are often hard to obtain, which
could make it difficult to compare topology-related en-
ergy costs; Popa et al. [13] used average network-wide
utilization as a proxy. Abts et al. [1] demonstrated that a
flattened butterfly topology is more power-efficient than
a folded-Clos (FatTree) network.

Prior work by Heller et al. [10] has shown that dy-
namic adjustment of the set of active, power-consuming
links can increase network-wide proportionality. Thus,
there is a complex interaction between network topology,
traffic demands, and power consumption, and we do not
know how to model this issue in detail.

10 Future work
Within our framework, there is a lot of room for further

work, including:
• Understanding how to model internal vs. external

bandwidth. Currently, we assume that local servers
and external connections properly share the overall bi-
section bandwidth of a network, but this is probably
wrong. We also need to understand whether designers
care where the external ports can be connected.

• Dealing different widths for hot and cold aisles.
• Incorporating plenum capacity into copper vs. fiber

choice and/or design-feasibility testing (See Sec. 7.4).
• Modeling network energy consumption. This requires

models for traffic and switch energy proportionality.
• Modeling network reliability.

11 Summary and conclusions
In this paper we have exposed the complexity of the

problem of choosing good designs for high-bandwidth,
multi-path data-center networks. We have described the
Perseus framework for assisting network designers in ex-
ploring this space, and we have presented several algo-
rithms that help to optimize parameter choices. We have
also shown that, based on semi-plausible parts costs, the
overall cost for constructing a network with a given bi-
section bandwidth can vary significantly.

We know from past experience that the relative costs
of parts such as switches and cables will change over

time, sometimes dramatically. We also expect NIC and
switch port speeds to increase in several jumps. These
trends mean that topology choices based on current parts
will undoubtedly need to be re-evaluated every year or
two; thus, our goal in this paper has been to provide a
methodology and a set of algorithms, not to describe the
“correct” choices for topologies and their parameters.

While designers of real networks will undoubtedly use
different costs, they will still have to grapple with the
choice of parameters, and Perseus should prove useful in
this task.
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Abstract
Log analytics are a bedrock component of running

many of today’s Internet sites. Application and click logs
form the basis for tracking and analyzing customer be-
haviors and preferences, and they form the basic inputs
to ad-targeting algorithms. Logs are also critical for per-
formance and security monitoring, debugging, and op-
timizing the large compute infrastructures that make up
the compute “cloud”, thousands of machines spanning
multiple data centers. With current log generation rates
on the order of 1–10 MB/s per machine, a single data
center can create tens of TBs of log data a day.

While bulk data processing has proven to be an es-
sential tool for log processing, current practice transfers
all logs to a centralized compute cluster. This not only
consumes large amounts of network and disk bandwidth,
but also delays the completion of time-sensitive analyt-
ics. We present an in-situ MapReduce architecture that
mines data “on location”, bypassing the cost and wait
time of this store-first-query-later approach. Unlike cur-
rent approaches, our architecture explicitly supports re-
duced data fidelity, allowing users to annotate queries
with latency and fidelity requirements. This approach
fills an important gap in current bulk processing systems,
allowing users to trade potential decreases in data fidelity
for improved response times or reduced load on end sys-
tems. We report on the design and implementation of
our in-situ MapReduce architecture, and illustrate how it
improves our ability to accommodate increasing log gen-
eration rates.

1 Introduction

Scalable log processing is a crucial facility for running
large-scale Internet sites and services. Internet firms
process click logs to provide high-fidelity ad targeting,
system and network logs to determine system health,
and application logs to ascertain delivered service qual-

ity. For instance, E-commerce and credit card compa-
nies analyze point-of-sales transactions for fraud detec-
tion, while infrastructure providers use log data to detect
hardwaremisconfigurations and load-balance across data
centers [6, 30].

This semi-structured log data is produced across one
or more data centers that contain thousands of machines.
It is not uncommon for such machines to produce data at
rates of 1–10 MB/s [4]. Even at the low end (1 MB/s), a
modest 1000-node cluster could generate 86 TB of raw
logs in a single day. To handle these large data sets, many
sites use data parallel processing systems like MapRe-
duce [12] or Dryad [20]. Such frameworks allow busi-
nesses to capitalize on cheap hardware, harnessing thou-
sands of commodity machines to process enormous data
sets.

The dominant approach is to move the data to a single
cluster dedicated to running such a bulk processing sys-
tem. In this “store-first-query-later” approach [13] users
load data into a distributed file system and then execute
queries.1 For example, companies like Facebook and
Rackspace analyze tens of terabytes of log data a day by
pulling the data from hundreds to thousands of machines,
loading it into HDFS (the Hadoop Distributed File Sys-
tem), and then running a variety of MapReduce jobs on a
large Hadoop cluster [17]. Many of the processing jobs
are time sensitive, with sites needing to process logs in
24 hours or less, enabling accurate user activity models
for re-targeting advertisements, fast social network site
updates, or up-to-date mail spam and usage statistics.

However, this centralized approach to log processing
has two drawbacks. First, it fundamentally limits its
scale and timeliness. For example, to sink 86 TB of log
data in less than an hour (48 minutes) would require 300
Gb/s of dedicated network and disk bandwidth. This lim-
its processing on the MapReduce cluster as the transfer
occupies disk arms, and places a large burden on the data

1Here we consider queries as single or related MapReduce jobs.
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center network, even if well provisioned. Second, the
approach must sacrifice availability or blindly return in-
complete results in the presence of heavy server load or
failures. Current bulk processing systems provide strict
consistency, failing if not all data is processed. This
implies that either users delay processing until logs are
completely delivered or that their analytics run on incom-
plete data.

In fact, though, one does not have to make this either-
or choice. It is often possible to accurately summarize or
extract useful information from a subset of log data, as
long as we have a systematic method for characterizing
data fidelity. For example, if a user can ascertain whether
a particular subset of log data is a uniform sampling, one
can capture the relative frequency of events (e.g., failures
or user clicks) across server logs.

To meet these goals we present an “in-situ” MapRe-
duce (iMR) architecture for moving analytics on to the
log servers themselves. By transforming the data in
place, we can reduce the volume of data crossing the
network and the time to transform and load the data into
stable distributed storage. However, this processing en-
vironment differs significantly from a dedicated Hadoop
cluster. Nodes are not assumed to share a distributed file
system, implying that data is not replicated nor avail-
able at other nodes. And the servers are not dedicated
to log processing; they must also support client-facing
requests (web front ends, application servers, databases,
etc.). Thus unlike traditional MapReduce architectures,
our in-situ approach accepts that data may naturally be
unavailable either because of failures or because there
are insufficient resources to meet latency requirements.

This work makes the following contributions:

• Continuous MapReduce model: Unlike batch-
oriented workloads, log analytics take as input essen-
tially infinite input streams. iMR supports an extended
MapReduce programming model that allows users to de-
fine continuous MapReduce jobs with sliding/tumbling
windows [7]. This allows incremental updates, re-using
prior computation when data arrives/departs. Because
iMR directly supports stream processing, it can run stan-
dard MR jobs continuously without modification.
• Lossy MapReduce processing: iMR supports lossy
MapReduce processing to increase result availability
when sourcing logs from thousands of servers. To in-
terpret partial results, we present C2, a metric of result
quality that takes into account the spatial and temporal
nature of log processing. In iMR users may set a target
C2 for acceptable result fidelity, allowing the system to
process a subset of the data to decrease latency, avoid ex-
cessive load on the log servers, or accommodate node or
network failures.
• Architectural lessons: We explore the iMR architec-

ture with a prototype system based on a best-effort dis-
tributed stream processor, Mortar [22]. We develop ef-
ficient strategies for internally grouping key-value pairs
in the network using sub-windows or panes, and explore
the impact of failures on result fidelity and latency. We
also develop load cancellation and shedding policies that
allow iMR to maximize result quality when there are in-
sufficient server resources to provide perfect results.

Section 2 gives an overview of the system design, dis-
cusses related work, and describes how iMR performs
continuous MapReduce processing using windows. Sec-
tion 3 introduces our notion of result quality C2, use-
ful ways to express C2, and how the system efficiently
maintains that metric. Section 4 discusses our modifica-
tions to Mortar to support iMR. We evaluate the system
in Section 5, looking at system scalability, load shedding,
and data fidelity control. In particular we explore how
C2 affects results when extracting simple count statis-
tics, performing click-stream analysis, and building an
HDFS anomaly detector.

2 Design overview

iMR is designed to complement, not replace traditional
cluster-based architectures. It is meant for jobs that fil-
ter or transform log data either for immediate use or be-
fore loading it into a distributed storage system (e.g.,
HDFS) for follow-on analysis. Moreover, today’s batch
processing queries exhibit characteristics that make them
amenable to continuous, in-network processing. For in-
stance, many analytics are highly selective. A 3-month
trace from a Microsoft large-scale data processing sys-
tem showed that filters were often highly selective (17 -
26%) [16], and the first step for many Facebook log ana-
lytics is to reduce the log data by 80% [4]. Additionally,
many of these queries are update-driven, integrate the
most recent data arrivals, and recur on an hourly, daily,
or weekly basis.

Below we summarize how in-situ MapReduce ensures
that log processing is:

Scalable: The target operating environment consists
of thousands of servers in one or more data centers, each
producing KBs to MBs of log data per second. In iMR,
MapReduce jobs run continuously on the servers them-
selves (shown on the right in Figure 1). This provides
horizontal scaling by simply running in-place, i.e, the
processing node count is proportional to the number of
data sources. This design also lowers the cost and latency
of loading data into a storage cluster by filtering data on
site and using in-network aggregation, if the user’s re-
duce implements an aggregate function [14].

Responsive: Today the latency of log analytics dic-
tates various aspects of a site’s performance, such as the
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Figure 1: The in-situ MapReduce architecture avoids the
cost and latency of the store-first-query-later design by
moving processing onto the data sources.

speed of social network updates or accuracy of ad target-
ing. The in-situ MapReduce (iMR) architecture builds
on previous work in stream processing [5, 7, 9] to sup-
port low-latency continuous log processing. Like stream
processors, iMR MapReduce jobs can process over slid-
ing windows, updating and delivering results as new data
arrives.

Available: iMR’s lossy data model allows the system
to return results that may be incomplete. This allows
the system to improve result availability in the event of
failures or processing and network delays. Additionally,
iMR may pro-actively reduce processing fidelity through
load shedding, reducing the impact on existing server
tasks. iMR attaches a metric of result quality to each
output, allowing users to judge the relative accuracy of
processing. Users may also explicitly trade fidelity for
improved result latency by specifying latency and fidelity
bounds on their queries.
Efficient: A log processing architecture should make

parsimonious use of computational and network re-
sources. iMR explores the use of sub-windows or
panes for efficient continuous processing. Instead of re-
computing each window from scratch, iMR allows incre-
mental processing, merging recent data with previously
computed panes to create the next result. And adaptive
load-shedding policies ensure that nodes use compute
cycles for results that meet latency requirements.

Compatible: iMR supports the traditional MapRe-
duce API, making it trivial to “port” existing MapReduce
jobs to run in-situ. It provides a single extension, un-
combine, to allow users to further optimize incremental
processing in some contexts (Section 2.3.2).

2.1 In-situ MapReduce jobs
A MapReduce job in iMR is nearly identical to that in
traditional MapReduce architectures [12]. Programmers
specify two data processing functions: map and reduce.
The map function outputs key-value pairs, {k, v}, for

each input record, and the reduce processes each group
of values, v[], that share the same key k. iMR is designed
for queries that are either highly selective or employ re-
duce functions that are distributive or algebraic aggre-
gates [14]. Thus we expect that users will also specify the
MapReduce combiner, allowing the underlying system
to merge values of a single key to reduce data movement
and distribute processing overhead. The use of a com-
biner allows iMR to process windows incrementally and
further reduce data volumes through in-network aggrega-
tion. The only non-standard (but optional) function iMR
MapReduce jobs may implement is uncombine, which
we describe in Section 2.3.2.

However, the primary way in which iMR jobs differ is
that they emit a stream of results computed over contin-
uous input, e.g., server log files. Like data stream pro-
cessors [7], iMR bounds computation over these (per-
haps infinite) data streams by processing over a window
of data. The window’s range R defines the amount of
data processed in each result, while the window’s slide
S defines its update frequency. For example, a user
could count error events over the last 24 hours of log
records (R = 24 hours), and update the count every
hour (S = 1 hour). This sliding window, one whose
slide S is less than its range R, may be in terms of wall-
clock time or logical index, such as record count, bytes,
or any user-defined sequence number. Users specify R
and S with simple annotations to the reduce function.
While sufficient for real-time log processing, a

MapReduce job in iMR may reference historical log data
as well. Doing so requires a job-level annotation that
specifies the point in the local log to begin B and the to-
tal data to consume, the extent E. If unspecified, the job
continues to process, possibly catching up to real-time
processing.

2.2 Job execution
In general, MapReduce architectures have three primary
tasks: the parallel execution of the map phase, grouping
input records by key, and the parallel execution of the re-
duce phase. In cluster-based MapReduce systems, like
Hadoop, each map task produces key-value pairs, {k,v},
from raw input records at individual nodes in the clus-
ter. The map tasks then group values by their key k, and
split the set of keys into r partitions. After the map tasks
finish, the system starts a reduce task for each partition
r. These tasks first download their partition’s key-value
pairs from each mapper (the shuffle), finish grouping val-
ues, and then call reduce once for every {k,v[]} pair.

iMR distributes the work of a MapReduce job across
multiple trees, one for each reducer partition. Figure 2
illustrates one such tree; iMR co-locates map processing
on the server nodes themselves, sourcing input records
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Figure 2: This illustrates the physical instantiation of one
iMR MapReduce partition as a multi-level aggregation
tree.

(tuples) from the local node’s log file. The dedicated pro-
cessing cluster hosts the root, which executes the user’s
reduce function. This tree uses the combine API to ag-
gregate intermediate data at every mapper in a manner
similar to traditional MapReduce architectures. How-
ever, like Dryad [32], iMR can use multi-level aggrega-
tion trees to further reduce the data crossing the network.
In general, this requires aggregate or decomposable

functions that can be computed incrementally [15, 23,
32]. Here we are interested in two broad categories of
aggregate functions [21]. Holistic aggregates require
partial values whose size is in proportion to their input
data, e.g., union, median or groupby. In contrast,
bounded aggregates have constant-sized partial values,
e.g., sum or max, and present the greatest opportunities
for data reduction.

2.3 Window processing with panes
iMR supports sliding processing windows not just be-
cause they bound computation on infinite streams, but
because they also enable incremental computations.
However, they do not immediately lend themselves to
efficient in-network processing. Consider a simple ag-
gregation strategy where each log server accumulates all
key-value pairs for each logical window and nodes in the
aggregation tree combine these entire windows.
We can see that this strategy isn’t efficient for our ex-

ample sliding window query. In this case, every event
record would be included in 24 successive results. Thus
every input key-value pair in a sliding window would
be grouped, combined, and transmitted for each update
(slide) of the window or R/S times. To reduce these
overheads, iMR adapts the use of sub-windows or panes
to efficiently compute aggregates over sliding windows.
While the concept of panes was introduced in prior work
for single-node stream processors [21]; here we adapt
them to distributed in-situ MapReduce processing.
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Map(r)

Group/combine in pane
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Figure 3: iMR nodes process local log files to produce
sub-windows or panes. The system assumes log records
have a logical timestamp and arrive in order.
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Figure 4: iMR aggregates individual panes Pi in the net-
work. To produce a result, the root may either combine
the constituent panes or update the prior window by re-
moving an expired pane and adding the most recent.

2.3.1 Pane management

Panes break a window into multiple equal-sized sub-
windows, allowing the system to group and combine
key-value records once per sub-window. Nodes in the
system generate panes and send them to their parents in
the aggregation tree. Thus in iMR, interior nodes in a
tree aggregate panes and the root node combines them
into each window result. This supports the fundamen-
tal grouping operation underlying reduce, a holistic ag-
gregate. By sending panes, rather than sending the en-
tire window up the tree, the system sends a single copy
of a key’s value, reducing network traffic. Additionally,
issuing values at the granularity of panes gives the sys-
tem fine-grain control on fidelity and load shedding (Sec-
tion 3.4). It is also the granularity at which failed nodes
restart processing, minimizing the gap of dropped data
(Section 4.4.2).

Figure 3 illustrates how a single node creates panes
from a stream of local log records. Typically, we set
the pane size equal to the slide S, though it may be
any common divisor of R and S, and each node main-
tains a sequence of pane partial values Pi. This example
uses a processing window with a slide of 60 minutes.
When log records first enter the system, iMR tags each
one with a non-decreasing user-defined timestamp. The
system then feeds these records to the user’s map func-
tion. After mapping, the system assigns key-value pairs
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to each pane, where they are grouped/combined. Note
that a pane is complete when a log entry arrives for the
following pane (log entries are assumed to be in order).

2.3.2 Window creation

In iMR, the root of each reducer partition must
group/combine all keys in the window before executing
the user’s reduce function and computing the result. Fig-
ure 4 illustrates two strategies the root may employ to do
so. Here two log servers A and B create panes P1 and
P2 and send them to the root. The root first groups (and
possibly combines) panes with the same index.
The first strategy leverages panes to allow incremen-

tal processing with the traditional MapReduce API. The
strategy simply uses the existing combine API to merge
adjoining panes. In this example each window consists
of two panes and W1 may be constructed by merging
P a+b

1 with P a+b

2 . This improves efficiency by having
each overlapping window re-use a pane’s partial value;
merging window panes is cheaper than repeatedly com-
bining the raw mapped values for each window. This
benefit increases with the number of values per key.

However, for sliding windows it is sometimes more ef-
ficient to remove expired data and then add new data to
the prior W . For instance, consider our 24 hour query
that updates every hour. In this case the root must com-
bine 24 panes to produce each window. In contrast, the
root could remove and add a pane’s worth of keys to
the prior window W , greatly reducing the volume of
keys touched. Assuming that the cost of removing and
adding keys to W is equivalent, this strategy is always
more efficient than merging all constituent panes when
the slide is less than half the range. This requires “differ-
ential” [21] functions, i.e. aggregates that are commuta-
tive/associative under removals as well as additions. iMR
only uses an uncombine strategy when the slide is less
than half the range and a user supplies an uncombiner.

3 Lossy MapReduce processing

This section describes the features of iMR that allow it
to accommodate data loss. As described earlier, data
loss may occur because of node or network failures, or
as a consequence of result latency requirements. In such
cases, an iMR job may need to report a result before the
system has had time to process all the data in the win-
dow. The key challenges we address here are a.) how
to represent and calculate result quality to allow users to
interpret partial results, and b.) how to use this metric to
trade result fidelity for improved result latency.
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Figure 5: C2 completeness describes the set of panes
each log server contributes to the window. Here we show
two different ways in which C2 represents 50% of the
data area: all the nodes process half the data or half the
nodes process all the data.

3.1 Measuring data fidelity
A good measure of data fidelity should inform users not
only that data is missing, but allows users to ascertain the
impact of data loss on query accuracy. One measure of
result quality used for in-network aggregates is complete-
ness, the number or fraction of nodes whose data is repre-
sented in the final answer [22, 25]. Alternatively, systems
like Hadoop Online (HOP) output partial answers as data
arrives, and annotate them with progress, the percent of
total data processed. Unfortunately, neither metric is suf-
ficiently descriptive for window-based processing. Com-
pleteness cannot differentiate between a single node that
produces log records that span the entire window and a
node that does not. Similarly, a simple progress metric
fails to account for the source of processed data.

Here we present a completeness metric, C2, that lever-
ages the natural distribution of log data across both space
(log server nodes) and time (the window range). C2 rep-
resents the data area included in the final result as the
number of unique data panes that have been successfully
integrated into the window. Logically, the root maintains
C2 like a scoreboard, with a mark for every successfully
received pane in the window (Figure 5). Thus C2 tracks
the set of nodes whose log data contributed to the win-
dow, as well as how that log data was distributed across
the result window. iMR can summarize this raw infor-
mation as independent percentages of temporal (x-axis)
and spatial (y-axis) completeness or simply as an area,
the total result coverage.

Figure 5 illustrates how C2 may reflect two different
scenarios that process the same data area (in this case C2

=50%). In the first case, all the nodes process half the
data and in the second, half the nodes process all the data.
There are, of course, other scenarios where the product
of the percentage of nodes and percentage of the window
processed will be 50%, and C2 allows users to differ-
entiate between them. Note that C2 explains what was
included in the result, not what was missing, which is a
much harder (and often query specific) metric to provide.
To measure fidelity, interior nodes aggregate C2 for
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individual panes as they make their way up each reduce
tree. Since each pane is by definition temporally com-
plete, representing data for that portion of the window,
this per-pane C2 simply maintains a count and the IDs of
data sources summarized in a particular pane. As panes
are merged in the aggregation tree, so too is their C2 in-
formation. The root represents C2 as a histogram with
a bin per pane that counts the nodes that responded for
that pane. This allows the root to summarize C2 as the
percent of nodes reporting (unique nodes responding di-
vided by total nodes) and the percent window computed
(non-empty panes divided by total panes per window).

3.2 Using C2: applications
This section examines how applications use C2 to bound
result quality and to understand imperfect results. Users
specify minimum fidelity requirements by annotating
queries with a target fidelity that constrains results along
particular spatial and temporal dimensions. For exam-
ple, applications may specify C2 as a minimum area A,
giving the system a large degree of freedom to meet fi-
delity requirements, as any set of panes will do. Or appli-
cations may specify C2 as percentages of temporal and
spatial completeness: (%time, %space). For example,
one could require panes in the window to be 100% spa-
tially complete (as they are in the left-hand of Figure 5),
but relax the requirement for the other axis.
The goal for an application is to set a fidelity bound

that allows users to determine result quality from C2. In
particular, they should fix the axes along which result
quality is unpredictable. Thus two results may both meet
the fidelity bound, but users can ascertain relative result
quality by comparing how they did so. To illustrate these
concepts, we now describe four general C2 specifications
and their fidelity/latency tradeoffs.

Area (A) with earliest results: This C2 specification
gives the system the most freedom to decrease result la-
tency (or shed load). Without failure or load shedding,
iMR will return the first A% panes from each log server
for the result window. These results will correctly sum-
marize event frequencies only if events were uniformly
distributed across the log servers. This is the case with
simple applications, such as Word Count, where an ap-
proximate answer could be used to estimate the relative
frequency of words. However, if some words (events) are
associated with some servers more than other words, the
data will be biased.

Area (A) with random sampling: This C2 specifi-
cation gives the system less freedom to decrease result
latency, but tries to ensure that a partial result correctly
reproduces the relative occurrence of events in the result
window, no matter how events are distributed across the
log servers. Here each iMR node randomly creates panes

with a probability in proportion to A. This takes longer
to reach the fidelity bound than the first strategy, but will
correctly sample the log data. Note applications must
check the C2 score to verify a sufficient sample in the
event of pane loss due to node or network failures.

Spatial completeness (X, 100%): This specification
ensures that each pane in the result window contains data
from 100% of the nodes in the system. It is useful for
applications that must correlate log events on different
servers that occur close in time. For example, consider a
basic click-stream analysis that allows web sites to char-
acterize user behavior. With load-balanced web and ap-
plication serving architectures, a user’s click events may
arrive at any log server. Intuitively this C2 specifica-
tion captures a spatial “slice” of the log data, collecting a
snapshot of user activity across the servers during a pane.

Temporal completeness (100%, Y ): This specifica-
tion ensures that Y percent of the nodes in the sys-
tem respond with 100% of the panes in the result win-
dow. It is useful for applications that must correlate log
events on the same server across time. For example, if in
the click-stream analysis, individual users had been as-
signed/pinned to particular servers, this would be the C2

to employ.

3.3 Result eviction: trading fidelity for
availability

iMR allows users to specify latency and fidelity bounds
on continuousMapReduce queries. Here we describe the
policies that determine when the root evicts results. The
root has final authority to evict a window and it uses the
window’s completeness, C2, and latency to determine
eviction. Thus a latency-only eviction policy may return
incomplete results to meet the deadline, while a fidelity-
only policy will evict when the results meet the quality
requirement.

Latency eviction: A query’s latency bound deter-
mines the maximum amount of time the system spends
computing each successive window. If the timeout pe-
riod expires, the operator evicts the window regardless
of C2. Before the timeout, the root may evict early un-
der three conditions: if the window is complete before
the timeout, if it meets the optional fidelity bound C2,
or if the system can deduce that further delays will not
improve fidelity. Like the root, interior nodes also evict
based on the user’s latency deadline, but may do so be-
fore the deadline to ensure adequate time to travel to the
root [23].

Fidelity eviction: The fidelity eviction policy deliv-
ers results based on a minimum window fidelity at the
root. As panes arrive from nodes in the network, the root
updates C2 for the current window. When the fidelity
reaches the bound the root merges the existing panes in
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the window and outputs the answer.
Failure eviction: Just as the system evicts results that

are 100% complete, the system may also evict results if
additional wait time can not improve fidelity. This oc-
curs when nodes are heavily loaded or become discon-
nected or fail. iMR employs boundary panes (where
traditional stream processors use boundary tuples [26])
to distinguish between failed nodes and stalled or empty
data streams2. Nodes periodically issue boundary panes
to their parents when panes have been skipped because
of a lack of data or load shedding (Section 3.4).

Boundary panes allow the root to distinguish between
missing data that may arrive later and missing data that
will never arrive. iMR maintains boundary information
on a per-pane basis using two counters. The first counter
is the C2 completeness count; the number of success-
ful pane merges. Even if a child has no local data for
a pane, its parent in the aggregation tree may increase
the completeness count for this pane. However, children
may skip panes either because they re-started later in the
stream (Section 4.4.2) or because they canceled process-
ing to shed load (Section 3.4). In these cases, the parent
node increases an incompleteness counter indicating the
number of nodes that will never contribute to this pane.

Both interior nodes and the root use these counts
to evict panes or entire windows respectively. Interior
nodes evict early if the panes are complete or the sum
of these two counters is equal to the sum of the children
in this sub tree. The root determines whether or not the
user’s fidelity bound can ever be met. By simply sub-
tracting incompleteness from the total node count (per-
fect completeness), the root can set an upper bound on
C2 for any particular window. If this estimate of C2 ever
falls below the user’s target, the root evicts the window.
Note that the use of fidelity and latency bounds pre-

sumes that the user either received a usable result or can-
not wait longer for it to improve. Thus, unlike other ap-
proaches, such as tentative tuples [8] or re-running the
reduction phase [10], iMR does not, by default, update
evicted results. iMR only supports this mode for debug-
ging or determining a proper latency bound, as it can be
expensive, forcing the system to repeatedly re-process
(re-reduce) a window on late updates.

3.4 Load cancellation and shedding
When the root evicts incomplete windows, nodes in the
aggregation tree may still be processing panes for that
window. This may be due to panes with inordinate
amounts of data or servers that are heavily loaded (have
little time for log processing). Thus they are comput-
ing and merging panes that, once they arrive at the root,

2In reality, all panes contain boundary meta data, but nodes may
issue panes that are otherwise empty except for this meta data.

will no longer be used. This section discusses mecha-
nisms that cancel or shed the work of creating and merg-
ing panes in the aggregation tree. Note that iMR as-
sumes that mechanisms already exist to apportion server
resources between the server’s normal duties and iMR
jobs. For instance, iMR may run in a separate virtual
machine, letting the VM scheduler allocate resources
between log processing and VMs running site services.
Here our goal is to ensure that iMR nodes use the re-
sources they are given effectively.

iMR’s load cancellation policies try to ensure that in-
ternal nodes do not waste cycles creating or merging
panes that will never be used. When the root evicts a
window because it has met the minimum C2 fidelity re-
quirement, there is almost surely outstanding work in the
network. Thus, once the root determines that it will no
longer use a pane, it relays that pane’s index down the
aggregation tree. This informs the other nodes that they
may safely stop processing (creating/merging) the pane.

In contrast, iMR’s load shedding strategy works to
prevent wasted effort when individual nodes are heavily
loaded. Here nodes observe their local processing rates
for creating a pane from local log records. If the expected
time to completion exceeds the user’s latency bound, it
will cancel processing for that pane. It will then estimate
the next processing deadline that it can meet and skip
the intervening panes (and send boundary panes in their
place).

Internal nodes also spend cycles (and memory) merg-
ing panes from children in the aggregation tree. Here in-
terior nodes either choose to proceed with pane merging
or, in the event that it violates the user’s latency bound,
“fast forward” the pane to its immediate parent. As we
shall see in Section 5, these policies can improve result
fidelity in the presence of straggler nodes.

4 Prototype

Our implementation of in-situ MapReduce builds upon
Mortar, a distributed stream processing system [22]. We
significantly extendedMortar’s core functionality to sup-
port the semantics of iMR and the MapReduce program-
ming model along four axes:

• Implement the iMR MapReduce API using generic
map and reduce Mortar operators.

• Pane-based continuous processing with flow con-
trol.

• Load shedding/cancellation and pane/window evic-
tion policies.

• Fault-tolerance mechanisms, including operator re-
start and adaptive tuple routing schemes.
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4.1 Building an in-situ MapReduce query

Mortar computes continuous in-network aggregates
across federated systems with thousands of nodes. This
is a natural fit for the map, combine, and reduce functions
since they are either local per-tuple transforms (map) or
often in-network aggregates. A Mortar query consists
of a single operator, or aggregate function, which Mortar
replicates across nodes that produce the raw data streams.
These in-situ operators give iMR the opportunity to ac-
tively filter and reduce intermediate data before it is sent
across the network. Each query is defined by its opera-
tor type and produces a single, continuous output data
stream. Operators push, as opposed to the pull-based
method used in Hadoop, tuples across the network to
other operators of the same type.
Mortar supports two query types: local and in-network

queries. A local query processes data streams indepen-
dently at each node. In contrast, in-network queries use
a tree of operators to aggregate data across nodes. Either
query type may subscribe to a local, raw data source such
as a log file, or to the output of an existing query. Users
compose these query types to accomplish more sophisti-
cated tasks, such as MapReduce jobs.

Figure 6 illustrates an iMR job that consists of a lo-
cal query for map operators and an in-network query for
reduce operators. Map operators run on the log servers
and partition their output among co-located reduce op-
erators (here there are two partitions, hence two reduce
trees). The reduce operator does most of the heavy lift-
ing, grouping key-value pairs issued by the map opera-
tors before calling the user’s combine, uncombine, and
reduce functions. Unlike traditional MapReduce archi-
tectures, where the number of reducers is fixed during
execution, iMR may dynamically add (or subtract) re-
ducers during processing.

4.2 Map and reduce operators

Like other stream processors, Mortar uses processing
windows to bound computation and provides a simple
API to facilitate programming continuous operators. We
implemented generic map and reduce operators using
this API to call user-defined MapReduce functions at
the appropriate time and properly group the key-value
pairs. We modified operator internals so that they op-
erate on panes as described in Section 2.3. Operators
take as input either raw records from a local log or they
receive panes from upstream operators in the aggrega-
tion tree. Internally, iMR represents panes as (possibly
sorted) hash maps to facilitate key-value grouping.

In iMR operators have two main tasks: pane creation,
creating an initial pane from a local data source, and
pane merging, combining panes from children in an ag-
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Figure 6: Each iMR job consists of a Mortar query for
the map and a query for the reduce. Here there are two
MapReduce partitions (r = 2), which result in two ag-
gregation trees. A word count example illustrates parti-
tioning map output across multiple reduce operators.

gregation tree. Pane creation operates on a record-by-
record basis, adding new records into the current pane. In
contrast, pane merging combines locally produced panes
with those arriving from the network. Because of dif-
ferences in processing time and network congestion, op-
erators maintain a sequence of panes that the system is
actively merging (they have not yet been evicted). We
call this the active pane list or APL.

To adapt Mortar for MapReduce processing, we in-
troduce immutable timestamps into the system. Mortar
assumes logically independent operators that timestamp
output tuples at the moment of creation. In contrast, iMR
defines processing windows with respect to the original
timestamps on the input logs, not with respect to the time
at which an operator was able to evict a pane. iMR as-
signs a timestamp to each data record when it first enters
the system (using a pre-existing timestamp from the log
entry, or the current real time). This timestamp remains
with the data as it travels through successive queries.
Thus networking or processing delays do not alter the
window in which the data belongs.

4.2.1 The map operator

The simplicity of mapping allows a streamlined map op-
erator. The operator calls the user’s map function for
each arriving tuple, which may contain one or more log
entries3. For each tuple, the map operator emits zero
or more key-value pairs. We optimized the map oper-
ator by permanently assigning it a tuple window with a
range and slide equal to one. This allowed us to remove
window-related buffering and directly issue tuples con-
taining key-value pairs to subscribed operators. Finally,

3Like Hadoop, iMR includes handlers that interpret log records.
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the map operator partitions key-value pairs across sub-
scribed reduce operators.

4.2.2 The reduce operator

The reduce operator handles the in-network functional-
ity of iMR including the grouping, combining, sorting
and reducing of key-value pairs. The operators maintain
a hash map for each pane in the active pane list. Here
we describe how the reduce operator creates and merges
panes.

After a reduce operator subscribes to a local map op-
erator it begins to receive tuples (containing key-value
{k,v} pairs). The reducer operator first checks the log-
ical timestamp of each {k,v} pair. If it belongs to the
current pane, the system inserts the pair into the hash ta-
ble and calls the combiner (if defined). When a {k,v}
pair arrives with a timestamp for the next pane, the sys-
tem inserts the prior pane into the active-pane list (APL).
The operator may skip panes for which there is no local
data. In that case, the operator inserts boundary panes
into the APL with completeness counts of one.

Load shedding occurs during pane creation. As tuples
arrive, the operator maintains an estimate of when the
pane will complete. The operator periodically updates
this estimate, maintained as an Exponentially Weighted
Moving Average (EWMA) biased towards recent obser-
vations (α = 0.8), and determines whether the user’s la-
tency deadline will be met. For accuracy, the operator
processes 30% of the pane before the first estimate up-
date. For responsiveness, the operator periodically up-
dates and checks the estimate (every two seconds). For
each skipped pane the operator issues a boundary pane
with an incompleteness count of one.

The APL merges locally produced panes with panes
from other reduce operators in the aggregation tree. The
reduce operator calls the user’s combiner for any group
with new keys in the pane’s hash map. The operator peri-
odically inspects the APL to determine whether it should
evict a pane (based on the policies in Section 3.3). Re-
duce operators on internal or leaf nodes forward the pane
downstream on eviction.

If the operator is at the tree’s root, it has the additional
responsibility of determining when to evict the entire
window. The operator checks eviction policies on pe-
riodic timeouts (the user’s latency requirement) or when
a new pane arrives (possibly meeting the fidelity bound).
At that point, the operator may produce the final result
either by using the optional uncombine function or by
simply combining the constituent panes (strategies dis-
cussed in Section 2.3). After this combining step, the
operator calls the user-defined reduce function for each
key in the window’s hash map.

4.3 Pane flow control
Recall that the goal of load shedding in iMR isn’t to use
less resources, but to use the given resources effectively.
Given a large log file, load shedding changes the work
done, not its processing rate. Thus it is still possible
for some nodes to produce panes faster than others, ei-
ther because they have less data per pane or more cycles
available. In these cases, the local active pane list (APL)
could grow in an unbounded fashion, consuming server
memory and impacting its client-facing services.

We control the amount of memory used by the APL
by employing a window-oriented flow control scheme.
Each operator monitors the memory used (by the JVM in
our implementation) and issues a pause indicator when
it reaches a user-defined limit. The indicator contains
the logical index of the youngest pane in the operator’s
APL. Internally, pane creation waits until the indicator
is greater than the current index or the indicator is re-
moved. Pause indicators are also propagated top-down in
the aggregation tree, ensuring that operators send evicted
panes upward only when the indicator is greater than the
evicted indices or it is not present.

4.4 MapReduce with gap recovery
While load shedding and pane eviction policies improve
availability during processing and network delays, nodes
may fail completely, losing their data and current queries.
While traditional MapReduce designs, such as Hadoop,
can restart map or reduce tasks on any node in the cluster,
iMR does not assume a shared filesystem. Instead, iMR
provides gap recovery [19], meaning that the system may
drop tuples (i.e., panes) in the event of node failures.

4.4.1 Multi-tree aggregation

Mortar avoids failed network elements and nodes by
routing data up multiple trees. Nodes route data up a sin-
gle tree until the node stops receiving heart beats from its
parent. If a parent becomes unreachable, it chooses an-
other tree (i.e., another parent) to route tuples to. For this
work, we use a single tree; this simplifies our implemen-
tation of failure eviction policies because internal nodes
know the maximum possible completeness of panes ar-
riving from their children.

Mortar employs new tuple routing rules to retain a de-
gree of failure resilience. If a parent becomes unreach-
able, the child forwards data directly to the root. This
policy allows data to bypass failed nodes at the expense
of fewer aggregation opportunities. Mortar also designs
its trees by clustering network coordinates [11], and we
use the same mechanism in our experiments. We leave
more advanced routing and tree-building schemes as fu-
ture work.
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4.4.2 Operator re-install

iMR guarantees that queries (operators) will be installed
and removed on nodes in an eventually consistent man-
ner. Mortar provides a reconciliation algorithm to ensure
that nodes eventually install (or un-install) query opera-
tors. Thus, when nodes recover from a failure, they will
re-install their current set of operators. While we lose the
data in the operator’s APL at the time of failure, we need
to re-start processing at an appropriate point to avoid du-
plicate data. To do so, operators, during pane creation,
maintain a simple on-disk write-ahead log to indicate the
next safe point in the log to begin processing on re-start.
For many queries the cost of writing to this log is small
relative to pane computation, and we simply point to the
next pane.

5 Evaluation

Our evaluation explores both the baseline performance
of our prototype and the ability of our system to deliver
results in the event of delays or failures. Unless noted
otherwise, we evaluated iMR on a 40 node cluster of
HP DL380G6 servers, each with two Intel E5520 CPUs
(2.27 GHz), 24 GB of memory, and 16 HP 507750-B21
500GB 7,200 RPM 2.5” SATA drives. Each server has
two HP P410 drive controllers, as well as a Myricom 10
Gbps network interface. The network interconnect we
use is a 52-port Cisco Nexus 5020 datacenter switch. The
servers run Linux 2.6.35, and our implementation of iMR
is written in Java. iMR experiments use star aggregation
topologies.
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Figure 7: Scaling iMR as the number of workers (and
processing nodes) increases.

5.1 Scaling
We first establish the scale-out properties of our process-
ing architecture. The purpose of these experiments is to
verify the ability of the system to scale as we increase
both the number of mappers and the number of reducer

partitions. Here we use synthetic input data and a re-
ducer that implements a word count function. The query
uses a tumbling window where the range is equal to the
slide; in this case the window range is 150 million input
records, approximately 1GB of input data. We allow the
job to run for five minutes and take the average through-
put. Unlike Hadoop, the iMR job is configured to read
the log from local disk.

Figure 7 plots the records per second throughput of
iMR as we increase the total cluster capacity. Each line
represents a different configuration that increases the re-
ducer and physical node count by one. Here three reduc-
ers provide sufficient processing to handle the 30 map
tasks. We see that, as long as the reducer is not the bottle-
neck, adding additional nodes increases throughput lin-
early. Similarly, reducers can also add a linear increase
in throughput.
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Figure 8: Impact of load shedding on fidelity and latency
for a word count job under maximum latency require-
ment and varying worker load.

5.2 Load shedding
These iMR experiments evaluate the ability of load shed-
ding to improve result fidelity under limited CPU re-
sources. We execute a word count MapReduce query on
a single node; this node installs a single map and reduce
operator. We vary the CPU load by running a separate
CPU burn application. The query specifies a tumbling
window (R = S) that contains 20 million records and we
configure the system to use 20 panes per window. We ex-
ecute the query until it delivers 10 results and report the
average latency (Figure 8(a)) and fidelity (Figure 8(b)) as
we increase CPU load.
The baseline query has no latency requirement and al-

ways delivers results with 100% fidelity. The timeout
query has a latency requirement equal to the observed
baseline window latency, which is 160 seconds. Though
results meet the latency requirement, quality degrades as
the load increases. Without load shedding the worker
attempts to process all panes, even if very few can be
delivered in time. In contrast, load shedding allows the
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Figure 9: The performance of a count statistic on data skewed across the log server pool. Enforcing either random
pane selection or spatial completeness allows the system to approximate count frequencies and lower result latency.

worker to use the available CPU intelligently, processing
only the panes that can be delivered on time and increas-
ing average fidelity substantially.

5.3 Failure eviction
Here we show how failure eviction can deliver results
early if nodes fail. We execute a word count MapReduce
query on 10 workers. The query uses a tumbling window
with 2 million records, 2 panes, and a 30 second latency
requirement. After starting the query, we emulate tran-
sient failures by stopping an increasing number of work-
ers. The experiment finishes when the query delivers 20
results.

In Figure 10, we report application goodput as the
number of panes delivered to the user per time. Note
that this metric is not a direct measure of how fast work-
ers can process raw data. Instead it reflects the ability of
the system to detect failures and deliver panes to the user
early. The higher the metric, the less the user waits to get
the same number of panes. Without failure eviction the
root times out (30 seconds) before it delivers incomplete
results. With failure eviction, the root can deliver results
before the timeout, improving goodput by 57-64%.

5.4 Using C2

This section explores how we use the C2 framework for
three different application scenarios: word count with
non-uniformly distributed keys, click-stream analysis,
and an HDFS anomaly detector. These experiments used
a 30-node cluster of Dual Intel Xeon 2.4GHz machines
with 4GB of RAM connected by gigabit Ethernet.

5.4.1 Word Count

Our first experiment performed a word count query
across synthetic data placed on ten log servers in our lo-
cal cluster. This configuration allows us to explore the
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Figure 10: Application goodput as the percentage of
failed workers increases. Failure eviction delivers panes
earlier, improving goodput by up to 64%.

impact of different fidelity bounds on absolute count es-
timations and relative word frequency. We distribute the
words in the synthetic data across the log servers in a
skewed fashion, where some words are more likely to be
on some servers than others. In these experiments the
window range (and slide) is 100MB, the pane size is 10
MB, and there is no latency bound.

Here we explore three different C2 settings: temporal
completeness, spatial completeness, and area with ran-
dom pane selection. Figure 9 shows the relative error in
reported count, the relative error of the word frequency
(with std. dev.), and the result latency as we increase the
data fidelity. As expected, the count error (Figure 9(a))
improves linearly as we force the system to include more
data in each window (data volume).

However, because the data are not uniformly dis-
tributed, the frequency error (Figure 9(b)) is large for
the temporal completeness C2 specification, (100%, Y ).
Note in this experiment we achieve varying levels of tem-
poral completeness by randomly selecting specific nodes
to fail to report for an entire window. By removing data
from a source completely, some keys may completely
lose their representation and the remaining key’s fre-
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Figure 11: Estimating user session count using iMR and different C2 policies. Random pane selection and temporal
completeness provide significantly higher data fidelity than enforcing spatial completeness.

quencies shift. Both random pane selection and spatially
complete results do much better, since they effectively
sample from the entire server pool.

Finally, these three policies differ substantially in the
latency of the results they deliver. Figure 9(c) plots the
result latency for each C2 specification. Clearly, provid-
ing temporal completeness requires each node to finish
processing the entire window before returning a result.
In contrast, by asking for spatial completeness, the root
can return as soon as the first x% of the panes complete,
allowing the best latency.

5.4.2 Click-stream analysis

Here we develop a simple click-stream analysis. This
analysis takes as input a log of click records that con-
tain userID and timestamp fields. We developed a re-
duce function to calculate three different click analysis
metrics: the number of user sessions, the average session
duration, and the average number of clicks per session.
We use our different C2 specifications and study the rel-
ative error each provides.

These experiments use 24 hours of publicly available
server logs from the 1998 World Cup [1] as input. We
partition this data (4.5GB in total) across ten of our
servers, preserving the characteristic that clicks from a
single user are often served by different nodes in the
trace. The window (and slide) of the MapReduce job is
set to two hours and we set the pane size to be 6 minutes
(20 panes per window). We run each query for the entire
data set (12 windows).

Figure 11 shows how the number of sessions per
user changes as we accept different levels of data fi-
delity. Surprisingly, requiring data from all nodes for
each pane, (X, 100%), leads to large relative errors (per
user). This is primarily because userIDs are not uni-
formly distributed across time and enforcing spatial com-
pleteness does not give a decent sample. However, ran-
domly sampling at each log server lowers relative error

to 20% (per user), even when computing across less than
50% of the window’s data.

Figure 11(b) shows that those policies also recover a
large fraction of the total userID space even when they
sample a relatively small total fraction of data. Thus for
this application, the best C2 specification is random pane
selection, as it not only provides the best results but also
allows the system to lower result latency as well (Fig-
ure 11(c)).

5.4.3 HDFS log analysis
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Figure 12: (a) Results from the Kolmogorov-Smirnov
test illustrate the impact of reduced data fidelity on the
histograms reported for each HDFS server. (b) For
HDFS anomaly detection, random and spatial complete-
ness C2 improve latency by at least 30%.

Our last application analyzes logs from the Hadoop
distributed file system (HDFS) to determine faulty stor-
age nodes. The iMR MapReduce job first filters the local
HDFS log, finding all unique block write events. The
reduce function then computes a histogram of the block
write service times. This collection of histograms, one
per HDFS server, is then analyzed to determine anoma-
lies in the cluster [27].

We generated 48 hours of HDFS logs by running the



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 127

GridMix Hadoop workload generator [3] on our 30-node
cluster. Each node’s log is approximately 2.5 GB, yield-
ing appr. 75 GB in total. This analysis compares the
quality of the histograms produced under different C2

specifications to the histogram produced with no loss.
The query has a window range (and slide) of 48 hours
and uses 1 hour panes.

We use the Kolmogorov-Smirnov test to compare the
per-server histograms with perfect and incomplete data.
Figure 12(a) shows the percentage of histograms that
when using incomplete data represent a markedly dif-
ferent distribution (reject the null hypothesis). Here the
(100%, Y ) policy generates perfect data, since, if a node
reports, all data is included. The other C2 strategies re-
sult in a majority of the histograms failing the null hy-
pothesis when using less than 80% of the data.

However, since those strategies can lower result la-
tency significantly at that data volume (about 30% in Fig-
ure 12(b)), users must decide whether that is an accept-
able tradeoff. Going forward we intend to look at how
this ultimately impacts the ability to find failing HDFS
nodes.

5.5 In-situ performance
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Figure 13: Fidelity and Hadoop performance as a func-
tion of the iMR process niceness. Hadoop is always
given the highest priority, nice = 0.

We designed iMR to effectively process log data “on
location.” This experiment illustrates the ability of the
iMR architecture to produce useful results when run side-
by-side with a real application. Specifically, our 10-
node cluster will execute Hadoop and iMR simultane-
ously. Here, Hadoop executes a workload generated by
the GridMix generator and iMR executes a word count
query with a window of 2 million records, 20 panes per
window, and a 60 second timeout. We vary the CPU al-
located to iMR by changing the priority (niceness) as-
signed to the iMR process by the kernel scheduler and
report the average result fidelity. We also report the rela-
tive change in the Hadoop performance, in terms of jobs

completed per time. Each data point is the average of five
runs.

Figure 13(a) shows that without load shedding, result
fidelity falls almost linearly as the iMR process’ priority
decreases. In contrast, load shedding greatly improves fi-
delity until there is insufficient CPU remaining to process
any pane by the deadline (nice = 9). Looking at Hadoop
performance in Figure 13(b), we see that the cost for giv-
ing them equal priorities is a decrease in job throughput
of 17%. Even when using nice, a relatively coarse-grain
knob for resource allocation, to assign a lower priority
to log processing, Hadoop can improve job throughput
(< 10% penalty) and iMR can still deliver useful results.

6 Related work

“Online” bulk processing: iMR focuses on the chal-
lenges of migrating initial log analytics to the data
sources. A different (and complementary) approach has
been to optimize traditional MapReduce architectures for
log processing themselves. For instance, the Hadoop
Online Prototype (HOP) [10] can run continuously, but
requires custom reduce functions to manage their own
state for incremental computation and framing incom-
ing data into meaningful units (windows). iMR’s design
avoids this requirement by explicitly supporting sliding
window-based computation (Section 2.1), allowing ex-
isting reduce functions to run continuously without mod-
ification.
Like iMR, HOP also allows incomplete results, pro-

ducing “snapshots” of reduce output, where the reduce
phase executes on the map output that has accumu-
lated thus far. HOP describes incomplete results with
a ”progress” metric that (self admittedly) is often too
coarse to be useful. In contrast, iMR’s C2 framework
(Section 3) not only provides both spatial and temporal
information about the result, but may be used to trade
particular aspects of data fidelity for decreased process-
ing time.

Dremel [24] is another system that, like iMR, aims to
provide fast analysis on large-scale data. While iMR tar-
gets continuous raw log data, Dremel focuses on static
nested data, like web documents. It employs an efficient
columnar storage format that is benefitial when a frac-
tion of the fields of the nested data must be accessed.
Like HOP, Dremel uses a coarse progress metric for de-
scribing early, partial results.

Log collection systems: A system closely related to
iMR is Flume [2], a distributed log collection system
that places agents in-situ on servers to relay log data to
a tier of collectors. While a user’s “flows” (i.e., queries)
may transform or filter individual events, iMR provides
a more powerful data processing model with grouping,
reduction, and windowing. While Flume supports best-
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effort operation, users remain in the dark about result
quality or latency. However, Flume does provide higher
reliability modes, recovering events from a write-ahead
log to prevent data loss. While not discussed here, iMR
could employ similar upstream backup [19] techniques
to better support queries that specify fidelity bounds.

Load shedding in data stream processors: iMR’s
load shedding (Section 3.4) and result eviction policies
(Section 3.3) build upon the various load shedding tech-
niques explored in stream processing [9, 28, 29]. For
instance, iMR’s latency and fidelity bounds are related
to the QoS metrics found in the Aurora stream proces-
sor [9]. Aurora allows users to provide “graphs” which
separately map increased delay and percent tuples lost
with decreasing output quality (QoS). iMR takes a dif-
ferent approach, allowing users to specify latency and
fidelity bounds above which they’d be satisfied. Addi-
tionally, iMR leverages the temporal and spatial nature
of log data to provide users more control than percent
tuples lost.

Many of these load shedding mechanisms insert tu-
ple dropping operators into query plans and coordinate
drop probabilities, typically via a centralized controller,
to maintain result quality under high-load conditions. In
contrast, our load shedding policies act locally at each
operator, shedding sub-windows (panes) as they are cre-
ated or merged. These “pane drop” policies are more
closely related to the probabilistic “window drop” oper-
ators proposed by Tatbul, et al. [29] for aggregate op-
erators. In contrast, iMR’s operators may drop panes
both deterministically or probabilistically depending on
the C2 fidelity bound.

Distributed aggregation: Aggregation trees have
been explored in sensor networks [23], monitoring wired
networks [31], and distributed data stream process-
ing [18, 22]. More recent work explored a variety
of strategies for distributed GroupBy aggregation re-
quired in MapReduce-style processing [32]. Our use
of sub-windows (panes) is most closely related to their
Accumulator-PartialHash strategy, since we accumu-
late (through combining) key-value pairs into each sub-
window. While they evicted the sub window based on
its storage size (experiencing a hash collision), iMR uses
fixed-sized panes.

7 Conclusion

This work explores moving initial log analysis steps out
of dedicated clusters and onto the data sources them-
selves. By leveraging continuous in-situ processing,
iMR can efficiently extract and transform data, improv-
ing system scalability and reducing analysis times. A
key challenge is to provide a characterization of result fi-
delity that allows users to interpret results in the face of

incomplete data. For a handful of applications, we illus-
trated how the C2 framework allows users to explicitly
trade specific aspects of data fidelity in the event failures
lose data or the system cannotmeet latency requirements.
Future work will consider how the system can assist in
setting appropriate C2 fidelity bounds, and whether sim-
ilar techniques could be applied in dedicated processing
cluster environments.
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Abstract

Event-driven architectures are currently a popular design
choice for scalable, high-performance server applications.
For this reason, operating systems have invested in effi-
ciently supporting non-blocking and asynchronous I/O, as
well as scalable event-based notification systems.

We propose the use of exception-less system calls as
the main operating system mechanism to construct high-
performance event-driven server applications. Exception-
less system calls have four main advantages over tra-
ditional operating system support for event-driven pro-
grams: (1) any system call can be invoked asyn-
chronously, even system calls that are not file descriptor
based, (2) support in the operating system kernel is non-
intrusive as code changes are not required for each sys-
tem call, (3) processor efficiency is increased since mode
switches are mostly avoided when issuing or executing
asynchronous operations, and (4) enabling multi-core ex-
ecution for event-driven programs is easier, given that a
single user-mode execution context can generate enough
requests to keep multiple processors/cores busy with ker-
nel execution.

We present libflexsc, an asynchronous system call and
notification library suitable for building event-driven ap-
plications. Libflexsc makes use of exception-less system
calls through our Linux kernel implementation, FlexSC.
We describe the port of two popular event-driven servers,
memcached and nginx, to libflexsc. We show that
exception-less system calls increase the throughput of
memcached by up to 35% and nginx by up to 120% as
a result of improved processor efficiency.

1 Introduction

In a previous publication, we introduced the concept of
exception-less system calls [28]. With exception-less
system calls, instead of issuing system calls in the tradi-
tional way using a trap (exception) to switch to the ker-
nel for the processing of the system call, applications is-

sue kernel requests by writing to a reserved syscall page,
shared between the application and the kernel, and then
switching to another user-level thread ready to execute
without having to enter the kernel. On the kernel side,
special in-kernel syscall threads asynchronously execute
the posted system calls obtained from the shared syscall
page, storing the results to the syscall page after their ser-
vicing. This approach enables flexibility in the scheduling
of operating system work both in the form of kernel re-
quest batching, and (in the case of multi-core processors)
in the form of allowing operating system and application
execution to occur on different cores. This not only sig-
nificantly reduces the number of costly domain switches,
but also significantly increases temporal and spacial local-
ity at both user and kernel level, thus reducing pollution
effects on processor structures.

Our implementation of exception-less system calls in
the Linux kernel (FlexSC) was accompanied by a user-
mode POSIX compatible thread package, called FlexSC-
Threads, that transparently translates legacy synchronous
system calls into exception-less ones. FlexSC-Threads
primarily targets highly threaded server applications, such
as Apache and MySQL. Experiments demonstrated that
FlexSC-Threads increased the throughput of Apache by
116% while reducing request latencies by 50%, and in-
creased the throughput of MySQL by 40% while reducing
request latencies by roughly 30%, requiring no changes to
these applications.

In this paper we report on our subsequent investiga-
tions on whether exception-less system calls are suitable
for event-driven application servers and, if so, whether
exception-less system calls are effective in improving
throughput and reducing latencies. Event-driven appli-
cation server architectures handle concurrent requests by
using just a single thread (or one thread per core) so as to
reduce application-level context switching and the mem-
ory footprint that many threads otherwise require. They
make use of non-blocking or asynchronous system calls
to support the concurrent handling of requests. The be-
lief that event-driven architectures have superior perfor-
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mance characteristics is why this architecture has been
widely adopted for developing high-performant and scal-
able servers [12, 22, 23, 26, 30]. Widely used applica-
tion servers with event-driven architectures include mem-
cached and nginx.

The design and implementation of operating system
support for asynchronous operations, along with event-
based notification interfaces to support event-driven archi-
tectures, has been an active area of both research and de-
velopment [4, 8, 7, 11, 13, 14, 16, 22, 23, 30]. Most of the
proposals have a few common characteristics. First, the
interfaces exposed to user-mode are based on file descrip-
tors (with the exception of kqueue [4, 16] and LAIO [11]).
Consequently, resources that are not encapsulated as de-
scriptors (e.g., memory) are not supported. Second, their
implementation typically involved significant restructure
of kernel code paths into an asynchronous state-machine
in order to avoid blocking the user execution context.
Third, and most relevant to our work, while the system
calls used to request operating system services are de-
signed not to block execution, applications still issue sys-
tem calls synchronously, raising a processor exception,
and switching execution domains, for every request, status
check, or notification of completion.

In this paper, we demonstrate that the exception-less
system call mechanism is well suited for the construction
of event-based servers and that the exception-less mech-
anism presents several advantages over previous event-
based systems:

1. General purpose. Exception-less system call is a gen-
eral mechanism that supports any system call and is not
necessarily tied to operations with file descriptors. For
this reason, exception-less system calls provide asyn-
chronous operation on any operating system managed
resource.

2. Non-intrusive kernel implementation. Exception-
less system calls are implemented using light-weight
kernel threads that can block without affecting user-
mode execution. For this reason, kernel code paths
do not need to be restructured as asynchronous state-
machines; in fact, no changes are necessary to the code
of standard system calls.

3. Efficient user and kernel mode execution. One of
the most significant advantages of exception-less sys-
tem calls is its ability to decouple system call invoca-
tion from execution. Invocation of system calls can
be done entirely in user-mode, allowing for truly asyn-
chronous execution of user code. As we show in this
paper, this enables significant performance improve-
ments over the most efficient non-blocking interface on
Linux.

4. Simpler multi-processing. With traditional system
calls, the only mechanism available for applications to
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Figure 1: System call (pwrite) impact on user-mode instruc-
tions per cycle (IPC) as a function of system call frequency for
Xalan.

exploit multiple processors (cores) is to use an operat-
ing system visible execution context, be it a thread or
a process. With exception-less system calls, however,
operating system work can be issued and distributed to
multiple remote cores. As an example, in our imple-
mentation of memcached, a single memcached thread
was sufficient to generate work to fully utilize 4 cores.

Specifically, we describe the design and implementa-
tion of an asynchronous system call notification library,
libflexsc, which is intended to efficiently support event-
driven programs. To demonstrate the performance ad-
vantages of exception-less system calls for event-driven
servers, we have ported two popular and widely deployed
event-based servers to libflexsc: memcached and nginx.
We briefly describe the effort in porting these applications
to libflexsc. We show how the use of libflexsc can sig-
nificantly improve the performance of these two servers
over their original implementation using non-blocking I/O
and Linux’s epoll interface. Our experiments demon-
strate throughput improvements in memcached of up to
35% and nginx of up to 120%. As anticipated, we show
that the performance improvements largely stem from in-
creased efficiency in the use of the underlying processor.

2 Background and Motivation: Operating
System Support for I/O Concurrency

Server applications that are required to efficiently han-
dle multiple concurrent requests rely on operating sys-
tem primitives that provide I/O concurrency. These prim-
itives typically influence the programming model used
to implement the server. The two most commonly
used models for I/O concurrency are threads and non-
blocking/asynchronous I/O.

Thread based programming is often considered the sim-
plest, as it does not require tracking the progress of I/O op-
erations (which is done implicitly by the operating system
kernel). A disadvantage of threaded servers that utilize a
separate thread per request/transaction is the inefficiency
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Server (workload) Syscalls per User Instructions User IPC Kernel Instructions Kernel IPC
Request per Syscall per Syscall

Memcached (memslap) 2 3750 0.80 5420 0.59
nginx (ApacheBench) 12 1460 0.46 6540 0.49

Table 1: The average number of instructions executed on different workloads before issuing a syscall, the average number of system
calls required to satisfy a single request, and the resulting processor efficiency, shown as instructions per cycle (IPC) of both user and
kernel execution. Memcached and nginx are event-driven servers using Linux’s epoll interface.

of handling a large number of concurrent requests. The
two main sources of inefficiency are the extra memory us-
age allocated to thread stacks and the overhead of tracking
and scheduling a large number of execution contexts.

To avoid the overheads of threading, developers have
adopted the use event-driven programming. In an event-
driven architecture, the program is structured as a state
machine that is driven by progress of certain operations,
typically involving I/O. Event-driven programs make use
of non-blocking or asynchronous primitives, along with
event notification systems, to deal with concurrent I/O op-
erations. These primitives allow for uninterrupted execu-
tion that enables a single execution context (e.g., thread)
to fully utilize the processor. The main disadvantage of
using non-blocking or asynchronous I/O is that it entails
a more complex programming model. The application is
responsible for tracking the status of I/O operations and
availability of I/O resources. In addition, the application
must support multiplexing the execution of stages of mul-
tiple concurrent requests.

In both models of I/O concurrency, the operating sys-
tem kernel plays a central role in supporting servers in
multiplexing execution of concurrent requests. Conse-
quently, to achieve efficient server execution, it is crit-
ical for the operating system to expose and support ef-
ficient I/O multiplexing primitives. To quantify the rel-
evance of operating system kernel execution experimen-
tally, we measured key execution metrics of two popular
event-driven servers: memcached and nginx.

Table 1 shows the number of instructions executed in
user and kernel mode, on average, before changing mode,
for nginx and memcached. (Sections 5 and 6 explain the
servers and workloads in more detail.) These applications
use non-blocking I/O, along with the Linux epoll facil-
ity for event notification. Despite the fact that the epoll
facility is considered the most scalable approach to I/O
concurrency on Linux, management of both I/O requests
and events is inherently split between the operating sys-
tem kernel and the application. This fundamental property
of event notification systems imply that there is a need for
continuous communication between the application and
the operating system kernel. In the case of nginx, for ex-
ample, we observe that communication with the kernel oc-
curs, on average, every 1470 instructions.

We argue that the high frequency of mode switching
in these servers, which is inherent to current event-based

facilities, is largely responsible for the low efficiency of
user and kernel execution, as quantified by the instruc-
tions per cycle (IPC) metric in Table 1. In particular, there
are two costs that affect the efficiency of execution when
frequently switching modes: (1) a direct cost that stems
from the processor exception associated with the system
call instruction, and (2) an indirect cost resulting from the
pollution of important processor structures.

To quantify the performance interference caused by fre-
quent mode switching, we used the Core i7 hardware per-
formance counters (HPC) to measure the efficiency of
processor execution while varying the number of mode
switches of a benchmark. Figure 1 depicts the perfor-
mance degradation of user-mode execution, when issuing
varying frequencies of pwrite system calls, on a high
IPC workload, Xalan, from the SPEC CPU 2006 bench-
mark suite. We used a benchmark from SPEC CPU 2006
as these benchmarks have been created to avoid signif-
icant use of system services, and should spend only 1-
2% of time executing in kernel-mode. Xalan has a base-
line user-mode IPC of 1.46, but the IPC degrades by up
to 65% when executing a pwrite every 1,000-2,000 in-
structions, yielding an IPC between 0.50 and 0.58.

The figure also depicts the breakdown of user-mode
IPC degradation due to direct and indirect costs. The
degradation due to the direct cost was measured by issu-
ing a null system call, while the indirect portion is cal-
culated by subtracting the direct cost from the degrada-
tion measured when issuing a pwrite system call. For
high frequency system call invocation (once every 2,000
instructions, or less, which is the case for nginx), the direct
cost of raising an exception and subsequent flushing of the
processor pipeline is the largest source of user-mode IPC
degradation. However, for medium frequencies of system
call invocation (once per 2,000 to 100,000 instructions),
the indirect cost of system calls is the dominant source of
user-mode IPC degradation.

Given the inefficiency of event-driver server execution
due to frequent mode switches, we envision that these
servers could be adapted to make use of exception-less
system calls. Beyond the potential to improve server per-
formance, we believe exception-less system calls is an
appealing mechanism for event-driven programming, as:
(1) it is as simple as asynchronous I/O to program to (no
retry logic is necessary, unlike non-blocking I/O), and
(2) more generic than asynchronous I/O, which mostly
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supports descriptor based operations and which are only
partially supported on some operating systems due to their
implementation complexity (e.g., Linux does not offer an
asynchronous version of the zero-copy sendfile()).

One of the proposals that is closest to achieving the
goals of event-driven programming with exception-less
system calls is lazy asynchronous I/O (LAIO), proposed
by Elmeleegy et al. [11] However, in their proposal, sys-
tem calls are still issued synchronously, using traditional
exception based calls. Furthermore, a completion notifi-
cation is also needed whenever an operation blocks, which
generates another interruption in user execution.

3 Exception-Less System Call Interface and
Implementation

In this work, we argue for the use of exception-less sys-
tem calls as a mechanism to improve processor efficiency
while multiplexing execution between user and kernel
modes in event-driven servers. Exception-less system
call is a mechanism for requesting kernel services that
does not require the use of synchronous processor excep-
tions [28]. The key benefit of exception-less system calls
is the flexibility in scheduling system call execution, ulti-
mately providing improved locality of execution of both
user and kernel code.

Exception-less system calls have been shown to im-
prove the performance of highly threaded applications,
by using a specialized user-level threading package that
transparently converts synchronous system calls into
exception-less ones [28]. The goal of this work is to ex-
tend the original proposal by enabling the explicit use of
exception-less system calls by event-driven applications.

In this section, we briefly describe the original
exception-less system call implementation (FlexSC) for
the benefit of the reader; those readers already familiar
with exception-less system calls may skip to Section 4.
For space considerations, this is a simple overview of
exception-less system calls; for more information, we re-
fer the reader to the original exception-less system calls
proposal [28].

3.1 Exception-Less System Calls
The design of exception-less system calls consists of two
components: (1) an exception-less interface for user-
space threads to register system calls, along with (2) an
in-kernel threading system that allows the delayed (asyn-
chronous) execution of system calls, without interrupting
or blocking the thread in user-space.

3.1.1 Exception-Less Syscall Interface

The interface for exception-less system calls is simply a
set of memory pages that is shared between user and ker-
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number of
arguments status arg 0 arg 6 return
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Figure 2: 64-byte syscall entry from the syscall page.
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Figure 3: Illustration of synchronous and exception-less system
call invocation. The left diagram shows the sequential nature
of exception-based system calls, while the right diagram depicts
exception-less user and kernel communication through shared
memory.

nel space. The shared memory pages, henceforth referred
to as syscall pages, contain exception-less system call en-
tries. Each entry records the request status, system call
number, arguments, and return value (Figure 2).

The traditional invocation of a system call occurs by
populating predefined registers with call information and
issuing a specific machine instruction that immediately
raises an exception. In contrast, to issue an exception-
less system call, user-mode must find a free entry in the
syscall page and populate the entry with the appropriate
values using regular store instructions. The user thread
can then continue executing without interruption. It is the
responsibility of the user thread to later verify the comple-
tion of the system call by reading the status information in
the entry. None of these operations, issuing a system call
or verifying its completion, causes exceptions to be raised.

3.1.2 Decoupling Execution from Invocation

Along with the exception-less interface, the operating sys-
tem kernel must support delayed execution of system
calls. Unlike exception-based system calls, the exception-
less system call interface does not result in an explicit ker-
nel notification, nor does it provide an execution stack. To
support decoupled system call execution, we use a spe-
cial type of kernel thread, which we call syscall thread.
Syscall threads always execute in kernel mode, and their
sole purpose is to pull requests from syscall pages and
execute them on behalf of the user thread. Figure 3 il-
lustrates the difference between traditional synchronous
system calls, and our proposed split system call model.

3.2 Implementation – FlexSC

Our implementation of the exception-less system call
mechanism is called FlexSC (Flexible System Call) and
was prototyped as an extension to the Linux kernel. Two
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new system calls were added to Linux as part of FlexSC,
flexsc_register and flexsc_wait.

flexsc_register() This system call is used by pro-
cesses that wish to use the FlexSC facility. Registration
involves two steps: mapping one or more syscall pages
into user-space virtual memory space, and spawning one
syscall thread per entry in the syscall pages.

flexsc_wait() The decoupled execution model of
exception-less system calls creates a challenge in user-
mode execution, namely what to do when the user-space
thread has nothing more to execute and is waiting on
pending system calls. The solution we adopted is to re-
quire that the user explicitly communicate to the kernel
that it cannot progress until one of the issued system calls
completes by invoking the flexsc_wait system call
(this is akin to aio_suspend() or epoll_wait()
calls). FlexSC will later wake up the user-space thread
when at least one of the posted system calls are complete.

3.2.1 Syscall Threads

Syscall thread is the mechanism used by FlexSC to allow
for exception-less execution of system calls. The Linux
system call execution model has influenced some imple-
mentation aspects of syscall threads in FlexSC: (1) the vir-
tual address space in which system call execution occurs
is the address space of the corresponding process, and (2)
the current thread context can be used to block execution
should a necessary resource not be available (for example,
waiting for I/O).

To resolve the virtual address space requirement,
syscall threads are created during flexsc_register.
Syscall threads are thus “cloned” from the registering pro-
cess, resulting in threads that share the original virtual ad-
dress space. This allows the transfer of data from/to user-
space with no modification to Linux’s code.

FlexSC would ideally never allow a syscall thread to
sleep. If a resource is not currently available, notification
of the resource becoming available should be arranged,
and execution of the next pending system call should be-
gin. However, implementing this behavior in Linux would
require significant changes and a departure from the basic
Linux architecture. Instead, we adopted a strategy that
allows FlexSC to maintain the Linux thread blocking ar-
chitecture, as well as requiring only minor modifications
(3 lines of code) to the Linux context switching code, by
creating multiple syscall threads for each process that reg-
isters with FlexSC.

In fact, FlexSC spawns as many syscall threads as there
are entries available in the syscall pages mapped in the
process. This provisions for the worst case where ev-
ery pending system call blocks during execution. Spawn-
ing hundreds of syscall threads may seem expensive, but
Linux in-kernel threads are typically much lighter weight

than user threads: all that is needed is a task_struct
and a small, 2-page, stack for execution. All the other
structures (page table, file table, etc.) are shared with the
user process. In total, only 10KB of memory is needed
per syscall thread.

Despite spawning multiple threads, only one syscall
thread is active per application and core at any given point
in time. If a system call does not block, then all the work
is executed by a single syscall thread, while the remain-
ing ones sleep on a work-queue. When a syscall thread
needs to block, for whatever reason, immediately before
it is put to sleep, FlexSC notifies the work-queue, and an-
other thread wakes up to immediately start executing the
next system call. Later, when resources become free, cur-
rent Linux code wakes up the waiting thread (in our case, a
syscall thread), and resumes its execution, so it can post its
result to the syscall page and return to wait in the FlexSC
work-queue.

As previously described, there is never more than one
syscall thread concurrently executing per core, for a given
process. However in the multicore case, for the same pro-
cess, there can be as many syscall threads as cores con-
currently executing on the entire system. To avoid cache-
line contention of syscall pages amongst cores, before a
syscall thread begins executing calls from a syscall page,
it locks the page until all its submitted calls have been
issued. Since FlexSC processes typically map multiple
syscall pages, each core on the system can schedule a
syscall thread to work independently, executing calls from
different syscall pages.

4 Libflexsc: Asynchronous system call and
notification library

To allow event-driven applications to interface with
exception-less system calls, we have designed and im-
plemented a simple asynchronous system call notification
library, libflexsc. Libflexsc provides an event loop for
the program, which must register system call requests,
along with callback functions. The main event loop
on libflexsc invokes the corresponding program provided
callback when the system call has completed.

The event loop and callback handling in libflexsc was
inspired by the libevent asynchronous event notification
library [24]. The main difference between these two li-
braries is that libevent is designed to monitor low-level
events, such as changes in the availability of input or out-
put, and operates at the file descriptor level. The appli-
cation is notified of the availability, but its intended op-
eration is still not guaranteed to succeed. For example,
a socket may contain available data to be read, but if the
application requires more data than is available, it must
restate interest in the event to try again. With libflexsc,
on the other hand, events correspond to the completion of
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1 conn master;
2
3 int main(void)
4 {
5 /* init library and register with kernel */
6 flexsc_init();
7
8 /* not performance critical,
9 do synchronously */

10 master.fd = bind_and_listen(PORT_NUMBER);
11
12 /* prepare accept */
13 master.event->handler = conn_accepted;
14 flexsc_accept(&master.event, master.fd,
15 NULL, 0);
16
17 /* jump to event loop */
18 return flexsc_main_loop();
19 }
20
21 /* Called when accept() returns */
22 void conn_accepted(conn *c)
23 {
24 conn *new_conn = alloc_new_conn();
25
26 /* get the return value of the accept() */
27 new_conn->fd = c->event->ret;
28 new_conn->event->handler = data_read;
29
30 /* issue another accept on the master socket */
31 flexsc_accept(&c->event, c->fd, NULL, 0);
32
33 if (new_conn->fd != -1)
34 flexsc_read(&new_conn->event, new_conn->fd,
35 new_conn->buf, new_conn->size);
36 }

36 void data_read(conn *c)
37 {
38 char *reply_file;
39
40 /* read of 0 means connection closed */
41 if (c->event->ret == 0) {
42 flexsc_close(NULL, c->fd);
43 return;
44 }
45
46 reply_file = parse_request(c->buf, c->event->ret);
47
48 if (reply_file) {
49 c->event->handler = file_opened;
50 flexsc_open(&c->event, c->fd, reply_file,
51 O_RDONLY);
52 }
53 }
54
55 void file_opened(conn *c)
56 {
57 int file_fd;
58
59 file_fd = c->event->ret;
60 c->event->handler = file_sent;
61 /* issue asynchronous sendfile */
62 flexsc_sendfile(&c->event, c->fd, file_fd,
63 NULL, file_len);
64 }
65
66 void file_sent(conn *c)
67 {
68 /* no callback necessary to handle close */
69 flexsc_close(NULL, c->fd);
70 }

Figure 4: Example of network server using libflexsc.

a previously issued exception-less system call. With this
model, which is closer to that of asynchronous I/O, it is
less likely that applications need to include cumbersome
logic to retry incomplete or failed operations.

Contrary to common implementations of asynchronous
I/O, FlexSC does not provide a signal or interrupt based
completion notification. Completion notification is a
mechanism for the kernel to notify a user thread that a pre-
viously issued asynchronous request has completed. It is
often implemented through a signal or other upcall mech-
anism. The main reason FlexSC does not offer completion
notification is that signals and upcalls entail the same pro-
cessor performance problems of system calls: direct and
indirect processor pollution due to switching between ker-
nel and user execution.

To overcome the lack of completion notifications, the
libflexsc event main loop must poll the syscall pages cur-
rently in use for completion of system calls. To minimize
overhead, the polling for system call completion is per-
formed only when all currently pending callback handlers
have completed. Given enough work (e.g., handling many
connections concurrently), polling should happen infre-
quently. In the case that all callback handlers have ex-
ecuted, and no new system call has completed, libflexsc
falls back on calling flexsc_wait() (described in
Section 3.2).

4.1 Example server

A simplified implementation of a network server using
libflexsc is shown in Figure 4. The program logic is di-
vided into states which are driven by the completion of
a previously issued system call. The system calls used
in this example that are prefixed with “flexsc_” are is-
sued using the exception-less interface (accept, read,
open, sendfile, close). When the library detects the
completion of a system call, its corresponding callback
handler is invoked, effectively driving the next stage of
the state machine. During normal operation, the execution
flow of this example would progress in the following or-
der: (1) main, (2) conn_accepted, (3) data_read,
(4) file_opened, and (5) file_sent. As men-
tioned, file and network descriptors do not need to be
marked as non-blocking.

It is worth noting that stages may generate several sys-
tem call requests. For example, the conn_accepted()
function not only issues a read on the newly accepted
connection, it also issues another accept system call on
the master listening socket in order to pipeline further in-
coming requests. In addition, for improved efficiency, the
server may choose to issue multiple accepts concurrently
(not shown in this example). This would allow the operat-
ing system to accept multiple connections without having
to first execute user code, as is the case with traditional
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event-based systems, thus reducing the number of mode
switches for each new connection.

Finally, not all system calls must provide a callback, as
a notification may not be of interest to the programmer.
For example, in the file_sent function listed in the
simplified server code, the request to close the file does
not provide a callback handler. This may be useful if the
completion of a system call does not drive an additional
state in the program and the return code of the system call
is not of interest.

4.2 Cancellation support
A new feature we had to add to FlexSC in order to support
event-based applications is the ability to cancel submitted
system calls. Cancellation of in-progress system calls may
be necessary in certain cases. For example, servers typi-
cally implement a timeout feature for reading requests on
connections. With non-blocking system calls, reads are
implemented by waiting for a notification that the socket
has become readable. If the event does not occur within
the timeout grace period, the connection is closed. With
exception-less system calls, the read request is issued be-
fore the server knows if or when new data will arrive (e.g.,
the conn_accepted function in Figure 4). To properly
implement a timeout, the application must cancel pending
reads if the grace period has passed.

To implement cancellation in FlexSC, we introduced a
new cancel status value to be used in the status field of the
syscall entry (Figure 2). When syscall threads, in the ker-
nel, check for new submitted work, they now also check
for entries in cancel state. To cancel the in-progress oper-
ation, we first identify the syscall thread that is executing
the request that corresponds to the cancelled entry. This is
easily accomplished since each core has a map of syscall
entries to syscall threads for all in-progress system calls.
Once identified, a signal is sent to the appropriate syscall
thread to interrupt its execution. In the Linux kernel, sig-
nal delivery that occurs during system call execution inter-
rupts the system call even if the execution context is asleep
(e.g., waiting for I/O). When the syscall thread wakes up,
it sets the return value to EINTR and marks the entry as
done in the corresponding syscall entry, after which, the
user-mode process knows that the system call has been
cancelled and the syscall entry can be reused.

Due to its asynchronous implementation, cancellation
requests are not guaranteed to succeed. The window of
time between when the application modifies the status
field and when the syscall thread is notified of cancellation
may be sufficiently long for the system call to complete
(successfully). The application must check the system call
return code to disambiguate between successly completed
calls and cancelled ones. This behavior is analogous to
cancellation support of asynchronous I/O implemented by
several UNIX systems (e.g., aio_cancel).

Server Total lines Lines of code Files
of code modifiied modified

memcached 8356 293 3
nginx 82819 255 16

Table 2: Statistics regarding the code size and modifications
needed to port applications to libflexsc, measured in lines of
code and number of files.

5 Exception-Less Memcached and nginx

This section describes the process of porting two popular
event-based servers to use exception-less system calls. In
both cases, the applications were modified to conform to
the libflexsc interface. However, we strived to maintain
the structure of code as similar to the original as possible,
to make performance comparisons meaningful.

To reduce the complexity of porting these applications
to exception-less system calls, we exploited the fact that
FlexSC allows exception-less system calls to co-exist with
synchronous ones in the same process. Consequently, we
have not modified all system calls to use exception-less
versions. We focused on the system calls that were issued
in the code paths that are involved in handling requests
(which correspond to the hot paths during normal opera-
tion).

5.1 Memcached - Memory Object Cache

Memcached is a distributed memory object caching sys-
tem, built as an in-memory key-value store [12]. It is typ-
ically used to cache results from slower services such as
databases and web servers. It is currently used by several
popular web sites as a way to improve the performance
and scalability of their web services. We used version
1.4.5 as a basis for our port.

To achieve good I/O performance, memcached was
built as an event-based server. It uses libevent to make
use of non-blocking execution available on modern oper-
ating system kernels. For this reason, porting memcached
to use exception-less system calls through libflexsc was
the simplest of the two ports. Table 2 lists the number of
lines of code and the number of files that were modified.
For memcached, the majority of the changes were done
in a single file (memcached.c), and the changes were
mostly centered around modifying system calls, as well
as calls to libevent.

Multicore/multiprocessor support has been introduced
to memcached, despite most of the code assuming single-
threaded execution. To support multiple processors, mem-
cached spawns worker threads which communicate via a
pipe to a master thread. The master thread is responsible
for accepting incoming connections and handing them to
the worker threads.
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5.2 nginx Web Server
Nginx is an open-source HTTP web server considered to
be light-weight and high-performant; it is currently one of
the most widely deployed open-source web servers [26].
Nginx implements I/O concurrency by natively using non-
blocking and asynchronous operations available in the op-
erating system kernel. On Linux, nginx uses the epoll
notification system. We based our port on the 0.9.2 devel-
opment version of nginx.

Despite having had to change a similar number of lines
as with memcached, the port to nginx was more involved,
evidenced by the number of files changed (Table 2). This
was mainly due to the fact that nginx’s core code is signif-
icantly larger than that of memcached’s (about 10x), and
its state machine logic is more complex.

We substituted all system calls that could potentially be
invoked while handling client requests to use the corre-
sponding version in libflexsc. The system calls that were
associated with a file descriptor based event handler (such
as accept, read and write) were straightforward to
implement, as these were already programmed as separate
stages in the code. However, the system calls that were
previously invoked synchronously (e.g., open, fstat,
and getdents) needed more work. In most cases, we
needed to split a single stage of the state machine into two
or more stages to allow asynchronous execution of these
system calls. In a few cases, such as setsockopt and
close, we executed the calls asynchronously, without a
callback notification, which did not required a new stage
in the flow of the program.

Finally, for system calls that not only return a status
value, but also fill in a user supplied memory pointer with
a data structure, we had to ensure that this memory was
correctly managed and passed to the newly created event
handler. This requirement prevented the use of stack allo-
cated data structures for exception-less system calls (e.g.,
programs typically use stack allocated “struct stat”
data structure to pass to the fstat system call).

6 Experimental Evaluation

In this section, we evaluate the performance of exception-
less system call support for event-driven servers. We
present experimental results of the two previously dis-
cussed event-driven servers: memcached and nginx.

FlexSC was implemented in the Linux kernel, version
2.6.33. The baseline measurements were collected using
unmodified Linux (same version), with the servers con-
figured to use the epoll interface. In the graphs shown,
we identify the baseline configuration as “epoll”, and the
system with exception-less system calls as “flexsc”.

The experiments presented in this section were run on
an Intel Nehalem (Core i7) processor with the character-
istics shown in Table 3. The processor has 4 cores, each

Component Specification
Cores 4

Cache line 64 B for all caches
Private L1 i-cache 32 KB, 3 cycle latency
Private L1 d-cache 32 KB, 4 cycle latency
Private L2 cache 512 KB, 11 cycle latency
Shared L3 cache 8 MB, 35-40 cycle latency

Memory 250 cycle latency (avg.)
TLB (L1) 64 (data) + 64 (instr.) entries
TLB (L2) 512 entries

Table 3: Characteristics of the 2.3GHz Core i7 processor.

with 2 hyper-threads. We disabled the hyper-threads, as
well as the “TurboBoost” feature, for all our experiments
to more easily analyze the measurements obtained.

For the experiments involving both servers, requests
were generated by a remote client connected to our test
machine through a 1 Gbps network, using a dedicated
router. The client machine contained a dual core Core2
processor, running the same Linux installation as the test
machine.

All values reported in our evaluation represent the av-
erage of 5 separate runs.

6.1 Memcached
The workload we used to drive memcached is the mem-
slap benchmark that is distributed with the libmemcached
client library. The benchmark performs a sequence of
memcache get and set operations, using randomly gen-
erated keys and data. We configured memslap to issue
10% of set requests and 90% of get requests.

For the baseline experiments (Linux epoll), we con-
figured memcached to run with the same number of
threads as processor cores, as we experimentally ob-
served this yielded the best baseline performance. For our
exception-less version, a single memcached thread was
enough to generate enough kernel work to keep all cores
busy.

Figure 5 shows the throughput obtained from executing
the baseline and exeception-less memcached on 1, 2 and
4 cores. We varied the number of concurrent connections
generating requests from 1 to 1024. For the single core
experiments, FlexSC employs system call batching, and
for the multicore experiments it additionally dynamically
distributed system calls to other cores to maximize core
locality.

The results show that with 64 or more concurrent re-
quests, memcached programmed to libflexsc outperforms
the version using Linux epoll. Throughput is improved
by as much as 25 to 35%, depending on the number of
cores used.

To better understand the source of performance im-
provement, we collected several performance metrics of
the processor using hardware performance counters. Fig-
ure 6 shows the effects of executing with FlexSC, while
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Figure 5: Comparison of Memcached throughput of Linux
epoll and FlexSC executing on 1, 2 and 4 cores.

servicing 768 concurrent memslap connections. The most
important metric listed is the cycles per instruction (CPI)
of the user and kernel mode for the different setups, as it
summarizes the efficiency of execution (the lower the CPI,
the more efficient the execution). The other values listed
are normalized values of misses on the listed structure (the
lower the misses, the more efficient the execution).

The CPI of both kernel and user execution, on 1 and 4
cores, is improved with FlexSC. On a single core, user-
mode CPI decreases by as much as 22%, and on the 4
cores, we observe a 52% decrease in user-mode CPI. The
data shows that, for memcached, the improved execution
comes from significant reduction in misses in the perfor-
mance sensitive L1, both in the data and instruction part
(labelled as d-cache and i-cache).

The main reason for this drastic increase of user CPI on
4 cores is that with traditional system calls, a user-mode
thread must occupy each core to make use of it. With
FlexSC, however, if a single user-mode thread generates
many system requests, they can be distributed and ser-

viced to remote cores. In this experiment, a single mem-
cached thread was able to generate enough requests to oc-
cupy the remaining 3 cores. This way, the core executing
the memcached core was predominantly filled with state
from the memcached process.

6.2 nginx
To evaluate the effect of exception-less execution of the
nginx web server, we used two workloads: ApacheBench
and a modified version of httperf. For both workloads,
we present results with nginx execution on 1 and 2 cores.
The results obtained with 4 cores were not meaningful
as the client machine could not keep up with the server,
making the client the bottleneck. For the baseline experi-
ments (Linux epoll), we configured nginx to spawn one
worker process per core, which nginx automatically as-
signs and pins to separate cores. With FlexSC, a single
nginx worker thread was sufficient to keep all cores busy.

6.2.1 ApacheBench

ApacheBench is a HTTP workload generator that is dis-
tributed with Apache. It is designed to stress-test the Web
server determining the number of requests per second that
can be serviced, with varying number of concurrent re-
quests.

Figure 7 shows the throughput numbers obtained on
1 and 2 cores when varying the number of concurrent
ApacheBench client connections issuing requests to the
nginx server. For this workload, system call batching on
one core provides significant performance improvements:
up to 70% with 256 concurrent requests. In the 2 core
execution, we see that FlexSC provides a consistent im-
provement with 16 or more concurrent clients, achieving
up to 120% higher throughput, showing the added benefit
of dynamic core specialization.

Besides aggregate throughput, latency of individual re-
quests is an important metric when evaluating perfor-
mance of web servers. Figure 8 reports the mean latency,
as reported by the client, with 256 concurrent connections.
FlexSC reduces latency by 42% in single core execution,
and 58% in duo core execution. It is also interesting to
note that adding a second core helps to reduce the average
latency of servicing requests with FlexSC, which is not
the case when using the epoll facility.

6.2.2 httperf

The httperf HTTP workload generator was built as a
more realistic measurement tool for web server per-
formance [19]. In particular, it supports session log
files, and models a partially open system (in contrast to
ApacheBench, which models a closed system) [27]. For
this reason, we do not control the number of concurrent
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Figure 6: Comparison of processor performance metrics of Memcached execution using Linux epoll and FlexSC on 1 and 4 cores,
while servicing 768 concurrent memslap connections. All values are normalized to baseline execution (epoll). The CPI columns
show the normalized cycles per instruction, while the other columns depict the normalized misses of each processor structure (lower
is better in all cases).
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Figure 7: Comparison of nginx performance with the ApacheBench when executing with Linux epoll and FlexSC on 1 and 2 cores.
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Figure 8: Comparison of nginx latency replying to 256 concur-
rent ApacheBench requests when executing with Linux epoll
and FlexSC on 1 and 2 cores.

connections to the server, but instead the request arrival
rate. The number of concurrent connections is determined
by how fast the server can satisfy incoming requests.

We modified httperf (we used the latest version, 0.9.0)
in order for it to properly handle large number of concur-
rent connections. In its original version, httperf uses the
select system call to manage multiple connections. On
Linux, this restricts the number of connections to 1024,
which we found insufficient to fully stress the server. We
modified httperf to use the epoll interface, allowing it
to handle several thousand concurrent connections. We

verified that the results of our modified httperf were sta-
tistically similar to the original httperf, when using less
than 1024 concurrent connections.

We configured httperf to connect using HTTP 1.1 pro-
tocol, and issue 20 requests per connection. The session
log contained requests to files ranging from 64 bytes to 8
kilobytes. We did not add larger files to the session as our
network infrastructure is modest, at 1Gpbs, and we did not
want the network to become a source of bottleneck.

Figure 9 shows the throughput of nginx executing on
1 and 2 cores, measured in megabits per second, ob-
tained when varying the request rate of httperf. Both
graphs show that the throughput of the server can sat-
isfy the request rate up to a certain value. After that the
throughput is relatively stable and constant. For the single
core case, the throughput of Linux epoll stabilizes after
20,000 requests per second, while with FlexSC, through-
put increases up to 40,000 requests. Furthermore, FlexSC
outperforms Linux epoll by as much as 120%, when
httperf issues 50,000 requests per second.

In the case of 2 core execution, nginx with Linux
epoll reaches peak throughput at 35,000 requests per
second, while FlexSC sustains improvements with up to
60,000 requests per second. In this case, the difference in
throughput, in megabits per second, is as much as 77%.
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Figure 9: Comparison of nginx performance with the httperf when executing with Linux epoll and FlexSC on 1 and 2 cores.
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Figure 10: Comparison of processor performance metrics of nginx execution using epoll and FlexSC on 1 and 2 cores, while
servicing 40,000 and 60,000 req/s, respectively. Values are normalized to baseline execution (epoll). The CPI columns show the
normalized cycles per instruction, while the other columns depict the normalized misses of each processor structure (lower is better
in all cases).

Similarly to the analysis of memcached, we collected
processor performance metrics using hardware perfor-
mance counters to analyze the execution of nginx with
httperf. Figure 10 shows the several metrics, normalized
to the baselinux (Linux epoll) execution. The results
show that the efficiency of user-mode execution doubles,
in the single core case, and improves by 83% on 2 cores.
Kernel-mode execution improves efficiency by 25% and
21%, respectively. For nginx, not only are the L1 instruc-
tion and data caches better utilized (we observe less than
half of the miss ratio in these structures), but the private
L2 cache also observes miss rate reduction of less than
half of the baseline.

Although we observe increase of some metrics, such as
the TLB and kernel-mode L3 misses, the absolute values
are small enough that it does not affect performance sig-
nificantly. For example, the increase in 80% of kernel-
mode L3 misses in the 1 core case corresponds to the
misses per kilo instructions increasing from 0.51 to 0.92
(that is, for about every 2,000 instructions, an extra L3
miss is observed). Similarly, the 73% increase in misses
of the user-mode TLB in the 2 core execution corresponds
to only 4 extra TLB misses for every 1,000 instructions.

The values for the hardware performance informa-
tion collected during execution driven by ApacheBench

showed similar trends (not shown in the interest of
space).

7 Discussion: Scaling the Number of Con-
current System Calls

One concern not addressed in this work is that of effi-
ciently handling applications that require a large number
of concurrent outstanding system calls. Specifically, there
are two issues that can hamper scaling with the number
of calls: (1) the exception-less system call interface, and
(2) the requirement of one syscall thread per outstanding
system call. We briefly discuss mechanisms to overcome
or alleviate these issues.

The exception-less system call interface, primarily
composed of syscall entries, requires user and kernel code
to perform linear scans of the entries to search for status
updates. If the rate of entry modifications does not grow in
same proportion as the total number of entries, the over-
head of scanning, normalized per modification, will in-
crease. A concrete example of this is a server servicing
a large number of slow or dormant clients, resulting in
a large number of connections that are infrequently up-
dated. In this case, requiring linear scans on syscall pages
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is inefficient.
Instead of using syscall pages, the exception-less sys-

tem call interface could be modified to implement two
shared message queues: an incoming queue, with system
calls requests made by the application, and an outgoing
queue, composed of system call requests serviced by the
kernel. A queue based interface would potentially com-
plicate user-kernel communication, but would avoid the
overheads of linear scans across outstanding requests.

Another scalability factor to consider is the require-
ment of maintaining a syscall thread per outstanding sys-
tem call. Despite the modest memory footprint of kernel
threads and low overhead of switching threads that share
address spaces, these costs may become non-negligible
with hundreds of thousands or millions of outstanding
system calls.

To avoid these costs, applications may still utilize the
epoll facility, but through the exception-less interface.
This solution, however, would only work for resources
that are supported by epoll. A more comprehensive so-
lution would be to restructure the Linux kernel to support
completely non-blocking kernel code paths. Instead of re-
lying on the ability to block the current context of exe-
cution, the kernel could enqueue requests for contended
resources, while providing a mechanism to continue the
execution of enqueued requests when resources become
available. With a non-blocking kernel structure, a single
syscall thread would be sufficient to service any number
of syscall requests.

One last option to mitigate both the interface and
threading issues, that does not involve changes to FlexSC,
is to require user-space to throttle the number of outstand-
ing system calls. In our implementation, throttling can
be enforced within the libflexsc library by allocating a
fixed number of syscall pages, and delaying new system
calls whenever all entries are busy. The main drawback of
this solution is that, in certain cases, extra care would be
necessary to avoid a standstill situation (lack of forward
progress).

8 Related Work

8.1 Operating System Support for I/O Con-
currency

Over the years, there have been numerous proposals and
studies exploring operating system support for I/O concur-
rency. Due to space constraints, we will briefly describe
previous work that is directly related to this proposal.

Perhaps the most influential work in this area is Sched-
uler Activations that proposed addressing the issue of pre-
empting user-mode threads by returning control of execu-
tion to a user-mode scheduler, through a scheduler activa-
tion, upon experiencing a blocking event in the kernel [2].

Elmeleegy et al. proposed lazy asynchoronous I/O, a
user-level library that uses Scheduler Activations to sup-
port event-driven programming [11]. LAIO is the pro-
posal that most closely resembles ours. However, in
LAIO, system calls are still exception-based, and tenta-
tively execute synchronously. Since LAIO makes use of
scheduler activations, if a blocking condition is detected,
a continuation is created, allowing the user thread to con-
tinue execution. Recently, the Linux community has pro-
posed a mechanism similar to LAIO for implementing
non-blocking system calls [8].

Banga et al. are among the first to explore the con-
struction of generic event notification infrastructure un-
der UNIX [4]. Their work inspired the implementation
of the kqueue interface available on BSD and Linux ker-
nels [16]. While their proposal does encapsulate more re-
sources than descriptor based ones, explicit kernel support
is needed for each type of event. In contrast, exception-
less system calls supports all system calls without code
specific to each system call or resource.

The main difference between many of the proposals for
non-blocking or asynchronous execution and FlexSC is
that none of the non-blocking system call proposals com-
pletely decouple the invocation of the system call from its
execution. As we have discussed, the flexibility resulting
from this decoupling is crucial for efficiently exploring
optimizations such as system call batching and core spe-
cialization.

8.2 Locality of Execution and Multicores
Several researchers have studied the effects of operating
system execution on application performance [1, 3, 9, 15,
17]. Larus and Parkes also identified processor ineffi-
ciencies of server workloads, although not focusing on
the interaction with the operating system. They proposed
Cohort Scheduling to efficiently execute staged computa-
tions to improve locality of execution [15].

Techniques such as Soft Timers [3] and Lazy Receiver
Processing [10] also address the issue of locality of exe-
cution, from the other side of the compute stack: handling
device interrupts. Both techniques describe how to limit
processor interference associated with interrupt handling,
while not impacting the latency of servicing requests.

Computation Spreading, proposed by Chakraborty et
al., is similar to the multicore execution of FlexSC [9].
They introduced processor modifications to allow for
hardware migration of threads, and evaluated the effects
on migrating threads to specialize cores when they enter
the kernel. Their simulation-based results show an im-
provement of up to 20% on Apache; however, they explic-
itly do not model TLBs and provide for fast thread migra-
tion between cores. On current hardware, synchronous
thread migration between cores requires a costly inter-
processor interrupt.
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Recently, both Corey and Factored Operating System
(fos) have proposed dedicating cores for specific operating
system functionality [31, 32]. There are two main differ-
ences between the core specialization possible with these
proposals and FlexSC. First, both Corey and fos require a
micro-kernel design of the operating system kernel in or-
der to execute specific kernel functionality on dedicated
cores. Second, FlexSC can dynamically adapt the propor-
tion of cores used by the kernel, or cores shared by user
and kernel execution, depending on the current workload
behavior.

Explicit off-loading of select OS functionality to cores
has also been studied for performance [20, 21] and power
reduction in the presence of single-ISA heterogeneous
multicores [18]. While these proposals rely on expensive
inter-processor interrupts to offload system calls, we hope
FlexSC can provide for a more efficient and flexible mech-
anism that can be used by such proposals.

Zeldovich et al. introduced libasync-smp, a library that
allows event-driven servers to execute on multiprocessors
by having programmers specify events that can be safely
handled concurrently [33]. Libasync-smp was designed to
use existing asynchronous I/O facilities of UNIX kernels,
but could be extended to rely on exception-less system
calls instead.

8.3 System Call Batching

The idea of batching calls in order to save crossings
has been extensively explored in the systems community.
Closely related to this work is the work by Bershad et
al. on user-level remote procedure calls (URPC) [6]. In
particular, the use of shared memory to communicate re-
quests, allied with the use of light-weight threads is com-
mon in both URPC and FlexSC. In this work, we explored
directly exposing the communication mechanism to the
application thereby removing the reliance on user-level
threads.

Also related to exception-less system calls are multi-
calls, which are used in both operating systems and par-
avirtualized hypervisors as a mechanism to address the
high overhead of mode switching. Cassyopia is a compiler
targeted at rewriting programs to collect many indepen-
dent system calls, and submitting them as a single multi-
call [25]. An interesting technique in Cassyopia, which
could be eventually explored in conjunction with FlexSC,
is the concept of a looped multi-call where the result of
one system call can be automatically fed as an argument to
another system call in the same multi-call. In the context
of hypervisors, both Xen and VMware currently support a
special multi-call hypercall feature [5][29].

9 Concluding Remarks

Event-driven architectures continue to be a popular de-
sign option for implementing high-performance and scal-
able server applications. This paper proposes the use
of exception-less system calls as the principal operat-
ing system primitive for efficiently supporting I/O con-
currency and event-driven execution. We describe sev-
eral advantages of exception-less system calls over tra-
ditional support for I/O concurrency and event notifica-
tion facilities, including: (1) any system call can be in-
voked asynchronously, even system calls that are not file
descriptor-based, (2) support in the operating system ker-
nel is non-intrusive as code changes are not required to
each system call, (3) processor efficiency is high since
mode switches are mostly avoided when issuing or exe-
cuting asynchronous operations, and (4) enabling multi-
core execution for event-driven programs is easier, given
that a single user-mode execution context can generate a
sufficient number of requests to keep multiple processors/-
cores busy with kernel execution.

We described the design and implementation of
libflexsc, an asynchronous system call and notification
library that makes use of our Linux exception-less sys-
tem call implementation, called FlexSC. We show how
libflexsc can be used to support current event-driven
servers by porting two popular server applications to the
exception-less execution model: memcached and nginx.

The experimental evaluation of libflexsc demonstrates
that the proposed exception-less execution model can
significantly improve the performance and efficiency of
event-driven servers. Specifically, we observed that
exception-less execution increases the throughput of
memcached by up to 35%, and that of nginx by up to
120%. We show that the improvements, in both cases, are
derived from more efficient execution through improved
use of processor resources.
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Abstract
We present algorithms for shrinking and expanding a
hash table while allowing concurrent, wait-free, linearly
scalable lookups. These resize algorithms allow Read-
Copy Update (RCU) hash tables to maintain constant-
time performance as the number of entries grows, and re-
claim memory as the number of entries decreases, with-
out delaying or disrupting readers. We call the resulting
data structure a relativistic hash table.

Benchmarks of relativistic hash tables in the Linux
kernel show that lookup scalability during resize im-
proves 125x over reader-writer locking, and 56% over
Linux’s current state of the art. Relativistic hash lookups
experience no performance degradation during a resize.
Applying this algorithm to memcached removes a scala-
bility limit for get requests, allowing memcached to scale
linearly and service up to 46% more requests per second.

Relativistic hash tables demonstrate the promise of
a new concurrent programming methodology known
as relativistic programming. Relativistic programming
makes novel use of existing RCU synchronization prim-
itives, namely the wait-for-readers operation that waits
for unfinished readers to complete. This operation, con-
ventionally used to handle reclamation, here allows or-
dering of updates without read-side synchronization or
memory barriers.

1 Introduction

Hash tables offer applications and operating systems
many convenient properties, including constant average
time for accesses and modifications [3, 10]. Hash tables
used in concurrent applications require some sort of syn-
chronization to maintain internal consistency. Frequently
accessed hash tables will become application bottlenecks
unless this synchronization scales to many threads on
many processors.

Existing concurrent hash tables primarily make use of
mutual exclusion, in the form of locks. These approaches
do not scale, due to contention for those locks. Alterna-
tive implementations exist, using non-blocking synchro-
nization or transactions, but many of these techniques
still require expensive synchronization operations, and

still do not scale well. Running any of these hash-table
implementations on additional processors does not pro-
vide a proportional increase in performance.

One solution for scalable concurrent hash tables
comes in the form of Read-Copy Update (RCU) [18,
16, 12]. Read-Copy Update provides a synchronization
mechanism for concurrent programs, with very low over-
head for readers [13]. Thus, RCU works particularly
well for data structures with significantly more reads than
writes; this category includes many data structures com-
monly used in operating systems and applications, such
as read-mostly hash tables.

Existing RCU-based hash tables use open chaining,
with RCU-based linked lists for each hash bucket. These
tables support insertion, removal, and lookup operations
[13]. Our previous work introduced an algorithm to
move hash items between hash buckets due to a change
in the key [24, 23], making RCU-based hash tables even
more broadly usable.

Unfortunately, RCU-based hash tables still have a ma-
jor deficiency: they do not support dynamic resizing.

The performance of a hash table depends heavily on
the number of hash buckets. Making a hash table too
small will lead to excessively long hash chains and poor
performance. Making a hash table too large will con-
sume too much memory, increasing hardware require-
ments or reducing the memory available for other appli-
cations or performance-improving caches. Many users of
hash tables cannot know the proper size of a hash table
in advance, since no fixed size suits all system configura-
tions and workloads, and the system’s needs may change
at runtime. Such systems require a hash table that sup-
ports dynamic resizing.

Resizing a concurrent hash table based on mutual ex-
clusion requires relatively little work: simply acquire the
appropriate locks to exclude concurrent reads and writes,
then move items to a new table. However, RCU-based
hash tables cannot exclude readers. This property proves
critical to RCU’s scalability and performance, since ex-
cluding readers would require expensive read-side syn-
chronization. Thus, any RCU-based hash-table resize al-
gorithm must cope with concurrent reads while resizing.

Solving this problem without reducing read perfor-
mance has seemed intractable. Existing RCU-based scal-
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able concurrent hash tables in the Linux kernel, such
as the directory-entry cache (dcache) [17, 11], do not
support resizing; they allocate a fixed-size table at boot
time based on system heuristics such as available mem-
ory. Nick Piggin proposed a resizing algorithm for
RCU-based hash tables, known as “Dynamic Dynamic
Data Structures” (DDDS) [21], but this algorithm slows
common-case lookups by requiring them to check multi-
ple hash tables, and this slowdown increases significantly
during a resize.

As our primary contribution, we present the first al-
gorithm for resizing an RCU-based hash table with-
out blocking or slowing concurrent lookups. Because
lookups can occur at any time, we keep our relativistic
hash table in a consistent state at all times, and never al-
low a lookup to spuriously miss an entry due to a concur-
rent resize operation. Furthermore, our resize algorithms
avoid copying the individual hash-table nodes, allowing
readers to maintain persistent references to table entries.

A key insight made our relativistic hash table possi-
ble. We use an existing RCU synchronization primi-
tive, the wait-for-readers operation, to control which ver-
sions of the hash-table data structure concurrent readers
can observe. This use of wait-for-readers generalizes
and subsumes its original application of safely manag-
ing memory reclamation. This general-purpose ordering
primitive forms the basis of a new concurrent program-
ming methodology, which we call relativistic program-
ming (RP). Relativistic programming enables scalable,
high-performance data structures previously considered
intractable for RCU.

We use the phrase relativistic programming by anal-
ogy with relativity, in which observers can disagree on
the order of causally unrelated events. Relativistic pro-
gramming aims to minimize synchronization, by allow-
ing reader operations to occur concurrently with writers;
writers may never block readers to enforce a system-wide
serialization of memory operations. Inevitably, then, in-
dependent readers can disagree on the order of unrelated
writer operations, such as the insertion order of two items
into separate hash-table chains; however, writers can still
synchronize to preserve the order of causally related op-
erations. Whereas concurrent programming methodolo-
gies such as transactional memory always preserve the
ordering of even unrelated writes—at significant cost to
performance and scalability, since readers must use syn-
chronization to support blocking or retries—relativistic
programming provides the means to program even com-
plex, whole-data-structure operations such as resizing
with excellent performance and scalability.

Section 2 compares our algorithms to other related
work. Section 3 provides an introduction to RCU and to
the relativistic programming techniques supporting this
work. Section 4 documents our new hash-table resize al-

gorithms, and the corresponding lookup operation. Sec-
tion 5 describes the other hash-table implementations
we tested for comparison. Section 6 discusses the im-
plementation and benchmarking of our relativistic hash-
table algorithm, including both microbenchmarks and
real-world benchmarks. Section 7 presents and analyzes
the benchmark results. Section 8 discusses the future
of the relativistic programming methodology supporting
this work.

2 Related Work

Relativistic hash tables use the RCU wait-for-readers op-
eration to enforce the ordering and visibility of write op-
erations, without requiring synchronization operations in
the reader. This novel use of wait-for-readers evolved
through a series of increasingly sophisticated write-side
barriers. Paul McKenney originally proposed the elim-
ination of read memory barriers by introducing a new
write memory barrier primitive that forced a barrier on all
CPUs via inter-processor interrupts [14]. McKenney’s
later work on Sleepable Read-Copy Update (SRCU) [15]
used the RCU wait-for-readers operation to manage the
order in which write operations became visible to read-
ers, providing the first example of using wait-for-readers
to order non-reclamation operations; this use served the
same function as a write memory barrier, but without re-
quiring a corresponding read memory barrier in every
RCU reader. Philip Howard further refined this approach
in his work on relativistic red-black trees [9], using the
wait-for-readers operation to order the visibility of tree
rotation and balancing operations and prevent readers
from observing inconsistent states. Howard’s work used
wait-for-readers as a stronger barrier than a write mem-
ory barrier, enforcing the order of write operations re-
gardless of the order a reader encounters them in the
data structure. Relativistic programming builds on this
stronger barrier.

Relativistic and RCU-based data structures typically
use mutual exclusion to synchronize between writers.
Philip Howard and Jonathan Walpole [8] demonstrated
an alternative approach, combining relativistic readers
with software transactional memory (STM) writers, and
integrating the wait-for-readers operation into the trans-
action commit. This approach provides scalable high-
performance relativistic readers, while also allowing
scalable writers within the limits of STM. Relativis-
tic transactions could substantially simplify relativis-
tic hash-table writers compared to fine-grained locking,
while still providing good scalability.

Prior attempts to build resizable RCU hash tables have
arisen from the limitations of fixed-size RCU hash tables
in the Linux kernel. Nick Piggin’s DDDS [21] supports
hash-table resizes, but DDDS slows down all lookups by
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requiring checks for concurrent resizes, and furthermore
requires that lookups during resizes examine both the old
and the new structures; relativistic hash tables do nei-
ther. We discuss DDDS further in section 5. Herbert
Xu implemented a resizable multi-hash-table structure
based on RCU, in which every hash-table entry contains
two sets of linked-list pointers so it can appear in the
old and new hash tables simultaneously [25]. Together
with a global version number for the structure, this al-
lows readers to effectively snapshot all links in the hash
table simultaneously. However, this approach drastically
increases memory usage and cache footprint.

Various authors [7, 5, 19, 2] have proposed resizable
concurrent hash tables. Unlike relativistic hash tables,
these algorithms require expensive synchronization op-
erations on reads, such as locks, atomic instructions, or
memory barriers. Furthermore, like DDDS, several of
these algorithms require retries on failure.

Maurice Herlihy and Nir Shavit documented numer-
ous concurrent hash tables, including both open-chained
and closed tables [7]; all of these require expensive syn-
chronization, and some require retries. Gao, Groote, and
Hesselink proposed a lock-free hash table using closed
hashing [5]; their approach relies on atomic operations
and on helping concurrent operations complete.

Maged Michael implemented a lock-free hash table
based on compare and swap (CAS) [19], though he did
not propose a resize algorithm. Michael’s table lookups
avoid most expensive synchronization operations in the
common case (with the exception of read barriers), but
must retry on any concurrent modification. To support
safe memory reclamation, Michael uses hazard pointers
[20], which provide a wait-for-readers operation simi-
lar to that of RCU; hazard pointers can reduce wait-for-
readers latency, but impose higher reader cost [6].

Relativistic hash tables use open hashing with per-
bucket chaining. Closed hash tables, which store entries
inline in the array, can offer smaller lookup cost and bet-
ter cache behavior, but force copies on resize. Closed
tables also require more frequent resizing, as they do not
gracefully degrade in performance when overloaded, but
rather become pathologically more expensive and then
stop working entirely. Depending on the implementa-
tion, removals from the table may not make the table any
emptier, as the entries must remain as “tombstones” to
preserve reader probing behavior.

Cliff Click presented a scalable lock-free resizable
hash for Java based on closed hashing [2]; this hash
avoids most synchronization operations for readers and
writers by leaving the ordering of memory operations
entirely unspecified and reasoning about all possible
resulting memory states and transitions. (Readers re-
quire a read memory barrier but no other synchroniza-
tion. Writers require a CAS but not a write memory

barrier.) Click’s use of state-based reasoning to avoid
ordering provides an interesting and potentially higher-
performance alternative to the causal-order enforcement
in relativistic writers. In contrast with relativistic hash
tables, but like DDDS, Click’s hash-table readers must
probe alternate hash tables during resizing.

Other approaches to resizable hash tables include that
of Ori Shalev and Nir Shavit, who proposed a “split-
ordered list” structure consisting of a single linked list
with hash buckets pointing to intermediate list nodes
[22, 7]. This structure allows resizing by adding or re-
moving buckets, splitting or joining the existing buckets
respectively. This approach keeps the underlying linked
list in a novel sort order based on the hash key, as with
the variation of our algorithms proposed in section 4.3,
to allow splitting or joining buckets without reordering.
Split-ordered lists seem highly amenable to a simple rel-
ativistic implementation, making the lookups scalable
and synchronization-free while preserving the lock-free
modifications and simple resizes; we plan to implement
a relativistic split-ordered list in future work.

Our previous work developed a relativistic algorithm
for moving a hash-table entry from one bucket to another
atomically [24, 23]. This algorithm introduced the no-
tion of cross-linking hash buckets to make entries appear
in multiple buckets simultaneously. However, this move
algorithm required changing the hash key and potentially
copying the entry.

We chose to implement our benchmarking framework
rcuhashbash-resize as a Linux kernel module, as
documented in section 6.1. However, several portable
RCU implementations exist outside the Linux kernel.
Mathieu Desnoyers reimplemented RCU as a POSIX
userspace library, liburcu, for use with pthreads, with
no Linux-specific code outside of optional optimizations
[4]. For our real-world benchmarks with the memcached
key-value storage engine (documented in section 6.2),
we used liburcu to support our modified storage engine.

3 Read-Copy Update Background

Read-Copy Update (RCU) provides synchronization be-
tween readers and writers of a shared data structure.
In sharp contrast to locking, non-blocking synchroniza-
tion, or transactional memory, RCU readers perform no
expensive synchronization operations whatsoever: no
locks, no atomic operations, no compare-and-swap, and
no memory barriers. RCU readers typically incur lit-
tle to no overhead even compared to concurrency-unsafe
single-threaded implementations; furthermore, by avoid-
ing expensive synchronization, RCU readers avoid the
need for communication between threads, allowing wait-
free operation and excellent scalability.

RCU readers execute concurrently, both with each
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other and with writers, and thus readers can potentially
observe writers in progress. (Other concurrent program-
ming models prevent readers from viewing intermediate
memory states via locking or conflict detection.) The
methodologies of RCU-based concurrent programming
primarily address the safe management of reader/writer
concurrency. Since writers may not impede readers in
any way, programmers must reason about the memory
states readers can observe, and avoid exposing inconsis-
tent intermediate states from writers.

Commonly, writers preserve data-structure invariants
by atomically transitioning data structures between con-
sistent states. On all existing CPU architectures, aligned
writes to machine-word-sized memory regions (such as
pointers) have atomic semantics, such that a reader sees
either the old or the new state, with no intermediate
value; thus, structures linked together via pointers sup-
port many structural manipulations via direct updates.
For more complex manipulations, such as insertion of a
new item into a data structure, RCU writers typically al-
locate memory initially unreachable by readers, initialize
it, and then atomically publish it by updating a pointer
in reachable memory. The publish operation requires a
write memory barrier between initialization and publica-
tion, to ensure that readers traversing the pointer will ob-
serve initialized memory. Readers may also require com-
piler directives to prevent certain aggressive optimiza-
tions across the pointer dereference; RCU wraps those
directives into a read primitive.1

These operations allow RCU writers to update data
structures and maintain invariants for readers. However,
RCU writers must also manage object lifetimes, which
requires knowing when readers might hold references to
an item in memory. Unlinking an item from a data struc-
ture makes it unreachable to new readers, but does not
stop accesses from unfinished readers; writers may not
reclaim the unlinked item’s memory until all such read-
ers have completed. This resembles a garbage collection
problem, but RCU must support runtime environments
without automatic garbage collection.

To this end, RCU provides a barrier-like synchroniza-
tion operation called wait-for-readers, which blocks until
all readers which started before the barrier have com-
pleted. Thus, once a writer makes memory unreach-
able from the published data structure, a wait-for-readers
operation ensures that no readers still hold references
to that memory. Wait-for-readers does not prevent new
readers from starting; it simply waits for existing unfin-
ished readers to complete. This barrier operates conser-
vatively: the currently unfinished readers might not hold
references to that item, and the barrier itself may wait
longer than strictly necessary in order to run efficiently or

1On certain obsolete architectures (DEC Alpha), readers must also
use a memory barrier.

batch several reclamations into a single wait operation.
This conservative semantic allows much more efficient
and scalable implementations, particularly for readers.
The portion of a writer that follows a wait-for-readers
barrier often consists only of memory reclamation; be-
cause memory-reclamation operations can safely occur
concurrently and need not occur immediately (assuming
sufficient memory), common RCU APIs also provide an
asynchronous wait-for-readers callback.

However, writers have more reasons to order opera-
tions than just reclaiming memory. Our work on rela-
tivistic programming provides a general framework for
writers to enforce the ordering of operations visible to
readers, using the same wait-for-readers primitive. Rel-
ativistic programming builds on RCU’s key benefits—
minimized communication, minimized expensive syn-
chronization, and readers that run concurrently with
writers—for scalability. We present here a specific ap-
plication of the relativistic programming methodology
to maintain the data-structure invariants of a hash table
while resizing it; section 8 discusses the future develop-
ment of the general methodology to support maintenance
of arbitrary data-structure invariants.

4 Relativistic Hash Tables

Any hash table requires a hash function, which maps en-
tries to hash buckets based on their key. The same key
will always hash to the same bucket; different keys will
ideally hash to different buckets, but may map to the
same bucket, requiring some kind of conflict resolution.
The algorithms described here work with hash tables us-
ing open chaining, where each hash bucket has a linked
list of entries whose keys hash to that bucket. As the
number of entries in the hash table grows, the average
depth of a bucket’s list grows and lookups become less
efficient, necessitating a resize.

Resizing the table requires allocating a new region of
memory for the new number of hash buckets, then link-
ing all the nodes into the new buckets. To allow resizes
to atomically substitute the new hash table for the old,
readers access the hash-table structure through a pointer;
this structure includes the array of buckets and the size
of the table.

Our resize algorithms synchronize with the corre-
sponding lookup algorithm using existing RCU program-
ming primitives. However, any semantically equivalent
implementation will work.

The RP hash lookup reader follows the standard al-
gorithm for open-chain hash table lookups:

1. Snapshot the hash-table pointer in case a resizer re-
places it during the lookup.
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2. Hash the desired key, modulo the number of buck-
ets.

3. Look up the corresponding hash bucket in the array.

4. Traverse the linked list, comparing each entry’s key
to the desired key.

5. If the current entry’s key matches the desired key,
the desired value appears in the same entry; use or
return that value.2

In a concrete implementation, lookup (like any RCU
reader) will include explicit operations delimiting the
start and end of the reader. Depending on the choice
of RCU implementation, these delimiter operations may
compile to compiler directives, to requests to prevent
preemption, to manipulation of CPU-local or thread-
local counters, or to other lightweight operations.

Lookups will traverse the hash table concurrently with
other operations, including resizes. To avoid disrupting
lookups, we require that a lookup can never fail to find
a node, even in the presence of a concurrent resize. This
means that each hash chain must contain those items that
hash to the corresponding bucket. Most prior hash ta-
ble resize algorithms ensure that a hash chain contains
exactly those items. We loosen this constraint, instead
allowing hash chains to ephemerally contain items that
hash to different buckets. We call such hash chains im-
precise since they include all items which hash to that
bucket but may include others as well. Readers and writ-
ers must tolerate imprecise hash chains (although some
operations, such as lookup, require no adaptation). Im-
precise hash chains allow us to resize hash tables and
otherwise manipulate buckets without copying items or
wasting memory.

For simplicity, relativistic hash tables constrain resiz-
ing to change the number of buckets by integral factors—
for instance, doubling or halving the number of buckets.
This guarantees two constraints: First, when shrinking
the table, each bucket of the new table will contain all en-
tries from multiple buckets of the old table; and second,
when growing the table, each bucket of the new table will
contain entries from at most one bucket of the old table.

Based on the first constraint, the RP hash shrink
writer can shrink a table as follows:

1. Allocate the new, smaller table.

2. Link each bucket in the new table to the first bucket
in the old table that contains entries which will hash
to the new bucket.

3. Link the end of each such bucket to the beginning
of the next such bucket; each new bucket will thus

2If the lookup algorithm needs to hold a reference to the entry after
the reader ends, it must take any additional steps to protect that entry
before ending the reader.

chain through as many old buckets as the resize fac-
tor.

4. Set the table size.

5. Publish the new, valid hash table.

6. Wait for readers. No new readers will have refer-
ences to the old hash table.

7. Reclaim the old hash table.

Concurrent inserts and removes must block until the
shrink algorithm finishes publishing the new hash table
and waits for readers to drop references to the old ta-
ble. See section 4.1 for further details on insertion and
removal.

For an example of the shrink algorithm, see figure 1.
Based on the second constraint, the RP hash expand

writer can expand a table as follows:

1. Allocate the new, larger table.

2. For each new bucket, search the corresponding old
bucket for the first entry that hashes to the new
bucket, and link the new bucket to that entry. Since
all the entries which will end up in the new bucket
appear in the same old bucket, this constructs an en-
tirely valid new hash table, but with multiple buck-
ets “zipped” together into a single imprecise chain.

3. Set the table size.

4. Publish the new table pointer. Lookups may now
traverse the new table, but they will not benefit from
any additional efficiency until later steps unzip the
buckets.

5. Wait for readers. All new readers will see the new
table, and thus no references to the old table will
remain.

6. For each bucket in the old table (each of which con-
tains items from multiple buckets of the new table):

6.1 Advance the old bucket pointer one or more
times until it reaches a node that doesn’t hash
to the same bucket as the previous node. Call
the previous node p.

6.2 Find the subsequent node which does hash to
the same bucket as node p, or NULL if no such
node exists.

6.3 Set p’s next pointer to that subsequent node
pointer, bypassing the nodes which do not
hash to p’s bucket.

7. Wait for readers. New readers will see the changes
made in this pass, so they won’t miss a node during
the next pass.
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(a) Initial state:
odd

even

1 3

2 4

(b) Initialize new buckets:

odd

even

all

1 3

2 4

(c) Link old chains:

odd

even

all

1 3

2 4

(d) Publish new buckets:
all

odd

even

1 3 2 4

(e) Wait for readers:
all

odd

even

1 3 2 4

(f) Reclaim:
all 1 3 2 4

Figure 1: Shrinking a relativistic hash table. (a) The
initial state has two buckets, one for odd numbers and
one for even numbers. White nodes indicate reacha-
bility by odd readers, and black nodes by even read-
ers. (b) The resizer allocates a new one-bucket table and
links it to the appropriate old bucket. Dashed nodes exist
only in writer-private memory, unreachable by readers.
(c) The resizer links the odd bucket’s chain to the even
bucket, making the odd bucket’s chain imprecise. Gray
nodes indicates reachability by both odd and even read-
ers. (d) The resizer publishes the new table. (e) After
waiting for readers, (f) the resizer can free the old table.

8. If any changes occurred in this pass, repeat from
step 6. Note that this loop depends only on the in-
terleaving of nodes with different destination buck-
ets in the zipped bucket, not on subsequent inserts
or removals; thus, this loop cannot livelock.

9. Reclaim the old hash table.

The wait in step 7 orders unzip operations for con-
current readers. Without it, a reader traversing a zipped
chain could follow an updated pointer from an item in a
different bucket, and thus erroneously skip some items
from its own bucket.

For an example of the expansion algorithm, see figure
2.

This version of the algorithm uses the old hash table
for auxiliary storage during unzip steps. The algorithm
could avoid this auxiliary storage at the cost of additional
traversals.

Concurrent inserts and removes on a given bucket
must block until after all unzips have completed on that
bucket.

4.1 Handling Insertion and Removal
Existing RCU-based hash tables synchronize insertion
and removal operations with concurrent lookups via stan-
dard RCU linked-list operations on the appropriate buck-
ets. Multiple insertion and removal operations synchro-
nize with each other using per-bucket mutual exclusion.
(Herlihy and Shavit describe a common workload for
hash tables as 90% lookups, 9% insertions, and 1% re-
movals [7], justifying an emphasis on fast concurrent
lookups. Nevertheless, several other hash table imple-
mentations offer finer-grained update algorithms based
on compare-and-swap [2, 22], which we could poten-
tially adapt to improve concurrent update performance.)
Resizes, however, introduce an additional operation that
modifies the hash table, and thus require synchroniza-
tion with insertions and removals. We initially consider
it sufficient to minimize performance degradation versus
a non-resizable hash table, particularly with no concur-
rent resize running.

During the initial period of initializing new buckets
and publishing the new table, our resizers block all up-
dates, either using a hash-table-wide reader-writer lock
(where inserts and removes acquire a read lock and re-
sizers acquire the write lock) or by acquiring all per-
bucket locks [7]. In the simplest case, concurrent up-
dates can continue to block until the resize completes;
however, concurrent updates can potentially run earlier
if they carefully handle the intermediate states produced
by the resizer. For a sufficiently large hash table, this may
prove necessary to avoid excessive delays on concurrent
updates.

6
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(a) Initial state:
all 1 2 3 4

(b) Initialize new buckets:
all

odd

even

1 2 3 4

(c) Publish new buckets:
all

odd

even

1 2 3 4

(d) Wait for readers:
aux

odd

even

1 2 3 4

(e) Unzip one step:
aux

odd

even

1 2 3 4

(f) Wait for readers:
aux

odd

even

1 2 3 4

(g) Unzip again:
aux

odd

even

1 2 3 4

(h) Final state:
odd

even

1 3

2 4

Figure 2: Growing a relativistic hash table. Colors as in figure 1. (a) The initial state contains one bucket. (b) The
resizer allocates a new two-bucket table and points each bucket to the first item with a matching hash; this produces
valid imprecise hash chains. (c) The resizer can now publish the new hash table. However, an even reader might have
read the old hash chain just before publication, making item 1 gray—reachable by both odd and even readers—and
preventing safe modification of its next pointer. (d) The resizer waits for readers; new even readers cannot reach item
1. (e) The resizer updates item 1’s next pointer to point to the next odd item. (f) After another wait for readers, (g) the
unzipping process can continue. (h) The final state.

In our shrink algorithm, the resizer must complete all
cross-link steps before publishing the table; once the re-
sizer has published the table, the algorithm has effec-
tively completed with the exception of reclamation, al-
lowing no opportunity for concurrent updates. However,
the shrink algorithm could choose to publish the initial-
ized table for updaters as soon as it completes initializa-
tion, allowing concurrent updates to proceed while the
cross-linking continues. The shrink algorithm may then
drop the per-bucket lock for a bucket as soon as it has
finished cross-linking that bucket, allowing concurrent
insertions and removals on that bucket.

Insertion and removal operations during expansion
must take extra care when operating on the zipped buck-
ets. When performing a single unzip pass on a given
set of buckets, the expansion algorithm must acquire the
per-bucket locks for all buckets in that set. This proves
sufficient to handle insertions, which simply insert at the
beginning of the appropriate new bucket without disrupt-
ing the next resize pass.

Removal, however, may occur at any point in a zipped
bucket, including at the location of the resizer’s aux
pointer that marks the start of the next unzip pass. If a
removal occurs with a table expansion in progress, the re-
moval must check for a conflict with this aux pointer, and
update the pointer if it points to the removed node. Given

the relatively low frequency of removal versus lookup
and insertion, and the even lower frequency of resizes,
we consider it acceptable to require this additional check
in the removal algorithm.

4.2 Variation: Resizing in Place

The preceding descriptions of the resize algorithms as-
sumed an out-of-place resize: allocate a new table, move
all the nodes, reclaim the old table. However, given a
memory allocator which can resize existing allocations
without moving them, we can adapt the resize algorithms
to resize in place. This has two primary side effects: the
resizer cannot count on the new table remaining private
until published, and the buckets shared with the old table
will remain initialized to the same values.

To shrink a hash table in place, we adapt the previous
shrink algorithm to avoid disrupting unfinished readers:

1. The smaller table will consist of a prefix of the cur-
rent table, and the buckets in that prefix already
point to the first of the lists that will appear in those
buckets.

2. As before, concatenate all the buckets which con-
tain entries that hash to the same bucket in the
smaller table.

7
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3. Wait for readers. All new readers will see the con-
catenated buckets.

4. Set the table size to the new, smaller size.

5. Wait for readers. No new readers will have refer-
ences to the buckets beyond the common prefix.

6. Shrink the table’s memory allocation.

To expand a hash table in place, we can make a similar
adaptation to the expansion algorithm by adding a single
wait-for-readers before setting the new size. However,
the algorithm still requires auxiliary storage equal to the
size of the current table. Together with the newly ex-
panded allocation, this makes in-place expansion require
the same amount of memory as out-of-place expansion.

4.3 Variation: Keeping Buckets Sorted
Typically, a hash table implementation will not enforce
any ordering on the items within a hash bucket. This
allows insertions to take constant time even if a bucket
contains many items. However, if we keep the items in a
bucket sorted carefully, modulo-based hashing will keep
all the items destined for a given new bucket together in
the same old bucket. This allows a resize increasing the
size of the table to make only as many passes as the resize
factor, minimizing the number of waits for readers. This
approach optimizes resizes significantly.

Furthermore, an application may find sorted buck-
ets useful for other reasons, such as optimizing failed
lookups. Sorted buckets do not provide an algorithmic
improvement for lookups, nor can they do anything to
accelerate successful lookups; however, sorted buckets
do allow failed lookups to terminate sooner, providing a
constant-factor improvement for failed lookups and for
removals. Blind inserts without checking for duplicates
will incur a performance penalty to find the insertion
point; however, insertions which check for duplicates
will incur minimal additional cost.

Our hash-table expansion algorithm already performs
a stable partition of the entries in a bucket, preserving
the relative order of entries within each of the subsets
that move to the buckets of the new table. The shrink al-
gorithm, however, simply concatenates a set of old buck-
ets into a single new bucket. A simple sort will not al-
low concatenation or splitting to preserve the sort, but
a well-chosen sort order based on the hash key can al-
low concatenation without a merge step. Ori Shalev and
Nir Shavit presented such a sorting mechanism in their
“split-ordered list” proposal [22, 7]: they propose sorting
by the bit-reversed key. Alternatively, the bucket selec-
tion could use the high-order bits of the hash key.

We do not pursue this variation further in this paper,
but we do consider it a potentially productive avenue for
future investigation.

5 Comparisons with Other Algorithms

We evaluated relativistic hash tables through both mi-
crobenchmarks on the data structure operations them-
selves, and via real-world benchmarks on an adapted ver-
sion of the memcached key-value storage engine. The
microbenchmarks directly compare our hash-table resize
algorithm with two other resize algorithms: reader-writer
locking and DDDS. The real-world benchmarks com-
pare memcached’s default storage engine with a modi-
fied memcached storage engine based on relativistic hash
tables.

First, as a baseline, we implemented a simple resizable
hash table based on reader-writer locking. In this im-
plementation, lookups acquired a reader-writer lock for
reading, to lock out concurrent resizes. Resizes acquired
the reader-writer lock for writing, to lock out concurrent
lookups. With lookups excluded, the resizer could sim-
ply allocate the new table, move all entries from the old
table to the new, publish the new table, and reclaim the
old table. We do not expect this implementation to scale
well, but it represents the best-known method based on
mutual exclusion, and we included it to provide a base-
line for comparison.

For a more competitive comparison, we turned to Nick
Piggin’s “Dynamic Dynamic Data Structures” (DDDS)
[21]. DDDS provides a generic algorithm to safely move
nodes between any two data structures, given only the
standard insertion, removal, and lookup operations for
those structures. In particular, DDDS provides another
method for resizing an RCU-protected hash table with-
out outright blocking concurrent lookups (though it can
delay them).

The DDDS algorithm uses two technologies to syn-
chronize between resizes and lookups: RCU to detect
when readers have finished with the old data structure,
and a Linux construct called a sequence counter or seq-
count to detect if a lookup races with a resize. A seqcount
employs a counter incremented before and after moving
each entry; the reader can use that counter, together with
an appropriate read memory barrier, to check for a resize
step running concurrently with any part of the read.

The DDDS lookup reader first checks for the presence
of an old hash table, which indicates a concurrent resize.
If present, the lookup proceeds via the concurrent-resize
slow path; otherwise, the lookup uses a fast path that sim-
ply performs a lookup within the current hash table. The
slow path uses a sequence counter to check for a race
with a resize, then performs a lookup first in the current
hash table and then in the old table. It returns the result
of the first successful lookup, or loops if both lookups
fail and the sequence counter indicates a race with a re-
size. Note that the potentially unbounded number of re-
tries makes DDDS lookups non-wait-free, and could the-
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oretically lead to a livelock, though in practice resizes do
not occur frequently enough for a livelock to arise.

We expect DDDS to perform fairly competitively with
relativistic hash tables. However, the DDDS lookup in-
curs more overhead than relativistic hash tables, due to
the additional conditionals, the secondary table lookup,
the expensive read memory barrier in the sequence
counter, and the potential retries with a concurrent re-
size. Thus, we expect relativistic hash tables to outper-
form DDDS significantly when running a concurrent re-
size, and slightly even without a concurrent resize.

For a real-world benchmark, we chose memcached, a
key-value storage engine widely used in Internet appli-
cations as a high-performance cache. Memcached stores
key-value associations in a hash table, and supports a
network protocol for setting and getting key-value pairs.
Memcached also supports timed expiry of values, and
eviction of values to limit maximum memory usage.

The default memcached storage engine makes exten-
sive use of global locks. In particular, a single global
lock guards all accesses to the hash table. As a result, we
expect memcached’s default engine to hit a hard scalabil-
ity limit, beyond which it will not scale to more requests
regardless of available resources.

Memcached requires the ability to scale to various
workload sizes at runtime; as a result, it requires a re-
sizable hash table. Previous non-resizable RCU hash ta-
bles could not provide the flexibility necessary for mem-
cached.

We implemented a new RP-based storage engine in
memcached, and modified memcached to support a new
fast path for the GET request. memcached’s default im-
plementation goes to great lengths to avoid copying data
when servicing a GET request; memcached also ser-
vices multiple concurrent client connections per thread
in an event-driven manner. As a result of these two
constraints, memcached maintains reference counts on
each key-value pair in the hash table, and holds a refer-
ence to the found item for a GET from the time of the
hash lookup to the time the response gets written back
to the client. In implementing the RP-based storage en-
gine, we chose instead to copy the value out of a key-
value pair while still within an RP reader; this allows the
GET fast path to avoid interaction with the reference-
counting mechanism entirely. The GET fast path checks
the retrieved item for potential expiry or other conditions
which would require mutating the store, and falls back to
the slow path in those cases.

We expect that with the new RP-based storage en-
gine, memcached will no longer hit the hard scalability
limit observed with the default engine, and GET requests
should continue to scale up to the limits of the test ma-
chine. Since we added wait-for-readers operations to the
SET handling, SET will become marginally slower, but

the scalability of SET requests should not change; we be-
lieve this tradeoff will prove acceptable in exchange for
making GET requests scalable.

6 Benchmark Methodology

6.1 Microbenchmark: rcuhashbash-resize
To compare the performance and scalability of our algo-
rithms to the alternatives, we created a test harness and
benchmarking framework for resizable hash-table imple-
mentations. We chose to implement this framework as a
Linux kernel module, rcuhashbash-resize. The
Linux kernel already includes a scalable implementation
of RCU, locking primitives, and linked list primitives.
Furthermore, we created our hash-table resize algorithms
with specific use cases of the Linux kernel in mind, such
as the directory entry cache. This made the Linux kernel
an ideal development and benchmarking environment.

The rcuhashbash-resize framework provides
a common structure for hash tables based on Linux’s
hlist abstraction, a doubly-linked list with a sin-
gle head pointer. On top of this common base,
rcuhashbash-resize includes the lookup and re-
size functions for the three resizable hash-table imple-
mentations: our relativistic resizable hash table, DDDS,
and the simple rwlock-based implementation.

The current Linux memory allocator supports shrink-
ing memory allocations in place, but does not support
growing in place. Thus, we implemented the in place
variation of our shrink algorithm and the copying imple-
mentation of our expansion algorithm.
rcuhashbash-resize accepts the following con-

figuration parameters:

• The name of the hash-table implementation to test.
• An initial and alternate hash table size, specified as

a power of two.
• The number of entries to appear in the table.
• The number of reader threads to run.
• Whether to run a resize thread.

rcuhashbash-resize starts by creating a hash
table with the specified number of buckets, and adds
entries to it containing integer values from 0 to the
specified upper bound. It then starts the reader
threads and optional resize thread, which record statis-
tics in thread-local variables to avoid the need for ad-
ditional synchronization. When the test completes,
rcuhashbash-resize stops all threads, sums their
recorded statistics, and presents the results via the kernel
message buffer.

The reader threads choose a random value from the
range of values present in the table, look up that value,
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and record a hit or miss. Since the readers only look
up entries that should exist in the table, any miss would
indicate a test failure.

The resize thread continuously resizes the hash table
from the initial size to the alternate size and back. While
continuous resizes do not necessarily reflect a common
usage pattern for a hash table, they will most noticeably
demonstrate the impact of resizes on concurrent lookups.
In practice, most hash tables will choose growth factors
and hysteresis to avoid frequent resizes, but such a work-
load would not allow accurate measurement of the im-
pact of resizing on lookups. We consider a continuous
resize a harsh benchmark, but one which a scalable con-
current implementation should handle reasonably. Fur-
thermore, we can perform separate benchmark runs to
evaluate the cost of the lookup in the absence of resizes.

The benchmark runs in this paper all used a hash ta-
ble with 216 entries. For each of the three implementa-
tions, we collected statistics for three cases: no resizing
and 213 buckets, no resizing and 214 buckets, and contin-
uous resizing between 213 and 214 buckets. We expect
lookups to take less time in a table with more buckets,
and thus if the resize algorithms have minimal impact on
lookup performance, we would expect to see the num-
ber of lookups with a concurrent resizer fall between the
no-resize cases with the smaller and larger tables.

For each set of test parameters, we performed 10
benchmark runs of 10 seconds each, and averaged the
results.

Our test system had two Intel “Westmere” Xeon DP
processors at 2.4GHz, each of which had 6 hardware
cores of two logical threads each, for a total of 24
hardware-supported threads (henceforth referred to as
“CPUs”). To observe scalability, we ran each benchmark
with 1, 2, 4, 8, and 16 concurrent reader threads, with
and without an additional resize thread. In all cases, we
ran fewer threads than the hardware supported, thus min-
imizing the need to pass through the scheduler and al-
lowing free CPUs to soak up any unremovable OS back-
ground noise. (We do however expect that performance
may behave somewhat less than linearly when passing 12
threads, as that matches the number of hardware cores.)

All of our tests occurred on a Linux 2.6.37 kernel, tar-
geting the x86-64 architecture. We used the default con-
figuration (make defconfig), with the hierarchical
RCU implementation, and no involuntary preemption.

6.2 Real-World Benchmarks: memcached

As a client-server program, memcached required a sep-
arate benchmarking program. At the recommendation
of memcached developers, we used mc-benchmark, de-
veloped by Salvatore Sanfilippo. To minimize the im-
pact of network overhead, we ran the client and server

on the same system, communicating via the loopback
interface. To generate enough load to reach the lim-
its of memcached, the benchmarking program requires
resources comparable to those supplied to memcached.
Thus, on the same 24-CPU system, we chose to run 12
memcached threads and up to 12 benchmark processes.

mc-benchmark runs a single thread per process, but
simulates multiple clients per process using the same
kind of event-driven socket handling that memcached
does. Experimentation showed that on the test system,
one mc-benchmark process could run up to 4 simulated
clients with increasing throughput, but at 4 clients it
reached the limit of available CPU power, and adding
additional clients would result in the same total request
throughput. Thus, we ran from 1 to 12 mc-benchmark
processes, each of which simulated 4 clients.

To run the memcached server and mc-benchmark
client, and collect statistics on the request rate, we used
a benchmark script supplied by the memcached develop-
ers. For each test run, the benchmark would start mem-
cached and wait for it to initialize, start the desired num-
ber of concurrent mc-benchmark processes, wait 20 sec-
onds for the processing to ramp up (mc-benchmark has
to first run SET commands to insert test data, then either
SET or GET requests depending on the benchmark), and
then collect samples of the rate of processed requests di-
rectly from memcached; the benchmark collected three
rate samples at 2 second intervals, and took the highest
observed rate among those three samples.

7 Benchmark Results

To evaluate baseline reader performance in the absence
of resizes, we first compare lookups per second for all the
implementations with a fixed table size of 8192 buckets;
figure 3 shows this comparison. As predicted, our rela-
tivistic hash table, shown as RP, and DDDS remain very
competitive when not concurrently resizing, though as
the number of concurrent readers increases, our imple-
mentation’s performance pulls ahead of DDDS slightly.
Reader-writer locking does not scale at all. In this test
case, the reader-writer lock never gets acquired for writ-
ing, yet the overhead of the read lock acquisition prevents
any reader parallelism.

We observe the expected deviation from linear growth
for 16 readers, likely due to passing the limit of 12 hard-
ware cores. In particular, notice that the performance for
16 threads appears approximately 50% more than that
for 8, which agrees with the expected linear increase for
fully utilizing 12 hardware cores rather than 8.

Figure 4 compares the lookups per second for our im-
plementation and DDDS in the face of concurrent re-
sizes. (We omit rwlock from this figure, because it would
vanish against the horizontal axis; with 16 CPUs, rela-
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Figure 3: Lookups/second by number of reader threads
for each of the three implementations, with a fixed hash-
table size of 8k buckets, and no concurrent resizes.
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Figure 4: Lookups/second by number of reader threads
for our RP-based implementation versus DDDS, with a
concurrent resize thread continuously resizing the hash-
table between 8k and 16k buckets. rwlock omitted as it
vanishes against the horizontal axis.

tivistic hash tables provide 125 times the lookup rate of
rwlock.) With a resizer running, our lookup rate scales
better than DDDS, with its lead growing as the num-
ber of reader threads increases; with 16 threads, rela-
tivistic hashing provides 56% more lookups per second
than DDDS. DDDS has sub-linear performance, while
our lookup rate improves linearly with reader threads.

To more precisely evaluate the impact of resizing on
lookup performance for each implementation, we com-
pare the lookups per second when resizing to the no-
resize cases for the larger and smaller table size. Figure
5 shows the results of this comparison for our implemen-
tation. The lookup rate with a concurrent resize falls be-
tween the no-resize runs for the two table sizes that the
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Figure 5: Lookups/second by number of reader threads
for our resize algorithms. “8k” and “16k” indicate fixed
hash-table sizes in buckets; “resize” indicates continuous
resize between the two sizes.
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Figure 6: Lookups/second by number of reader threads
for the DDDS resize algorithm. “8k” and “16k” indicate
fixed hash-table sizes in buckets; “resize” indicates con-
tinuous resize between the two sizes.

resizer toggles between. This suggests that our resize al-
gorithms add little to no overhead to concurrent lookups.

Figure 6 shows the same comparison for the DDDS
resize algorithm. In this case, the lookup rate with a re-
sizer running falls below the lower bound of the smaller
hash table. This suggests that the DDDS resizer adds
significant overhead to concurrent lookups, as predicted.

Finally, figure 7 shows the same comparison for the
rwlock-based implementation. With a resizer running,
the rwlock-based lookups suffer greatly, falling initially
by two orders of magnitude with a single reader, and
struggling back up to only one order of magnitude down
at the 16-reader mark.

Figure 8 shows the results of our benchmarks on mem-
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Figure 7: Lookups/second by number of reader threads
for the rwlock-based implementation. “8k” and “16k”
indicate fixed hash-table sizes in buckets; “resize” indi-
cates continuous resize between the two sizes.

cached. Note that the default engine hits the expected
hard limit on GET scalability, and fails to improve its re-
quest processing rate beyond that limit. The RP-based
engine encounters no such scalability limit, and the GET
rate grows steadily up to the limits of the system. With
a full 12 client processes and 12 server threads, mem-
cached with the RP-based engine services 46% more
GET requests per second than the default engine.

As expected, SET requests do not scale in either en-
gine. In the RP engine, SET requests incur the expected
marginal performance hit due to wait-for-readers oper-
ations; however, this tradeoff will prove acceptable for
many workloads, particularly when a successful GET re-
quest corresponds to a cache hit that can avoid a database
query or other heavyweight processing.

We hypothesize that memcached’s default engine only
managed to scale to as many clients as it did because it
spends the vast majority of its time in the kernel rather
than in the memcached userspace code, and the kernel
code supported more concurrency than the serialized en-
gine code. Profiling confirmed that memcached spends
several times as much time in the kernel as in userspace,
regardless of storage engine.

We also performed separate runs of the benchmark us-
ing the mutex profiler mutrace. By doing so we observed
that the default engine spent long periods of time con-
tending for the global lock, whereas with the RP-based
engine, GET requests no longer incurred any contention
for the global lock.

7.1 Benchmark Summary

Our relativistic resizable hash table provides linearly
scalable lookup performance in both microbenchmarks
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Figure 8: GET and SET operations per second by num-
ber of mc-benchmark processes for the default mem-
cached storage engine and our RP-based storage engine.
Each mc-benchmark process simulated 4 clients to satu-
rate the CPU.

and real-world benchmarks. In our microbenchmarks,
the relativistic implementation surpassed DDDS by
a widening margin of up to 56% with 16 reader
threads; both implementations vastly dwarfed reader-
writer locks, with our RP implementation providing a
125x improvement with 16 readers. Furthermore, our
resize algorithms minimized the impact of concurrent re-
sizing on lookup performance, as demonstrated through
the comparison with fixed-size hash tables. In the real-
world benchmarks using memcached, the RP-based en-
gine eliminated the hard scalability limit of the default
storage engine, and consistently serviced more GET re-
quests per second than the default engine—up to 46%
more requests per second when saturating the machine
with a full 12 client processes and 12 server threads.

8 Future Work

Our proposed hash-table resize algorithms demonstrate
the use of the wait-for-reader operation to order update
operations. We use this operation not merely as a write
memory barrier, but as a means of flushing existing read-
ers from a structure when their current position could
otherwise cause them to see writes out of order. Figure 2
provided a specific example of this, in which a reader has
already traversed past the location of an earlier write, but
would subsequently encounter a later write if the writer
did not first wait for such readers to finish.

We have developed a full methodology for ordering
writes to any acyclic data structure while allowing con-
current readers, based on the order in which readers tra-
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verse a data structure. This methodology allows writers
to consider only the effect of any prefix of their writes,
rather than any possible subset of those writes. This
proves equivalent to allowing a reader to perform a full
traversal of the data structure between any two write op-
erations, but not overlapping any write operation. This
methodology forms the foundation of our work on rela-
tivistic programming.

Relativistic readers traversing a data structure have a
current position, or read cursor. Writes to a data struc-
ture also have a position relative to read cursors: some
read cursors will subsequently pass through that write,
while others have already passed that point. In an acyclic
data structure, readers will start their read cursors at
designated entry points, and advance their read cursors
through the structure until they find what they needed to
read or reach the end of their path.

When a writer performs two writes to the data struc-
ture, it needs to order those writes with respect to any po-
tential read cursors that may observe them. These writes
will either occur in the same direction as reader traver-
sals (with the second write later than the first), or in the
opposite direction (with the second write earlier than the
first). If the second write occurs later, read cursors be-
tween the two writes may observe the second write and
not the first; thus, the writer must wait for readers to fin-
ish before performing the second write. However, if the
second write occurs earlier in the structure, no read cur-
sor may observe the second write and subsequently fail to
observe the first write in the same pass (if it reaches the
location of the first); thus, the writer need only use the
relativistic publish operation, which uses a simple write
memory barrier.

“Laws of Order” [1] presents a set of constraints on
concurrent algorithms, such that any algorithm meeting
those constraints must necessarily use expensive syn-
chronization instructions. In particular, these constraints
include strong non-commutativity: multiple operations
whose order affects the results of both. Our relativistic
programming methodology allows readers to run with-
out synchronization instructions, because at a minimum
those readers do not execute strongly non-commutative
operations: reordering a read and a write cannot affect
the results of the write.

We originally developed a more complex hash-table
resize operation, which required lookups to retry in a sec-
ondary hash table if the primary lookup failed; this ap-
proach mirrored that of the DDDS lookup slow path. Our
work on the RP methodology motivated the simplified
version that now appears in this paper. We plan to use the
same methodology to develop algorithms for additional
data structures not previously supported by RCU.

As an immediate example, the RP methodology al-
lows a significantly simplified variation of our previous

hash-table move algorithm [24, 23]. This variation will
no longer need to copy the moved entry and remove the
original, a limitation which breaks persistent references,
and which made the original move algorithm unsuitable
for use in the Linux dcache.

9 Availability

The authors have published the code supporting
this paper as Free and Open Source Software un-
der the GNU General Public License. For de-
tails, see http://git.kernel.org/?p=linux/
kernel/git/josh/rcuhashbash.git.
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Abstract
Accurate power characterization is important in com-

puting platforms for several reasons ranging from power-
aware adaptation to power provisioning. Power charac-
terization is typically obtained through either direct mea-
surements enabled by physical instrumentation or model-
ing based on hardware performance counters. We show,
however, that linear-regression based modeling tech-
niques commonly used in the literature work well only
in restricted settings. These techniques frequently exhibit
high prediction error in modern computing platforms due
to inherent complexities such as multiple cores, hidden
device states, and large dynamic power components.

Using a comprehensive measurement framework and
an extensive set of benchmarks, we consider several
more advanced modeling techniques and observe limited
improvement. Our quantitative demonstration of the lim-
itations of a variety of modeling techniques highlights
the challenges posed by rising hardware complexity and
variability and, thus, motivates the need for increased di-
rect measurement of power consumption.

1 Introduction

Electrical power is a precious resource and its consump-
tion is important to all forms of computing platforms
from handheld devices to data centers. Numerous re-
search efforts seek to optimize and carefully manage en-
ergy consumption at multiple levels—starting from indi-
vidual components and subsystems such as wireless ra-
dios [27], storage devices [23], and processors [15, 28],
to entire platforms [16, 39].

An important goal of these optimizations has been to
achieve power proportionality, that is, power consump-
tion that is proportional to the computational work done.
As a result, a modern system’s instantaneous power draw
can vary dramatically. Moreover, the exact relationship
between power draw and activity level is becoming in-

creasingly complex due to the advent of microproces-
sors with multiple cores and built-in fine-grained thermal
control, as well as hidden device states that are not nec-
essarily exposed to the operating system.

While increasingly energy efficient components are a
key enabler, achieving the goal of platform-wide power
proportionality requires an intelligent dynamic power
management (DPM) scheme. A critical first step towards
that goal is to characterize how much power is being con-
sumed, both by the platform as a whole and also by indi-
vidual subsystems. Armed with a reasonable characteri-
zation of power consumption, a DPM system then needs
to accurately predict how changes in utilization will im-
pact future power consumption. For example, a DPM
system can guide resource allocation decisions between
heterogeneous but functionally similar resources such as
multiple radios on the same platform [27].

Current approaches to prediction rely on assumptions
of power proportionality to make architectural or system-
level tradeoffs. These tradeoffs are evaluated by building
a model of the system that describes power consump-
tion in terms of power states and attributing the model
to one or more observable hardware and software coun-
ters, correlating these with changes in measured power
draw. Previous work on power modeling has focused on
modeling total system power consumption using several
learning techniques such as linear regression [21, 31],
recursive learning automata [25], and stochastic power
models [29]. The effectiveness of each of these tech-
niques has been evaluated independently across various
benchmarks (see [19] for a review).

However, we are unaware of any definitive compari-
son of these models for a diverse set of benchmarks on
a given platform. Further, the increasingly nuanced rela-
tionship between a component’s activity level and power
consumption limits the utility of published models in
modern systems. In particular, as we shall show, these
models are effective only in a restricted set of cases, e.g.,
when system utilization is constant and very high, for
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relatively straightforward executions in single cores, or
when the system’s static power consumption is dominant
and the dynamic component is within the margin of er-
ror. Consequently, even well-designed DPM algorithms
employing these models will make suboptimal decisions
(to shutdown and/or slowdown components) if the actual
utilization dynamically changes the significance of vari-
ous components to overall power consumption.

To overcome the limited ability of models to predict
power consumption, manufacturers often build reference
systems complete with a large number of sense resistors
and use precision analog-to-digital converters (ADC) to
create a measurement instrument that accurately captures
power consumption at fine time granularities. Research
efforts have mimicked this approach by developing cus-
tom designs that can breakdown power consumption
within sensor platforms [35] or monitor whole-system
power for general purpose computers at the power sup-
ply [10]. While such extensive direct instrumentation can
provide accurate power measurements, it requires sig-
nificant design effort and increases costs due to board
space constraints and the need for additional compo-
nents. Hence, we are not aware of any production sys-
tems so instrumented. Moreover, significant increases in
cross-part variability [13, 38] limit the applicability of
predictions based upon even the measured behavior of a
single or small number of reference systems.

We evaluate the need for pervasive power instrumen-
tation by exploring the effectiveness of power modeling
on modern hardware. Mindful of the fact that the re-
quired level of accuracy varies based upon the specific
DPM goal, we consider how well increasingly sophisti-
cated models can predict the power consumption of real-
istic workloads. We make the following contributions:

• We show empirically that while total system power
can be modeled with 1–3% mean relative error
across workloads when restricted to a single core,
it rises to 2-6% for multi-core benchmarks.

• We find that linear models have significantly higher
mean relative error for individual subsystems such
as the CPU: 10–14% error on average, but as high as
150% for some workloads. We employ more com-
plex techniques to improve predictive performance,
but only by a few percent.

• We present an in-depth analysis of why modeling
fails for modern platforms, especially under multi-
core workloads. We posit that this poor predic-
tive performance is due to effects such as cache
contention, processor performance optimizations,
and hidden device states not exposed to the OS. In

addition, we present quantitative evidence of sig-
nificant variability between identical components,
which fundamentally bounds the potential accuracy
of any modeling based approach.

Taken together these results make a strong case for
pervasive instrumentation and dynamic collection of
power usage data. While traditionally eschewed due to
significant increases in design and manufacturing costs,
the advent of relatively inexpensive ADCs and associated
circuits makes such an approach increasingly feasible.

2 Related work

Researchers have long been interested in optimizing the
energy efficiency of computing devices. In the context
of mobile platforms, researchers have considered opti-
mizing individual subsystems such as the CPU [15, 28],
disk [23] and wireless radios [27]. While much of the
early work focused on battery powered devices for us-
ability reasons [16, 27, 39], economic motivations have
dramatically increased interest in general purpose com-
puting such as PCs and servers [1, 3, 26].

There have been a number of efforts to predict en-
ergy consumption through in-situ power measurements
by adding different levels of hardware instrumentation.
The Openmoko Freerunner mobile phone platform was
designed to support developer access. Carroll and Heiser
leveraged its sense-resistor support to characterize power
consumption at a component level, deriving simple,
time-based linear models for each component [7]. The
LEAP platform [35] proposes adding fine-grained in-
strumentation to all power rails in embedded sensor
nodes, and develops the required software instrumenta-
tion within the OS kernel to attribute energy to running
tasks. In contrast, Quanto [17] proposes a single point
of measurement by observing the switching regulator on
sensor platforms to increase the practicality of energy at-
tribution. Quanto requires changes to TinyOS and in-
dividual applications to track individual state transitions
and offline analysis for energy attribution.

These measurement efforts, however, are restricted
to special-purpose platforms with limited availability.
Moreover, while such detailed, instrumentation-based
approaches provide accurate power characterization,
they are frequently regarded as too costly to implement
at scale. Hence, efforts focused on more general purpose
platforms have typically relied upon modeling, mostly
for predicting total system power.

Recent activity in server environments is driven by
the observation that most computer systems are largely
idle [1] or exhibit low utilization except during peak traf-
fic [3]. Hence, Barroso and Hölze argue for more energy-
proportional designs so that the energy used is propor-
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tional to the utilization [3]. This quest for energy pro-
portionality has led to a variety of low-power server de-
signs [2]. Some applications, however, have been shown
to perform poorly on these low-power platforms [30].

Predicting the energy use of a particular application on
a general-purpose platform is challenging, however. Pre-
vious studies have shown that CPU utilization is not use-
ful by itself and that performance counters used to build
models only help if they are correlated with dynamic
power [24, 31]. Economou et al. explored the use of
component-level measurements including CPU, memory
and hard disk but were unable to significantly decrease
prediction error [14]. Conversely, Bircher and John ex-
plored using performance counters to model not only to-
tal system power, but component-level power (e.g., CPU,
memory, disk, and I/O) as well in a Pentium IV-class sys-
tem [5]. They find that linear models are a poor fit for all
but the CPU, and instead resort to multiple-input quadrat-
ics to provide an average of 9% absolute error.

In the hosted setting, Koller et al. turn to application-
level throughput—as opposed to hardware performance
counters—to improve power prediction for virtual clus-
ters using linear combinations [22]. The Jouleme-
ter project [21] proposes combining total-system power
measurements from server power supplies with power
modeling to attribute power consumption at the coarse
level of individual virtual machines (VM) running on a
physical server. Their model is generated by exercising
specific VMs by running particular applications and us-
ing the CPU utilization metric to attribute energy.

Despite prediction errors, a number of researchers
have demonstrated the utility of power modeling. For
example, Bircher and John combine CPU metrics with
instantaneous voltage demand information to ensure that
the processor uses the correct DVFS setting and achieve
an average speedup of 7.3% over Windows Vista’s de-
fault DVFS algorithm [6]. Wang and Wang utilize feed-
back control theory to jointly optimize application-level
performance and power consumption [37], while Tolia
et al. improve power proportionality by leveraging vir-
tual machines, DVFS, and fan control [36].

3 Power characterization

Characterizing the power consumption of a computing
platform need not be difficult in principle. Ideally, orig-
inal equipment manufacturers (OEMs) are well posi-
tioned to add extensive power instrumentation to their
platforms, which would enable accurate and fine grained
power measurements. Combined with such instrumen-
tation, OEMs could further expose interfaces to an op-
erating system to query detailed power information in a
low-overhead manner. This information can then be used
by the OS as well as individual applications to manage

their energy consumption dynamically. Unfortunately,
this ideal scenario is not realized in practice due to man-
ufacturing constraints such as increased board area, cost
of components and design costs. Modern platforms are
already extremely complex and OEMs are reluctant to
add functionality without clear and quantifiable benefits.
Hence, while OEMs may have extensive power instru-
mentation on their development platforms during design
and testing, we are unaware of any commodity platform
that provides fine-grained power measurement capabili-
ties in hardware.

Instead, in the absence of direct power measurement,
the commonly used alternative is to make power models.
The basic idea behind power modeling is to take as input
various software and hardware counters and use those
to predict power consumption after suitable training on
an appropriately instrumented platform. Regardless, any
power characterization approach, whether based upon
modeling or direct instrumentation, must trade off be-
tween several design alternatives as discussed below.

3.1 Measurement granularity

One of the dimensions that affects both forms of
power characterization—power measurement and power
modeling—is the granularity of measurement. Power
can be characterized at the level of an entire system (a
single power value) or can be done at a logical subsys-
tem granularity, such as the display, CPU, memory and
storage subsystems. The appropriate measurement gran-
ularity depends on the application. For example, in data
centers an application for macro-scale workload consol-
idation on servers will likely only require total system
power measurements at an individual server level. On
the other hand, fine-grained scheduling decisions on in-
dividual heterogeneous processor cores requires power
consumption data for individual cores.

While total system power can be measured at the wall
socket directly using myriad commercial devices (e.g.
WattsUP meters) the applicability is limited in the case
of any fine grained adaptation. Furthermore, power mea-
surements at the system level cannot distinguish between
the actual power used and the power wasted due to the in-
efficiencies in the power supply. On the other hand, fine-
grained subsystem level power characterization is more
useful since the total system power can still be estimated
accurately by adding the power consumption of individ-
ual components. Most of the research to date has fo-
cused on total system power modeling [14, 31]. In this
paper we explore the design space of power characteriza-
tion and especially investigate the feasibility of accurate
power modeling at subsystem granularity.
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3.2 Accuracy

In the case of power instrumentation, it is possible to
get very high levels of accuracy with precision analog-
to-digital converters (ADCs), albeit at higher costs. The
accuracy of power modeling with respect to the ground-
truth measurements is important since the accuracy de-
pends on how well the model fits. Similar to the measure-
ment granularity dimension, the accuracy requirements
of power modeling are also somewhat dependent on
the application. When consolidating workload to fewer
servers in a data center, modeling total power within 5–
10% error is sufficient to guide policy decisions since
the base power of servers is high [14, 31]. On the other
hand, for an application of fine grained scheduling on
different heterogeneous processor cores, the accuracy of
power characterization needs to be at least as good as
the differences in power consumption between the cores,
otherwise scheduling decisions may be incorrect.

Furthermore, the required accuracy is likely to vary
with particular subsystems based on factors such as their
dynamic range, and their contribution to the total sys-
tem power. Subsystems that are dominant in particular
platforms need to be measured more accurately since the
penalty of mis-predicting the power is higher. Further-
more, subsystems that are more complex and dynamic,
such as processors, need higher accuracy measurements.
On our test systems, the CPU consumes between 0.5W
and 27W (constituting up to 40% of the total system
power), and prediction errors translate to high absolute
error. In contrast, an SSD disk drive on the SATA in-
terface, or the network interface, consumes lower power
(fewer than 2–3W) and is less dynamic; therefore, higher
modeling errors can be tolerated. However, in cases of
platforms with a larger number of disks this modeling
error will have a more significant impact.

3.3 Overhead and complexity

Both power modeling and power instrumentation have
associated overheads and complexity. In the case of
power instrumentation, OEMs have to integrate the
power measurement functionality into their platforms,
usually in the form of a shunt resistor connected to
ADCs. The ADCs measure the voltage drop across the
shunts, which is converted into current and power con-
sumption. Since modern platforms have multiple voltage
domains, and subsystems can be powered using +3.3V,
+5V, and +12V power supplies, a large number of ADC
inputs are required. Furthermore, in case the voltage
to the subsystem is not constant, such as with proces-
sors that employ dynamic voltage scaling, we need ad-
ditional ADC inputs to measure voltage as well. Some
subsystems, such as processors, can also have multiple

power lines powering different functional units within
them which each need to be measured separately. The
shunt resistors themselves need to be chosen while keep-
ing in mind the dynamic range of the power consumed by
individual subsystems, possibly from several milliwatts
to tens of watts, to give high precision and low power
loss in the sense resistor itself. All of these factors con-
tribute to higher costs—of components, board area and
design, test and validation time.

Complexity in power modeling arises in part from the
need to capture all the relevant features expressed by
software and hardware counters to serve as inputs to
build the models. Often platforms and components, such
as the CPU, either support tracking a limited set of plat-
form counters simultaneously, or have-non trivial over-
head in collecting a large set of counters at fine granular-
ities. Therefore, it is important that the model be sparse
and use as few counters and states are possible, while
still providing reasonable modeling accuracy. Addition-
ally, the models themselves can be arbitrarily complex
and can require non-trivial amounts of computation. In
this paper, we explore a series of increasingly complex
models to understand the accuracy/complexity tradeoffs.

Finally, in the case of power modeling, transferability
or robustness of the power modeling is key: The model
should be generated once and should be applicable over
time and to other instances of the same platform. While
we believe that this is intuitively the case, recent work
has highlighted a significant amount of platform hetero-
geneity, where process and manufacturing variations and
aging effects lead to identical hardware exhibiting sig-
nificant variation in power consumption [8, 13, 38]. We
show some preliminary results relating to this aspect and
highlight the associated challenges with power modeling
in the face of increasing variability in hardware.

4 Power modeling

While there has been a considerable volume of work in
the area of power modeling, notably for system power
and CPU power, a common toeu hread joining most of
the previous work is the assumption that system power
can be well predicted by simple linear regression mod-
els [14, 21, 31]. Our goal in this paper is to under-
stand whether (i) these simple models are compatible
with more contemporary platforms (CPU and platform
complexity has increased significantly since many of the
previous modeling approaches were proposed), and (ii)
whether these models can be applied to individual sub-
systems within platforms. The latter is important to un-
derstand because, with the increasing emphasis on power
proportionality and energy awareness, there are several
adaptations that can be done at the platform level as well
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as the subsystem level, provided fine-grained power con-
sumption information is available.

Our initial attempts to use simple linear regression
models—including replicating specific ones previously
proposed—were disappointing: The models perform
poorly on non-trivial workloads. This result could be
explained by one of the following reasons:

• The features being fed into the model contain a cer-
tain level of cross-dependency, whereas linear mod-
els assume feature independence.

• The features used by previously published models
are no longer appropriate for contemporary plat-
forms. There may, however, exist a different set of
counters that can still lead to a good model.

• Modern hardware components, such as processors,
abstract away hardware complexity and do not nec-
essarily expose all the power states to the OS and are
thus fundamentally hard to model since changes in
power consumption are not necessarily associated
with changes in exposed states.

In this section, we describe a number of increasingly
complex regression models that we use to fit the power
data. Unfortunately, we found that increasing the com-
plexity of the model does not always improve the accu-
racy of power prediction across the different subsystems
that we are trying to model. We begin by describing how
linear regression models are constructed and enumerat-
ing the specific models we use.

4.1 Linear regression models
Let y = [y1, y2, . . . , yk] be the vector of power measure-
ments and let xi = [xi,1, xi,2, . . . , xi,n] be the normal-
ized vector of measurements on the n variables (hard-
ware counters and OS variables) collected at time ti. The
linear regression model is expressed as:

yi = β0 + β1xi,1 + β2xi,2 + . . .+ βnxi,n + εi,

where εi is a noise term that can account for measure-
ment error. Thus, the linear regression models are solved
by estimating the model parameters β, and this is typi-
cally done by finding the least squares solution to β̂ =
y.X−1, which can be computed as

β̂ = argmin
β

k∑
i=1


yi − β0 −

n∑
j=1

βjxi,j




2

,

or simply β̂ = argminβ

(
||y − βX||22

)
.

The challenge in building a good power model is to
correctly identify the set of n most relevant features. On

the platforms we considered, there are in excess of 800
different hardware counters that can be tracked (even
though only a few can be tracked simultaneously). Pre-
vious work has overcome this problem by using domain
knowledge about the platform architecture to hand pick
counters that are believed to be relevant [14, 31]. We
believe that increasing complexity in modern processors
and platforms makes this task harder with each genera-
tion. To understand whether such domain knowledge is
critical to power modeling, we also use modeling tech-
niques that perform automatic feature selection in the
process of constructing a model. We observe that the
features selected by the more complex techniques corre-
spond to the features with the highest mutual informa-
tion [11] for a given power rail. This makes us confident
that these state-of-the-art modeling techniques are lever-
aging all relevant features and are not missing anything
that is relevant but not linearly correlated.

We now briefly describe the regression techniques that
we explore, listed in order of increasing complexity.

MANTIS: Ecomomou et al. developed a server power
model by fitting a linear regression of four distinct uti-
lization counters obtained from different platform sub-
systems to the power measurements taken at a wall
socket [14]. The input utilization metrics are obtained
by running a number of systematic workloads that stress
the platform subsystems in sequence.

In particular, they consider counters corresponding to
CPU utilization, off-chip memory accesses, and hard
drive and network I/O rates. We extend the basic MAN-
TIS linear model to also consider instructions per cycle
as a representative baseline obtained from a best-in-class
full-system power model [31]. While there have been
a large number of efforts focused on identifying a suit-
able set of performance counters, we choose the MAN-
TIS model as a starting point because it has been shown
to have very good predictive properties on previous-
generation hardware [14]. Since a few of the counters
used by the original MANTIS model are no longer avail-
able on modern platforms, we communicated with the
authors themselves to find appropriate substitutes.

Lasso regression: There are two drawbacks to build-
ing a (linear) regression model. First, it requires domain
knowledge to identify the correct set of features (possi-
bly from a large space)—in this case, we seek features
possibly related to power consumption. Second, when
the features are correlated to each other, the regression
simply distributes the coefficient weights across the cor-
related features, and all correlated features are included
in the final model, rather than identifying a smaller sub-
set of somewhat independent features. In current com-
plex platforms, there is a very large space of features
that can be measured and it is a non-trivial task—even
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for an expert—to correctly identify the smallest possible
subset of power relevant features [33]. Lasso regression,
which is a specific instance of l1-regularized regression,
overcomes this challenge by penalizing the use of too
many features. Thus, it tends to favor the construction
of sparse models which incorporate just enough features
as are necessary. This is done by incorporating a penalty
factor into the least-squares solution for the regression,
which is expressed as:

β̂ = argmin
β




k∑
i=1


yi − β0 −

n∑
j=1

βjxi,j




2

+λ

d∑
j=1

|βj |




or, simply β̂ = argminβ

(
||y − βX||22 + λ ||β||2

)
.

Here, λ is a penalty function that encourages the solu-
tion to aggressively set β values to zero (and exclude the
associated features from the model). Compared to regu-
lar methods, Lasso regression is advantageous since it re-
lies less on strong domain knowledge to pick out the right
features; in addition, it is computationally simple, and
automatically picks models with a small number of fea-
tures, which are critical requirements for a usable power
model. The optimal value for the λ parameter is selected
by cross validation on the training data. We used the
glmnet package to perform the Lasso regression [18].

4.2 Non-linear regression models

Linear regression models work well when the features
being modeled are independent of each other and tend to
predict poorly when there are interdependencies between
the modeled features; non-linear models can often cap-
ture these feature dependencies. (Indeed, previous work
has shown that quadratic models can be more effective at
modeling subsystem power [5].) The non-linear form of
the model can be expressed as:

yi = β0 +

m∑
�=1

β�φ�(xi) + εi,

where φ� are non-linear basis functions over the feature
vectors xi. We use the Lasso least-squares formulation
as before to solve the regression and construct a model.

In general, the set of possible φj is arbitrarily large and
solutions exist for only a few families. We experiment
with three well known functions:

Polynomial with Lasso: Here, the basis functions are
defined as exponentiated forms of the original variables.
So, φ = {xa

i : 1 ≤ a ≤ d} where d = 3. Again, with
Lasso, only the relevant features—now including the
polynomial terms which may have cross dependencies—
are inserted into the model.

Polynomial + exponential with Lasso: In this slight
variation of the previous model, φ also includes the func-
tions exi . As before, we run the full set of terms through
the Lasso (linear) regression package which picks out a
sparse subset of the terms. In the previous case as well
as this one, the optimal λ is selected by cross validation.

Support vector regression (SVR): We also experi-
ment with support vector machine (SVM)-based regres-
sion. At a high level, SVMs operate by fitting a hyper-
plane decision boundary to a set of labeled data instances
taken from different classes. The hyperplane boundary
is constructed so as to maximize the separation between
the two classes of data, and can be used to perform clas-
sification, regression, and function estimation tasks on
the data. SVMs employ a trick to handle non-linearity,
the data is run through a non-linear kernel that maps the
data to a higher dimensional space where greater sep-
aration may be achieved. An important difference be-
tween SVR and Lasso-based methods is that SVR does
not force the regression to be sparse. When features are
correlated, weights are distributed across them. We use
the libsvm [9] and, in particular, the radial basis kernel.
The parameters required for the RBF kernel were opti-
mally selected by cross validation on the training data.

5 Evaluation setup

We collect platform subsystem power using an instru-
mented Intel Calpella platform. The platform is a cus-
tomer reference board that corresponds to the commer-
cially available mobile Calpella platform. This particular
board, which is based on the Nehalem processor archi-
tecture, was outfitted with an Intel quad-core i7-820QM
processor, 2x2GB of DDR3-1033 memory and a SATA
SSD drive, running the 2.6.37 Linux kernel. Importantly,
we turned off HyperThreading and TurboBoost on the
platform to avoid hidden states (these states change op-
erating points but are controlled in hardware and the OS
has little visibility into them). A salient feature of this
particular board is that it has been extensively instru-
mented with a very large number of low-tolerance power
sense resistors that support direct and accurate power
measurements of various subsystems (by connecting to a
data acquisition system). The platform contains over one
hundred sense resistors and it is a non-trivial task to col-
lect readings from all of them. Instead, we first identified
the platform subsystems that were of interest to us and
simply instrumented the resistors for those subsystems
and connected them to two 32-input National Instrument
USB6218 DAQs. Finally to measure the total power con-
sumption at the wall we use a commercial WattsUp me-
ter. The Calpella platform is powered soley by a 12-V
input from the ATX power connector and we consider
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Subsystem # resistors min–max
CPU core 3 0.5–27W

CPU uncore (L3,
mem. controller) 1 1–9W

integrated graphics 2 n.a.
discrete graphics 2 ≈15.3W

memory 2 1–5W
CPU fan 1 ≈0.7W

SATA 3 1.3–3.6W
LAN 1 ≈ 0.95W

Chipset + other 0 0.5–5W
12V ATX in 1 23–67W

Table 1: Power characterization for the calpella platform.
The 500-W ATX PSU that we use dissipates 20–26W
due to conversion inefficiency and is not shown.

Figure 1: Power breakdown for sample workloads.

the 12-V rail to represent the total system power in or-
der to eliminate the influence of variable power-supply
inefficiencies. The power breakdown of the various sub-
systems is shown in Table 1.

The 16-bit NI-DAQs have a worst case error of 0.02%,
but to scale the measured voltages to the range of the NI-
DAQ we use precision voltage dividers, which in turn in-
troduce a 0.035% measurement error, leading to an over-
all error of 0.04%. To minimize measurement overhead,
the data from the NI-DAQs and the WattsUp meter is col-
lected on a separate computer.

Along with the (externally) collected power readings,
we collect OS-level statistics, hardware states and per-
formance counters from the platform itself (for simplic-
ity we will use the terms counter and state interchange-
ably). We extract OS-level statistics from /proc and
/sys in Linux; these include processor utilization, disk
usage, and processor C-state residency statistics. We
collect hardware performance counters using the Linux
perf event framework.

By default the perf event framework provides ac-
cess to the four programmable and the six fixed hard-

ware counters available per core. As a departure from
previous processor models, Nehalem processors intro-
duce “uncore” counters, which measure the performance
of the L3 cache, QPI bus, and the memory controller.
To replicate the MANTIS model, we need to measure
last-level cache misses in the L3 cache. Fortunately,
we have a kernel patch that provides access to the eight
programmable per-socket performance counters. The
measurement framework reports a total of 884 counters.
While it would be ideal to measure them all concurrently
and allow the models to pick out the most relevant fea-
tures, the small number of programmable counters that
can be read concurrently makes this task impossible.

Instead, we use a simple heuristic to reduce this num-
ber to a more manageable size: we sweep through the
entire set of possible counters, making sure to get at least
one run for each counter; then we compute the correla-
tion of each counter with the total system power and dis-
card all the counters that show no variation (with power),
or that have very poor correlation. This brings down the
set of potential counters to about 200, which is still large.
To bridge the gap, we select all of the OS counters (these
can be measured concurrently), and we greedily add as
many hardware counters, in order of their correlation co-
efficients, as we can measure concurrently.

Note that due to issues with the aging OS required
for NI-DAQ driver support, our test harness is initiated
from an external machine. A high-level diagram of the
measurement setup is shown in Figure 2. We have set
up the NI-DAQ to sample each ADC channel at 10Khz
and output average power consumption for each subsys-
tem once per second for accurate power measurements.
In our setup, we thus collect power readings as well as
the on-platform measurements at a one-second granular-
ity. Adjusting the collection granularity does not appre-
ciably impact the prediction accuracy, and we feel that
one second is a reasonable compromise: sampling the
OS level counters at a faster rate would incur a higher
overhead and introduce stronger measurement artifacts
(where the act of measuring itself takes a non-trivial
amount of power), while sampling it any slower might
limit how quickly applications can react to changes in
power consumption.

5.1 Benchmarks

To systematically exercise all possible states of the plat-
form, particularly the subsystems that we are measur-
ing, we selected an array of benchmarks from two well
known benchmarking suites, as well as a few additional
benchmarks to extend the subsystem coverage. We in-
clude the majority of the benchmarks in the SpecCPU
benchmark suite [34]. We include 22 of the 32 bench-
marks, excluding ten because they would either not com-

7



166 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

Calpella

CPU Mem

HDDGFX

PSU

DAQ

DAQ

WattsUp

MeasurementHarness

Figure 2: Test harness configuration.

pile with a modern compiler or tended to exhaust mem-
ory. While the SpecCPU suite is a well established
benchmark, it only contains single-threaded benchmarks.
To get a more representative set of benchmarks that
would better exercise our multi-core system, we included
the PARSEC [4] benchmark suite; this consists of a range
of multi threaded “emerging workloads”, including file
de-duplication and x264 compression. We also include
the Bonnie I/O benchmark, a parallel LinuxBuild
kernel compile, StressAppTest [32], a memcached
workload, as well as a synthetic cpuload benchmark.
The StressAppTest program is a burn-in program de-
signed to place a realistic high load on a system to test
the hardware devices. We observe that while most of
these benchmarks use the hardware as quickly as pos-
sible, evidence suggests that systems are not always
fully loaded [3]. To capture this behavior, we supply
memcached with a variety of different request rates to
target different utilizations, and we duty cycle our syn-
thetic floating point cpuload benchmark. Finally, we
include Sleep to represent the system at idle.

5.2 Modeling evaluation
The effectiveness of a model is often decided by learning
the model from a training set of data, and then assess-
ing its predictive performance on a (different) testing set.
Selecting the training set is often a non-trivial task and
must ensure that the training set includes enough samples
from various operating points. When this is not done ju-
diciously the testing error can be large, even though the
training error is small. The ideal scenario is to identify
a set of “basis” benchmarks that are known to provide
the sufficient coverage and to generate the training data
from these benchmarks (a form of this was done in [31]).
However, this is hard to achieve when systems are com-
plex and have a large operating space. When we tried
such an approach, the results were disappointing and led
us to ask a more basic question: how well does the model
work when the testing and training data are similar? This

puts the focus on whether good models can be gener-
ated at all, rather than picking the smallest set of work-
loads needed to construct a good model. We employ a
well known validation technique known as k × 2 cross-
validation. For this technique, we randomize the order-
ing of the data (collected from all the benchmarks), par-
tition into two halves, use the first half as training data
and learn the model, and then compute the prediction er-
ror on the latter half. The process is repeated multiple
times (we repeat 10 times) and the errors from each run
are aggregated.

We note that in our experimental evaluation, the er-
ror observed on the testing data set is approximately the
same as that on the training data set, not only when the er-
ror is low, but also when the error is high. This raises our
confidence that the models obtained each time are suf-
ficiently general. In the next section, we present results
from building models on specific platform subsystems.

6 Results

In this section we present results from evaluating the
various models on several different operating configura-
tions. The metric we use to test the efficacy of a model
is mean relative error, which we shorten to error in the
discussion, defined as follows:

error =
1

n

n∑
i=1

∣∣∣∣
p̂i − pi

pi

∣∣∣∣
where p̂i is the model predicted power, and pi is the ac-
tual power measurement. For the results shown in this
section, we execute each benchmark and configuration
five times (n = 20). We note that the metric used is con-
sistent with previous work [31]. One point of departure
with previous work is that we measure “system power”
after the PSU, and hence we capture a more accurate re-
flection of the actual power being consumed.

After running a large number of experiments across a
variety of configurations, we can reduce the findings into
three takeaways, which we discuss next.

6.1 Single core
To reduce number of variables we first limit the system
to use one processor core only and run all the bench-
marks on that single core. HyperThreading and Turbo-
Boost were also turned off, and the processor P-state (fre-
quency) was fixed. This is a reasonable approximation
to the systems that were used to develop the MANTIS
model. For this configuration, we note the following: the
mean prediction error (averaged over all the benchmarks
to obtain a single number) for total system power is be-
tween 1–3%. The errors are also low for platform sub-
systems: for example the average error in CPU power
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Figure 3: Modeling acuracy for total system power (Single-Core). Mean relative error is 1–3% across workloads.

Figure 4: Modeling acuracy for CPU power (Single-Core). Mean relative error is 2-6% across workloads.

prediction is 2–6%, and the average error in predicting
memory power is about 4–8% across the different mod-
els. Due to space constraints we do not show the results
for the other subsystems, however the prediction errors
is similar to that of the CPU.

In this context, mean prediction error can be mis-
leading because the mean is computed over all time
samples and is weighted towards longer-running bench-
marks. Thus, the error will be worse if the system is
executing a specific workload that is poorly predicted.

Figure 3 compares the prediction error in total sys-
tem power over all the benchmarks used. The models
do rather well, the majority of benchmarks show an error
of less than 5%. The MANTIS model does well (which
we expected), but the linear-Lasso model does slightly
better than do the non-linear Lasso models. Upon closer
inspection we observe that this ordering of results is tied
to how well the models predict the CPU power, which
along with a considerable base power factor, is a large
contributor to the total system power.

Figure 4 compares the prediction errors across differ-
ent models for the CPU subsystem power. Here, the dif-
ferences between the models are more pronounced. We
see that the MANTIS model is off by at most a few per-
cent for most of the benchmarks, except for canneal,
StressApp, and bonnie, which have high utilization,
low IPC, and consequently lower power than the model
attributes to utilization alone. It is important to note that
the linear-Lasso model, which picks out the set of fea-

tures automatically, consistently outperforms the MAN-
TIS model, which uses domain knowledge to select the
features. Not surprisingly, the set of counters picked out
by linear-Lasso is a superset of the counters used by the
MANTIS model; the C-state counters included in the
linear-Lasso model, but not the MANTIS model seem
to improve predictive power. Thus, this goes to estab-
lish that as systems become increasingly complex, the
task of applying domain knowledge to pick out the most
accurate set of counters becomes progressively harder
and techniques that do automatic feature selection will
be very useful in building effective models.

Finally, Figure 5 compares the error in prediction in
the memory subsystem for different models and across
various benchmarks. Similar to the CPU, all models save
for SVM-rbf, do quite well and have comparable errors.
Also, when compared to CPU power, the prediction er-
ror for different models are similar. This hints at the
fact that all models use the same set of relevant features,
which for the memory subsystem (which is simple) is
quite predictable—L3-cache-misses being the most rele-
vant and dominant feature.

Most of the results discussed so far were as expected—
linear models have been shown to work well to predict
full system power [14, 31]. Promisingly, even with an in-
crease in subsystem power management complexity over
prior work [5], the same linear models also do well in
predicting platform subsystems.
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Figure 5: Modeling acuracy for memory power (Single-Core). Mean relative error is 4–8% across workloads.

Figure 6: Modeling acuracy for total system power (Multi-core). Mean relative error is 2–6% across workloads.

6.2 Multicore

Next, we move to a more complex, yet more represen-
tative system configuration that utilizes all four available
cores (HyperThreading and TurboBoost are still disabled
and the P-state is still fixed). While more realistic, it
still insulates the system from the extra hidden states of
DVFS and functional contention, making power as easy
to predict as possible. Figure 6 shows that across all the
benchmarks, total system power is predicted to within
2-6%, which is respectable. This is well within the accu-
racy range required for tasks like data center server con-
solidation. However, as shown in Figure 7, the prediction
error for CPU power is significantly higher, compared to
that of the single core configuration, at 10-14%.

If we look more closely at the individual benchmarks
for system power (Figure 6), we see that the error varies
drastically by particular benchmark. Some benchmarks
are predicted quite well (those near the left of the bar
graph) and others do rather poorly (those to the right).
Interestingly, the ordering of models changes with each
benchmark, i.e., a particular model does not consistently
do better than another over the entire set of benchmarks.
In every benchmark there is at least one model that has an
error less than 6%, but it is not always the same model.
Our intuition for this behavior is that the model finds
a roughly linear/polynomial/exponential space that fits
some of the benchmarks, but then fails to capture the
complex nature of contention on system resources to ac-
curately model all workloads.

Figure 7 shows the prediction error across models for
the CPU power. These results are even more striking. For
workloads that lightly load the system (Sleep, low-rate
memcached, etc.) and workloads that stress very spe-
cific components (StressAppTest, cpuload, etc.),
the prediction is poor. This is particularly concerning be-
cause previous work shows that most production systems
are run at low utilization levels [3]. Hence, one might
hope that prediction is much better at idle or low load
(which is a more realistic scenario in production sys-
tems). Unfortunately, the error climbs above 80% for
most of the models. Thus, we find that all the models we
evaluate are limited in their ability to predict the power
consumption of workloads on multicore systems.

The metric of mean absolute error indicates instanta-
neous prediction error. An astute reader might observe
that some prediction applications might be concerned
with long term averages and that the instantaneous er-
rors might balance out. While time averaging can reduce
the overall impact, many of the benchmarks experience
one-sided errors and the models systematically overpre-
dict for some and underpredict for others. Furthermore,
even though the percentage error is influenced by the ac-
tual power magnitude, we find that most benchmarks are
systematically mispredicted by 1–6W on average.

We posit that one of the factors that contributes in
a significant way to the poor prediction performance is
the increasing presence of hidden power states. In the
present case, there are several resources shared across
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Figure 7: Modeling accuracy for CPU power (Multi-core). Mean relative error is 10–14% across workloads, but as
high as 150% for some workloads on the right.

Figure 8: Prediction error with hard disk (left) and newer technology SSD (right).

the cores (L2 caches, for one), which lead to resource
contention between the cores causing bottlenecks in pro-
cessing. However, this very low level behavior is not cap-
tured in any of the exported features, and consequently
does not make its way into the model. Since we can-
not observe the unexposed CPU state to understand what
is really happening, in the following section we use the
increased internal complexity of SSDs vs. hard drives,
instead, to demonstrate degradation in modeling due to
hidden power states.

6.3 Hidden states
An important concern when modeling individual hard-
ware components is whether the model, or the inputs
to the model, capture all relevant aspects of the compo-
nent’s operation. This derives from the tension between
the increasing complexity of the component, and hiding
state to present a simple and consistent interface to the
OS. If the component incorporates optimizations and cir-
cuitry that affect its power draw without varying any of
the counters and states that it is exporting externally, then
the model, which relies completely on the externally vis-
ible features, is likely to fail. As a case in point, there is
anecdotal evidence to suggest that newer processors ag-
gressively optimize for power by turning off functional
blocks inside the CPU that are not being used, or doing
clock gating at a finer granularity than what is exposed
on the C-states (neither of which can be easily observed

or inferred by software). Another example of this phe-
nomenon can be seen in modern SSD drives: these in-
clude a number of performance and robustness optimiza-
tions (e.g. wear leveling, page re-writing, etc.). While
these complexities are well known [8], they are not ex-
posed via the SATA statistics, as evidenced by low mu-
tual information with the power values. Thus, the power
consumed by a given write may have more to do with the
hidden state of the device than with the write itself.

To explore this systematically, we ran the same bench-
marks on the same platform but with two different hard
disks. The first was a conventional 2.5” WD Caviar
Black 10K-RPM HDD, and the second was a newer Intel
X-25M SSD. Power measurements on the drives show
similar power ranges: 0.9–3.6W for the traditional plat-
ter based HDD, and 1.2–3.6W for the newer technol-
ogy SSD. Note that for both disks the features that are
recorded are identical, and attempt to capture the amount
of work done by the OS in writing/reading from the disk.

Figure 8 shows the prediction errors for both the
drives. The high level takeaway is that the error is con-
sistently larger for the SSD than it is for the traditional
drive. Specifically, we see that across the set of bench-
marks, the model predictions are off by around 7% in
the case of the conventional HDD, while they are off by
approximately 15% for the SSD drive. Since the fea-
tures collected and examined in each case are the same,
the prediction errors are clearly caused by internal state
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changes in the SSD that are reflected in the power draw,
but not exposed in the features being tracked. This au-
gurs poorly for power prediction models, given that hard-
ware complexity continues to grow by leaps and bounds.

7 Discussion

While our results indicate that the modeling techniques
we study suffer from significant prediction error, it is nat-
ural to ask 1) whether this error is in any way fundamen-
tal, or could be overcome with more sophisticated tech-
niques, and 2) how useful the resulting predictions might
be for particular dynamic power management (DPM) ap-
plications. We discuss both issues in this section. First,
we present anecdotal evidence that the inherent variabil-
ity between identical hardware components is likely to
introduce a basic error term to any modeling based ap-
proach that cannot be solved by adding complexity into
the model. Second, we discuss how useful currently
achievable levels of accuracy can be to DPM systems.

7.1 Variability
Power modeling is based upon an underlying presump-
tion that the error characteristics of the model do not
change over time or over instances of the platform. That
is, the model can be generated as a one-time operation by
training on a specific platform instance, and the model
can be used to predict the power consumption for any
other instance of platform with the same specifications.
While minor variations in manufacturing parts is a given,
historically it has not significantly affected the operating
characteristics of the platform and processors.

However, the increasing complexity of modern hard-
ware, with staggering amounts of circuitry being stuffed
into ever smaller packages exaggerates the variations sig-
nificantly. These variations lead to variability in power
consumption both in the active and standby modes. Fur-
thermore, the variability is only exacerbated by aging
and differences in operating environment. Recent work
shows that in an 80-core general purpose chip designed
by Intel, the frequency, which is directly co-related with
the power consumption, of individual cores varied by as
much as 25–50% for different operating voltages [13].
Research in embedded systems has shown that multiple
instances of a Cortex M3 micro-controller can vary in
sleep power consumption by as much as 5× [38]. Re-
cent work has also demonstrated that the performance
and power consumption of flash memory chips varies
widely based on age, wear and write location [8].

This level of variability raises questions about the abil-
ity of power models to generalize over identical systems
because they do not actually perform identically. Errors
in the power model are amplified by variations across

Figure 9: Variability in power consumption measured
across two CPUs of the exact same type: Intel Core i5-
540M. Core 1 shows a 11% variability between the two
processors, while Core 2 shows 11.2% variability. Mea-
surements are averaged across ten runs for each case,
with standard deviation marked.

different instances. Using our measurement platform we
see significant differences between two identical Core
i5-540M processors. Figure 9 illustrates the measured
power consumption of the two processors (540M-1 and
540M-2) running our cpuload benchmark pinned to ei-
ther Core 1 or Core 2 using Linux cpu sets. We report
CPU power on a single platform so that everything—the
mainboard, memory, benchmark, measurement infras-
tructure, and the operating environment(temperature)—
but the processor is constant.

As can be observed from Figure 9, the CPU power
consumption when executing on Core 1 for 540M-2 is
11% higher than when using 540M-1, and is similarly
11.2% higher when executing on Core 2. Note that the
power consumption is averaged across ten runs on the in-
dividual cores (Core 1 or Core 2) for the two processors
(540M-1 or 540M-2). We also report the standard devia-
tion in Figure 9 which is measured to be less than 3.1%
in all cases. Thus, if one of the models from Section 5
were trained on 540M-1 and applied to workloads exe-
cuting on 540M-2, then a mean prediction error of 10%
could translate into a 23% error and 20% prediction error
translates into a 34% prediction error. Given the unde-
niable trend toward more complex—and therefore inher-
ently variable—components such as processors, this fun-
damental accuracy gap seems likely to continue to grow.
Hence, power instrumentation may be the only choice for
accurate power characterization.

7.2 Implications for DPM
As discussed previously, the level of accuracy and the
granularity (i.e., which subsystems are characterized) re-
quired for dynamic power management is strongly tied to
the particular application domain. In some cases, reduc-
ing energy might be possible with only a coarse grained
and approximate power consumption estimate. In other
cases, the application is likely to need a higher degree of
accuracy than modeling can currently provide.
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A promising way to save energy on a computing plat-
form is by scheduling computation more optimally. This
could be done by migrating threads to different cores on
the same socket or on different sockets (power gating is
often done at the socket level, so using additional cores
on the same socket has a very small cost). The process-
ing cores available on a platform may be homogeneous
(all derived from identical parts) or heterogeneous (from
disparate parts and even architectures).

When there are a multiplicity of processing cores
available, we expect the power cost to be quite different,
and characterizing the power for each of these cores is
critical when deciding to migrate computation. As seen
in Section 5, the power models for subsystems like the
CPU can have errors of up to 40%. When the errors
dwarf the actual power variations across the cores (and
this is a likely scenario when the cores are not architec-
turally different) it is likely that the mispredictions have
an adverse effect. However, when the choice is between
heterogeneous components such as between a CPU or a
GPU, with significantly different power characteristics,
i.e., where the variation might be larger than the model
errors, it might still be acceptable to rely on modeling.

In another domain, prior work on mobile devices
has shown that dynamically switching between multi-
ple heterogeneous radios, such as WiFi and Bluetooth,
can in some cases double battery lifetime [27]. Choos-
ing between different radio alternatives like these with
vastly different power characteristics seems straightfor-
ward even with very poor accuracy. However, recent
work has shown that modern WiFi radios, such as those
based on the 802.11n MIMO standard, have many more
complex states, each with different power consumption
tradeoffs [20]. Accurate component-level power charac-
terization will therefore be essential to make optimal de-
cisions on which radio interface or computational unit—
and in which mode—to use.

Finally, we note that power-aware resource schedul-
ing is not limited to resources within the same plat-
form. In fact the advent of abundant cloud computing
resources has accelerated research into systems, such as
MAUI [12], that can use both local computation (on mo-
bile devices) and also execute code remotely in the cloud
whenever needed. Currently these systems operate un-
der the assumption that servers in the cloud are always-
powered and, hence, their energy costs are not as impor-
tant as those of battery-powered mobile devices. These
systems would benefit significantly from detailed power
characterization on the local mobile device as well as the
servers in the cloud. Using this information, the policy
decisions on when to execute code locally or remotely
can be more informed and therefore more optimal. The
absolute amounts of energy being considered (i.e., the
execution of a single function call) in code offload sce-

narios, however, are fairly small, so high degrees of ac-
curacy seem essential.

8 Conclusion

The models we consider are able to predict total system
power reasonably well for both single core (1–3% mean
relative error) and multi-core scenarios (2–6% mean rel-
ative error), particularly when the base power of the sys-
tem is high. However for predicting subsystem power,
we show that linear regression based models often per-
form poorly (10–14% mean relative error, 150% worse
case error for the CPU) and more complex non-linear
models and SVMs do only marginally better. The poor
subsystem power modeling is due to increased system
and device complexity and hidden power states that are
not exposed to the OS. Furthermore, our measurements
show surprisingly high variability in processor power
consumption, for the same configuration across multi-
ple identical dies, highlighting the fundamental chal-
lenges with subsystem power modeling. Looking for-
ward, while modeling techniques may suffice for some
DPM applications, our results motivate the need for per-
vasive, low-cost ways of measuring instantaneous sub-
system power in commodity hardware.
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Abstract

The buffer cache plays an essential role in smoothing the
gap between the upper-level computational components
and the lower-level storage devices. A good buffer cache
management scheme should be beneficial to not only the
computational components, but also to the storage com-
ponents by reducing disk I/Os. Existing cache replace-
ment algorithms are well optimized for disks in normal
mode, but inefficient under faulty scenarios, such as a
parity-based disk array with faulty disk(s).

To address this issue, we propose a novel asymmet-
ric buffer cache replacement strategy, named Victim (or
faulty) Disk(s) First (VDF) cache, to improve the relia-
bility and performance of a storage system consisting of
a buffer cache and disk arrays. The basic idea is to give
higher priority to cache the blocks on the faulty disks
when the disk array fails, thus reducing the I/Os directed
to the faulty disks.

To verify the effectiveness of the VDF cache, we
have integrated VDF into two popular cache algorithms
LFU and LRU, named VDF-LFU and VDF-LRU, re-
spectively. We have conducted extensive simulations as
well as a prototype implementation. The simulation re-
sults show that VDF-LFU can reduce disk I/Os to sur-
viving disks by up to 42.3% and VDF-LRU can reduce
those by up to 36.2%. Our measurement results also
show that VDF-LFU can speed up the online recovery by
up to 46.3% under a spare-rebuilding mode with online
reconstruction, or improve the maximum system service
rate by up to 47.7% under a degraded mode without a re-
construction workload. Similarly, VDF-LRU can speed
up the online recovery by up to 34.6%, or improve the
system service rate by up to 28.4%.

1 Introduction

To reduce the number of I/O requests to the low level
storage device, such as disk arrays, a cache is widely

used and many cache algorithms exist to hide the long
disk latencies. These cache algorithms work well for disk
arrays under normal fault-free mode. However, when
some disks in a disk array fail, the RAID may still work
under this faulty scenario, either in a spare-rebuilding
mode with online reconstruction or in a degraded mode
without online reconstruction. The cost of a miss to
faulty disks might be dramatically different compared to
the cost of a miss to surviving disks. Existing cache algo-
rithms cannot capture this difference because they treat
the underlying (faulty or surviving) disks the same.

We take an example as shown in Figure 1, which il-
lustrates two different cache miss situations in a stor-
age subsystem composed of a parity-based RAID with
one faulty disk in degraded mode. As shown in Fig-
ure 1(a), the missed data resides in the faulty disk. The
RAID controller accesses the surviving disks to fetch all
data and parity in the same stripe to regenerate the lost
data. Therefore, to service one cache miss, several read
requests are needed depending on the RAID organiza-
tion. However, if the missed data is in a surviving disk as
shown in Figure 1(b), only one read request to the corre-
sponding surviving disk is generated. Similar situations
are observed in spare-rebuilding mode. A simple analy-
sis shows that in a RAID5 system consisting of n disks,
when a disk fails, the cost to fetch data from a faulty disk
might be n − 1 times higher than the cost to access data
from a surviving disk. This extra disk I/O activity will
in turn reduce the effective array bandwidth available for
reconstruction or user access.

When a disk array starts online reconstruction, it uses
up regular bandwidth. Compared to offline reconstruc-
tion, during the process of online reconstruction, the
user workflow interferes with the reconstruction work-
flow. As a result, the online reconstruction duration
grows significantly compared to offline reconstruction.
Wu et al. [1] point out that, in a heavy user workflow, the
duration of online reconstruction would grow as much
as 70 times as that of the offline reconstruction. In this
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(a) A read miss to a faulty disk might result in several
additional read requests to the surviving disks.

(b) A read miss to a surviving disk would result in only
one request to the corresponding surviving disk.

Figure 1: Two typical cache-miss situations in a storage subsystem composed of a parity-based RAID in a degraded
mode.

case, more requests to the surviving disks, caused by user
requests, reduce the available reconstruction bandwidth
and lengthen the reconstruction duration, which reduces
the reliability of the storage system.

On the other hand, in a degraded mode without a
reconstruction workflow, a miss to faulty disks would
cause all the surviving data in the same parity chain
(stripe in RAID-5) to be read and add additional work-
flow to surviving disks. With a decreasing serviceabil-
ity and an increasing user workflow caused by misses to
faulty disks, the storage subsystem might be overloaded
under a heavy user workflow.

Therefore, in parity-based disk arrays under faulty
conditions, a miss to faulty disks is much more expen-
sive than a miss to surviving disks. Based on this obser-
vation, we propose an asymmetric buffer cache replace-
ment strategy, named Victim (or faulty) Disk(s) First
cache, or VDF for short, to improve the performance of
storage subsystem composed of a parity-based disk ar-
ray and its buffer cache. The basic idea is to design a
cache scheme to treat the faulty disks more favorably, or
give higher priority to cache the data associated with the
faulty disks. The goal of this scheme is to reduce the
cache miss directed to the faulty disk, and thus to reduce
the I/O requests to the surviving disks overall. Reduced
disk I/O caused by the user workflow will (1) improve the

performance of the disk array, and (2) allow more band-
width for online reconstruction which in turn speeds up
the recovery, and thus improves the reliability. We make
the following four contributions in this paper:

1. We proposed a new metric, Requests Generation
Ratio or RGR, to capture the disk I/O activities
of user workflows on the surviving disks when a
storage system is under faulty conditions. This
would directly influence the maximum bandwidth
for reconstruction in a spare-rebuilding mode and
the bandwidth available to user workflows in a de-
graded mode.

2. We developed a novel cache-replacement scheme,
VDF, by giving higher priority to cache the data as-
sociated with the faulty disks, to minimize the RGR.
VDF is flexible and could be integrated into existing
cache algorithms such as LRU and LFU.

3. We conducted extensive simulations to verify the ef-
fectiveness of VDF under different workloads. The
simulation results show that VDF-LRU can reduce
overall disk I/Os to surviving disks by up to 36.2%
and VDF-LFU can reduce those by up to 42.3%.

4. We implemented VDF in the Linux software RAID
system. As a result, VDF-LFU can speed up the on-
line recovery by up to 46.3% under spare-rebuilding
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mode, or improve the maximum system service rate
by up to 47.7% under degraded mode. Similarly,
VDF-LRU can speed up the online recovery by up
to 34.6%, or improve the system service rate by up
to 28.4%.

The rest of the paper is organized as follows: Section
2 gives a brief overview of the background information
and related work. In Section 3, we describe our new met-
ric, RGR, and the design of VDF. A case study of VDF
cache is given in Section 4; we describe integrating VDF
into two typical cache-replacement algorithms, LRU and
LFU, based on RAID-5. We provide our simulation re-
sults of VDF in Section 5, and prototyping and measure-
ment results in Section 6. We conclude our paper and
describe future work in Section 7.

2 Background and Related Work

In this section we briefly overview some background ma-
terials and related work.

2.1 Optimizations of Disk Arrays under
Faulty Conditions

Redundant Arrays of Independent Disks RAID [2] are
popular solutions to provide high performance and re-
liability for today’s storage systems. Depending on its
organizations, RAID could prevent data loss incurred by
disk failures and even offer online services under faulty
conditions. With a faulty disk, these RAIDs would work
in a spare-rebuilding mode to support online reconstruc-
tion, or in a degraded mode without reconstruction.

RAID can offer continuous online services even in
faulty mode. However, the recovery workload and user
request can interfere with each other, and lead to longer
recovery times. Many solutions are proposed to solve
this problem, such as optimizations of data/parity/spare
layout [3–7], reconstruction workload [8–12], and user
workload [1, 13, 14].

Menon et al. present a method to distribute spares to
all disks, which would not only reduce the lost data per
disk but also parallelize the reconstruction [4]. Holland
et al. [3] propose a trade-off between RAID-1 (mirror)
and RAID-5, named parity declustering, to balance the
storage efficiency and the recovery performance. Xin et
al. use a RUSH-like hash algorithm to evenly distribute
data, parity, and spares among the nodes in a distributed
environment [5].

The track-based recovery (TBR) [8] algorithm pro-
vides a trade-off between block-based recovery and
cylinder-based recovery, and balances the user response
time and the recovery duration. However, TBR requires

much more buffer space compared to block-based re-
covery. The pipelined recovery (PR) scheme [9] ad-
dresses this problem, and significantly reduces the buffer
requirements close to that of the block-based recovery
algorithms. The disk-oriented recovery (DOR) algo-
rithm [10] rebuilds the array at the disk-level instead
of the stripe-level. With this approach, DOR could ab-
sorb the bandwidth of the array as much as possible.
The popularity-based recovery (PRO) algorithm [11,12],
builds upon the DOR algorithm, further improving the
recovery performance by utilizing the spatial locality of
user requests.

Two techniques named redirection of reads and pig-
gybacking of writes [13] are proposed to reduce the user
workflow by employing the reconstructed spare disk to
absorb parts of the requests to the faulty disk. How-
ever, they need to maintain a bitmap in the dedicated
cache in the RAID device to record the reconstruction
status; as the increasing of disk size, a fine-granularity
bitmap would consume too much memory, and increase
synchronization costs. For example, a bitmap with gran-
ularity of 4KB for a 2TB disk would require 64MB of
memory, which limits the use of piggybacking of writes.
During the reconstruction, at most a coarse-granularity
bitmap could be used only to redirect reads. MICRO
[14] achieves improved recovery performance by writ-
ing back the in-memory surviving data of the faulty disks
into a spare disk first and using a file popularity table
to find the hotspot. MICRO treats all the blocks in the
cache equally, which is similar to the general cache-
replacement algorithms and has the same limitations.
WorkOut [1], an array-cache-array method, offloads the
write requests and popular read requests to another disk
array. As a result, WorkOut speeds up the recovery pro-
cess and improves the user response time. However,
WorkOut requires another disk array to help with the re-
construction and need maintain an addressing translation
map, which might be much larger than a fine-granularity
bitmap, in the dedicated cache on the RAID device. This
suffers from the same problem as redirection of reads and
piggybacking of writes.

2.2 Buffer Cache Replacement Algorithms

RAID-based storage systems usually work together with
the buffer cache. To improve the efficiency of the
buffer cache, researchers have proposed many cache-
replacement algorithms, such as LRU [15], LFU, FBR
[16], LRU-k [17, 18], 2Q [19], LRFU [20, 21], MQ [22,
23], LIRS [24, 25], ARC [26], DULO [27], DISKSEEN
[28] and more. Each cache-replacement algorithm weigh
the cached blocks with a different method, such as access
interval, access frequency and so on, then decide which
cached blocks to evict.
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Table 1: Variables and Definitions

Symbols Definition
C Total number of blocks in the buffer cache
T Total number of data blocks in a disk array
Bi Data block i
pi Access probability of each block Bi

MPi Miss penalty of each block Bi

BW Total serviceability of all surviving disks in terms of I/O bandwidth
BWU I/O bandwidth available to user workload, or service rate of the system from the user’s point of view
BWR I/O bandwidth for an online reconstruction workload
RGR The ratio of the # of requested blocks to surviving disks and the # of requested blocks to buffer cache
Q Total amount of data from surviving disks to reconstruct faulty disks

The LRU (Least-Recently-Used) algorithm is one of
the most popular and effective policies for buffer cache
management. When a block needs to be inserted into
the cache, the candidate to be evicted is the block which
is least recently used. That is to say, the weight of
the cached blocks in LRU is its last access timestamp.
The block with the smallest last access timestamp is
evicted. The LFU (Least-Frequently-Used) algorithm re-
places the least frequently used block. In other words,
the weight of the cached blocks in LFU is its number
of accesses. The block with the smallest number of ac-
cesses is evicted. Other algorithms, such as LRU-k, 2Q,
LRFU, MQ, LIRS, and ARC, integrate LRU and LFU al-
gorithm together and demonstrate good performance un-
der various scenarios. DULO and DISKSEEN consider
both temporal and spatial locality when a block needs to
be replaced.

However, the above cache-replacement algorithms
work well when the RAID system is under normal oper-
ating mode. When some disks in the RAID system fail,
it runs under faulty condition, but the buffer cache layer
is not aware of the underlying failures in RAID and thus
the existing cache algorithms do not work well as ex-
plained in Section 1. This motivates us to propose VDF:
a cache scheme to treat the faulty disks more favorably,
or give a higher priority to cache the data associated with
faulty disks. The goal is to reduce the cache misses di-
rected to the faulty disk and thus to reduce the I/O re-
quests to the surviving disks overall. As our VDF only
increases the weight of blocks in the faulty disks, theo-
retically it could work with the above-mentioned general
cache-replacement algorithms.

3 Design of VDF

In this section, we propose a new metric to describe the
cache efficiency of disk I/O activities. We show how to
use it to evaluate disk arrays under faulty conditions, and

then we describe our VDF scheme. Before our discus-
sion, we summarize the symbols in Table 1.

3.1 RGR: A New Metric to Evaluate
Cache Performance with Various Miss
Penalty

Traditional cache-replacement algorithms are essentially
evaluations on access probability of cached blocks, based
on the assumption that the penalty of each miss at the
same level is the same. However, in parity-based RAID
with faulty disk(s), the penalty of a miss to the lost data in
the faulty disks might be much more expensive than that
of a miss to surviving data. Therefore, from the aspect
of a RAID device, the buffer cache performance should
not be simply evaluated by the traditional metrics such
as Hit Ratio or Miss Ratio, particularly when the RAID
is under faulty conditions. To address this issue, we pro-
pose a new metric called Requests Generation Ratio or
RGR. This is the ratio of the number of requested blocks
to the surviving disks and the number of the requested
blocks to buffer cache, to evaluate the cache performance
from the view point of a faulty RAID device. RGR rep-
resents the disk activities to service an I/O request to the
buffer cache. Ideally, if all I/O requests are serviced by
the buffer cache, RGR will be 0 (no disk I/Os are gen-
erated). For missed I/O requests, RGR will be different
depending on the penalty to each underlying disk. For
example, in Figure 1(a) the RGR of a miss to the faulty
disk is 4 because 4 disk I/Os are generated to service the
missed I/O request, and in Figure 1(b), the RGR of a miss
to surviving disks is 1.

To calculate the RGR, we assume a parity-based RAID
of T data blocks with a buffer cache of C blocks. The ac-
cess probability of a block Bi is pi, where 0 ≤ i ≤ T−1,
with a miss penalty of MPi in terms of the total re-
quested blocks to surviving disks caused by a miss. From
the viewpoint of a certain workload, pi actually repre-
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sents the ratio of the number of request on Bi and the
number of total block requests. If block Bi is not ref-
erenced in this workload, pi should be 0. As we have
mentioned above, different cache algorithms evaluate pi
with different approaches in runtime environments. If a
block is serviced by the cache, the corresponding miss
penalty MPi = 0. Therefore, the RGR of the next block
request can be described by the following Equation 1.

RGR =

T−1∑
i=0

(pi ×MPi) (1)

3.2 Using RGR to Evaluate the Cache Effi-
ciency in Faulty Mode

Consider a system composed of a buffer cache and a
RAID in faulty mode which service a certain user work-
load. We have the following symbols. First, the total ser-
viceability of all surviving disks is BW in terms of I/O
bandwidth. Second, the unfiltered user workload would
take BWU bandwidth, which is the service rate of the
system from a user’s perspective. The average RGR of
the buffer cache is RGR. Therefore, the filtered user
workload should take about BWU × RGR bandwidth.
Third, all the remaining bandwidth BWR of all surviv-
ing disks could be utilized for reconstruction. Lastly,
the total amount of surviving data for reconstruction is
Q. Equation 2 describes the relationships among BW ,
BWU , RGR, and BWR.

BW = BWU ×RGR+BWR (2)

We first consider the spare-rebuilding mode. The sur-
viving disks would suffer from more requests as ex-
plained in Section 1. It means that the I/O bandwidth
available for reconstruction on the surviving disks would
be less than the I/O bandwidth for reconstruction on the
spare disk. The total amount of requested data for recon-
struction on each disk (including the surviving disks and
the spare disks) is the same. Therefore, to the online re-
covery process, the I/O bandwidth for reconstruction on
the surviving disks is the bottleneck. The reconstruction
duration RD could be described with Equation 3.

RD =
Q

BW −BWU ×RGR
(3)

From Equation 3, we can find that, if Q, BW , and
BWU are fixed, with the decreasing RGR, the re-
construction duration RD (and thus MTTR) decreases.
Therefore, to minimize the MTTR, we should minimize
the RGR.

We next consider the degraded mode without recon-
struction. Each surviving disk would suffer from the ex-
tra requests caused by the access to faulty disks. The

filtered user workload should not exceed the total ser-
viceability of all surviving disks. In another words, the
maximum unfiltered user workload BWU should not ex-
ceed BW

RGR . Therefore, we should minimize the RGR to
maximize the system serviceability, which is described
with a maximum BWU .

From the above discussion, we notice that compared to
the traditional metrics on cache evaluation, such as miss
ratio, RGR is a useful metric to demonstrate two impor-
tant indicators of a faulty disk array more clearly and
directly. One is the reconstruction time which is directly
related to MTTR and affects the system reliability. The
other is the throughput that indicates the performance of
the storage system.

3.3 VDF Cache
Based on the above analysis, we propose our VDF cache
aiming at reducing the RGR for parity-based RAID un-
der faulty conditions, either to enhance the system relia-
bility by speeding up the reconstruction process in spare-
rebuilding mode, or to improve the system performance
by increasing the system serviceability in degraded mode
without reconstruction workloads. As it operates at the
buffer cache level, VDF is practical and does not suffer
from the same problems of the small dedicated cache in
a RAID controller.

Cache-replacement algorithms are essentially evalua-
tions on access probability of cached blocks. Once a
miss occurs, typically a block should be evicted from
cache, and the missed block would be loaded to the free
space. General replacement algorithms evict the block
with the smallest access probability to reduce the total
access probability of the remaining blocks out of buffer
cache. However, to minimize the RGR, the eviction of a
block should not only be determined by the access proba-
bility but also by the miss penalty. In our VDF cache, we
adopt the same evaluation approach of access probability
pi for each cached block as the general cache. Further-
more, the miss penalty MPi of each block is evaluated
with the requested blocks to the surviving disks of this
block; the block with the minimum product of pi×MPi

is evicted from the cache to minimize the RGR.

4 A Case Study of VDF

To verify the effectiveness of VDF, we apply VDF in a
RAID-5 system of n disks where one disk fails. We focus
on read operations for two reasons: first, in many appli-
cations, users are typically sensitive to read latency, par-
ticularly in a disk array under faulty conditions; second,
in many storage systems, independent non-volatile mem-
ory is deployed as a write cache to enhance the reliability
and this cache uses a dedicated write cache algorithm.
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Figure 2: VDF implementation with two types of stacks.

4.1 Integrating VDF into LRU and LFU

Although VDF cache can cooperate with caches at
other levels by adjusting the miss penalty of blocks,
for demonstration purposes we just consider a one-level
buffer cache above the disk array. Therefore, the miss
penalty of blocks on the faulty disk would be n − 1 in
our following discussion, which means one cache miss
to the faulty disk will result in n − 1 I/O requests to the
surviving disks. To integrate VDF with any cache algo-
rithm, the access probability should be evaluated with a
quantitative approach. Different cache-replacement al-
gorithms evaluate the access probability of blocks using
different approaches. Most existing cache management
algorithms can be categorized into LRU-like and LFU-
like algorithms. In LRU-like algorithms, the weight of
blocks is often evaluated by the access time interval. As
it is costly to record the real access timestamp, a simple
alternative is to record the access sequence number, and
use the reciprocal of the interval access sequence number
as the access probability. This approach is widely used in
many LRU-like algorithms. In LFU-like algorithms, the
weight of blocks is majorly evaluated by the access fre-
quency. Thus, to integrate VDF into these LFU-like al-
gorithms, it needs only to keep the original evaluation ap-
proach. Furthermore, different from the access sequence
number, the access frequency of two blocks might be the
same. Therefore, in VDF based LFU-like algorithms, the
access sequence number is also employed for choosing
which block to evict with the same access frequency. In
VDF cache the access probability of a block would not
be the absolute but the relative value, because both the
reciprocal of interval of access sequence number and the
access frequency are actually the relative values.

The conversion from the original cache algorithms to
the VDF-based algorithms should be smooth, because

Algorithm 1: VDF-LRU for RAID-5 with n disks
Input: The request stream x1, x2, x3, ..., xi, ...
VDF LRU Replace(xi){
/*For every i ≥ 1 and any xi, one and only one of the following cases
must occur.*/
if xi is in LSk ,0 ≤ k < n then

/*A cache hit has occurred.*/
Update TS of xi, by TS = GTS;
Move xi to the heads of LSk and GS.

else
/*A cache miss has occurred.*/
if Cache is full then

foreach block at the bottom of LSj , 0 ≤ j < n do
if LSj is a corresponding stack to a faulty disk then

Its weight W=GTS − TS;
else

Its weight W=(GTS − TS) ∗ (n − 1);

Delete the block with maximum W to obtain a free block;
else

/*Cache is not full.*/
Get a free block.

Load xi to the free block.
Update TS of xi, by TS = GTS;
Add xi to the heads of GS and the corresponding LS.

Update GTS, by GTS = GTS + 1;
}

VDF takes effect in faulty mode. In other words, the
buffer cache should be managed with the original algo-
rithms in fault-free mode, and the VDF policy becomes
effective when disk failures occur. Thus, a smooth run-
time conversion between the original algorithm and the
VDF-based algorithm is needed, which is quite differ-
ent from the general cache algorithms. Therefore, in
VDF-based algorithm, we employ two types of stacks to
achieve the smooth runtime conversion: one is the global
stack (GS) which is similar to the stack in a general al-
gorithm such as global LRU stack, and the other is the
local stack (LS) holding the blocks on the same disk in
cache. All blocks should be in two types of stacks con-
currently as shown in Figure 2. When the system works
in fault-free mode, it evicts the block with the smallest
weight at the bottom of the GS stack. Once a disk ar-
ray drops to a faulty mode, it evicts the block with the
smallest weight at the bottom of each LS stack instead of
evicting the block at the bottom of the GS stack.

4.2 Detailed Description of VDF-LRU and
VDF-LFU

Detailed descriptions of VDF-LRU and VDF-LFU for n-
disk RAID-5 are given in Algorithm 1 and Algorithm 2,
respectively, using the variables summarized in Table 2.

5 Simulation Results and Analysis

To evaluate the effectiveness of VDF, we conducted sim-
ulations under three typical workloads: SPC-1-web, LM-
TBE, and DTRS.
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Table 2: Variants in VDF and Explanation

Variants Explanation
x A block request to buffer cache
LS The local stack holding the blocks on one certain disk in the buffer cache
GS The global stack holding all the blocks on all the disks in the buffer cache
n The total number of disks including the faulty disk and surviving disks
TS The timestamp of a block: records the access sequence number
F The access frequency of a block

GTS The global timestamp: it is equal to the timestamp of currently accessed block
W The weight of a block

Algorithm 2: VDF-LFU for RAID5 of n disks
Input: The request stream x1, x2, x3, ..., xi, ...
VDF LFU Replace(xi){
/*For every i ≥ 1 and any xi, one and only one of the following cases
must occur.*/
if xi is in LSk ,0 ≤ k < n then

/*A cache hit has occurred.*/
Update F and TS of xi, by F = F + 1;
Move xi to right place of LSk and GS according to F and TS.

else
/*A cache miss has occurred.*/
if Cache is full then

foreach block at the bottom of LSj , 0 ≤ j < n do
if LSj is a corresponding stack to a faulty disk then

Its weight W=F ∗ (n − 1);
else

Its weight W=F ;

Delete the block with minimum W and GTS − TS to obtain
a free block;

else
/*Cache is not full.*/
Get a free block.

Load xi to the free block.
Initialize the frequency F and TS of xi, by F = 1 and
TS = GTS;
Move xi to right place of LSk and GS according to F and TS.

Update GTS, by GTS = GTS + 1;
}

SPC-1-web, a trace used in the SPC-1 benchmark
suites, was collected in a search engine, which is widely
used in the evaluation of storage systems [1,11,14]. LM-
TBE and DTRS are provided by Microsoft Corporation
collected in 2008. The LM-TBE trace was collected in
back-end servers supporting a front-end Live Maps ap-
plication. The DTRS trace was collected in a file server
accessed by more than 3000 users to download various
daily builds of Microsoft Visual Studio. Both traces were
taken in a period of 24 hours and broken into pieces with
1-hour intervals [29]. We choose only the piece with
most intensive I/O activities. For fairness and simplicity,
we consider only the read operations and all block sizes
are 4KB. We report RGR of LRU, LFU, VDF-LFU, and
VDF-LRU under these workloads as shown in Figures 3,
4, and 5, respectively.

Our simulator, named VDF-Sim, is written in C
and the source code is approximately 3000 lines. It

slices/splits the trace records into block requests as the
input. Data blocks in a stack or blocks with the same
hash values are linked via double circular lists. For a
certain block in our simulator, we record its logical off-
set as the unique ID since the disk array is transparent to
the upper level systems such as a file system. According
to the data/parity distribution of the disk array and the
logical offset of a block, it is easy to identify on which
disk the block resides. The arriving timestamps of the re-
quests are also recorded to evaluate pi as we mentioned
in Section 4 and to generate the misses trace used in the
prototype discussed in the next section.

The results show that, compared to the original
LRU and LFU algorithms, VDF optimized algorithms
achieved better performance consistently by reducing the
RGR. Compared to LRU, VDF-LRU reduces the RGR
by up to 31.4%, 36.2%, and 22.7% under SPC-1-web,
LM-TBE, and DTRS traces, respectively. Compared
to LFU, VDF-LFU reduces the RGR by up to 42.3%,
39.4%, and 24.4%, respectively.

We find that the efficiency of VDF grows with the
increased number of disks under the same number of
cache-resident blocks in most cases. The efficiency of
VDF is more significant with a moderate number of
cache-resident blocks than that with a too small or too
large number of cache-resident blocks. This can be ex-
plained as follows. The cache-resident blocks of a faulty
disk in the original algorithm would occupy 1/n cache
space with total n disks. With the fixed cache-resident
blocks and the increased n, the number of cache-resident
blocks of the faulty disk would be smaller. From the as-
pect of cache management, the impact of the marginal
utility of blocks on hit ratio tends to decrease with the in-
creased cache size. For example, adding P1 blocks to a
cache with P2 blocks might improve the hit ratio with a
larger gain compared to adding P1 blocks to cache with
P3 blocks when P2 < P3. Thus, the marginal utility
of blocks would be more obvious with more disks and
thus the efficiency of VDF grows accordingly. However,
if the number of cache-resident blocks is too small, it is
hard to find hot blocks even with an extended period due
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Figure 3: Simulation results under the SPC-1-web trace. The number of disks ranges from 5 to 8, and number of cache
blocks varies from 64K to 2M with the block size of 4KB.

Figure 4: Simulation results under the LM-TBE trace with various numbers of disks and cache blocks. The block size
is 4KB.

Figure 5: Simulation results under the DTRS trace with various numbers of disks and cache blocks. The block size is
4KB.
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to the large access interval. On the other hand, if the
number of cache-resident blocks is too large, most of the
requested blocks from the faulty disks would be cached,
and the marginal utility of blocks becomes insufficient.

We also find that the VDF strategy becomes more ef-
ficient with LFU than LRU under the three workloads.
One possible reason is that the temporal locality of these
traces is weak as they are server-end traces and already
filtered by upper level caches. Thus, the Stack Depth
Distribution property of these traces is weak. As a re-
sult, the Independent Reference Model property of these
traces would be relatively improved. Although we im-
prove the weight of the blocks on faulty disk to n − 1
times in both VDF-LRU and VDF-LFU, the efficiency
is not the same. Mostly, the caching duration of blocks
from a victim disk in VDF-LFU is longer than that in
VDF-LRU, especially when the total number of cache-
resident blocks is not large. Therefore, VDF-LFU works
better than VDF-LRU in these traces in most cases.

6 Prototyping of VDF

To further evaluate VDF, we implemented a prototype
of VDF in a software RAID system in Linux known as
MD. In this section, we present our measurement results,
including the efficiency of online recovery duration in
full-bandwidth reconstruction mode and system service
rate under the degraded mode without reconstruction.

6.1 Evaluation Methodology
Measurements on real world systems are welcome in re-
search of computer systems. However, implementation
in a real system is a lengthy process and always complex
and challenging. Here, we use a straightforward and ac-
curate measurement approach to evaluate the efficiency
of VDF. The architecture of our prototype is shown in
Figure 6. First, we collect the cache miss information
during our simulation in Section 5, which includes not
only the block ID but also the real access timestamps.
Then, we treat the RAID as a file device, and use an ap-
plication in user mode to play the traces we have col-
lected from our simulations which is similar to RAID-
meter [1, 11]. However, the difference is that our ap-
plication uses direct I/O (available in Linux 2.6 and up)
instead of buffered I/O to avoid the requests being re-
cached by the file system buffer cache. All missed I/O
requests sent to the MD layer directly. Thus our simula-
tion and the application join together to exploit the buffer
cache and replacement algorithm. The trace player is
also written in C and the source code is approximately
500 lines.

In our experiment, we evaluated the effectiveness of
VDF, including the online reconstruction duration in full-

Figure 6: Architecture of VDF prototype.

bandwidth reconstruction mode, and the system service-
ability in the degraded mode without reconstruction. For
online reconstruction in full-bandwidth reconstruction
mode, an open-loop measurement approach is adopted,
where all filtered traces are played according to their
timestamps as recorded in the original trace file. For
degraded mode, a closed-loop measurement approach is
adopted, where all filtered traces are played only accord-
ing to their original sequence one by one and without any
interval, to find the system serviceability.

6.2 Experimental Environment
In our experiment, we employ a SuperMicro storage
server with two Intel(R) Xeon(R) X5560 @2.67GHz (six
cores) CPUs, 12GB DDR3 main memory. All disks are
Western Digital WD10EALS Caviar Blue SATA2, which
are connected by an Adaptec 31605 SAS/SATA RAID
controller with a 256MB dedicated cache. We disabled
the RAID function of the controller and only used the
direct I/O mode to connect each disk. The operating sys-
tem is Linux Fedora 12 x86 64 with the kernel version
of 2.6.32.

In Linux, there is a software implementation of RAID
called Multiple Devices MD, which is popular in veri-
fication of RAID optimization scheme [1, 11]. To fa-
cilitate the analysis and verification of VDF cache, we
also used MD as our experimental platform. We used
the default settings of MD: the chunk size is 64KB, the
number of stripe-heads is 256 and the data layout is
left-symmetric. In our open-loop testing, the minimum
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Table 3: Experimental Results of an Open-loop Testing Using 5 to 8 Disks

Disks Blocks LRU (s) VDF-LRU (s) Improvement LFU (s) VDF-LFU (s) Improvement

5 disks
131072 2662 2543 4.5% 2710 1929 28.8%
262144 2958 1935 34.6% 2851 1531 46.3%
524288 1845 1407 23.7% 1786 1310 26.7%

6 disks
131072 1176 1147 2.5% 1175 964 18.0%
262144 1234 943 23.6% 1226 921 24.9%
524288 1027 818 20.4% 1005 806 19.8%

7 disks
131072 730 685 6.2% 733 652 11.1%
262144 758 659 13.1% 761 657 13.7%
524288 691 599 13.3% 687 598 13.0%

8 disks
131072 504 485 3.8% 509 485 4.7%
262144 558 501 10.2% 560 501 10.5%
524288 527 483 8.4% 526 479 8.9%

reconstruction bandwidth is set to 100MBps to utilize
all remaining bandwidth for reconstruction besides the
bandwidth taken by user workloads.

As VDF targets the storage server consisting of disk
arrays which run under faulty conditions, we chose the
server-end trace SPC-1-web as our experimental mate-
rial, which spans a 60GB dataset. The workload is fil-
tered by 131,072 to 524,288 blocks in our simulation
to generate the experimental inputs. In the open-loop
measurement, we test VDF with 5 to 8 disks. The re-
sults are reported in terms of reconstruction speed. The
improvements of VDF over the original LRU and LFU
are calculated. In the close-loop measurement, we used
a multi-threaded application to play the filtered trace to
measure the service rate. We also evaluated the impact of
thread number to service rate, in addition to the impact
of the number of blocks and the number of disks. The re-
sults are reported as system service rate improvement by
VDF cache compared to original LFU and LRU. We ran
each test three times and report the average. The results
are very stable and consistent as the difference among all
three rounds was very small (less than 5%).

6.3 Open-loop Measurement Results and
Analysis

Table 3 describes the results under an open-loop testing
using the SPC-1-web trace, where the number of disks
ranges from 5 to 8 and the number of blocks ranges
from 131,072 to 524,288. The experimental results of
the open-loop testing show that compared to the origi-
nal LRU and LFU algorithms, the VDF-optimized algo-
rithm speeds up the online reconstruction process. The
speedup of VDF-LFU is up to 46.3% compared to LFU.
VDF-LRU speeds up the online reconstruction by up to
34.6% compared to LRU.

With the same number of cache-resident blocks, the

experimental results show that the improvement of re-
construction durations of VDF-LFU to LFU decreases
with the increased number of disks. A similar trend is
also observed for the improvement of VDF-LRU over
LRU, except for a smaller improvement of RGR using
VDF when the number of blocks is 131,072. These
trends are in contrast to our previous simulation results
where the efficiency of VDF tends to be more suffi-
cient with increased number of disks. From Equation
3, the improvement of reconstruction durations of VDF-
LFU to LFU, which is presented by Imprv, could be
described with Equation 4. BWU × RGRV DF is al-
ways less than BW otherwise the system would be
overloaded, so BW

RGRV DF
is larger than BWU . VDF

works in most cases where RGRORI

RGRV DF
is larger than 1,

thus BWU∗RGRORI

RGRV DF
is larger than BWU . Therefore, the

change rate of improvement according with the number
of total disks should only be determined by the chang-
ing rates of BWU × RGRORI and BW . Obviously,
BW linearly grows with the total number of disks. From
the simulation result, we can find that the changing rate
of BWU × RGRORI is slower than that of BW with
the number of disks from 5 to 8. Therefore, in most of
the above cases, the improvement of reconstruction dura-
tions of VDF cache to original cache decreases with the
increased number of disks.

RDImprv =
BWU∗RGRORI

RGRV DF
−BWU

BW
RGRV DF

−BWU

(4)

With the same number of disks, we notice that the
reconstruction duration of the trace filtered by 131,072
blocks is less than the reconstruction duration of trace
filtered by 262,144 blocks in many cases. On one hand,
as we use a number of blocks to warm up the cache, this
part of the miss information is not recorded in our fil-
tered trace file. The first 131,072 block misses in the
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Figure 7: Service rate improvement of VDF in degraded
mode of a RAID-5 of 8 disks. The number of blocks is
524,288 and the number of threads ranges from 20 to 80.

Figure 8: Service rate improvement of VDF in de-
graded mode of a RAID-5 of 8 disks. The number of
blocks ranges from 131,072 to 524,288 and the number
of threads is 60.

trace filtered by 262,144 blocks has a lower average ar-
rival rate than the remaining part. On the other hand,
when the number of blocks in the cache is 131,072 or
262,144, the cache is too small to find the hot blocks,
which implies fewer hits in those cases and the RGRs
are similar. Therefore, the reconstruction duration of the
trace filtered by 131,072 blocks might be less than that
of the trace filtered by 262,144 blocks in those cases.

6.4 Close-loop Measurement Results and
Analysis

Figures 7, 8, and 9 present the close-loop testing re-
sults under different scenarios with various numbers of
threads, disks, and data blocks. The results are reported
as service rate improvement, which is inversely propor-
tional to the Play Duration (PD) of a whole filtered
trace. For example, the corresponding service rate im-
provement of VDF-LRU to LRU should be calculated by
PDLRU−PDV DF−LRU

PDV DF−LRU
.

Figure 9: Service rate improvement of VDF in degraded
mode of a RAID-5 of 5 to 8 disks. The number of blocks
is 524,288 and the number of threads is 60.

From the experimental results, we find that VDF is ef-
fective in improving the system service rate. Compared
to LFU, VDF-LFU improves the system service rate up
to 46.8% with 60 threads under 8 disks and 262,144
blocks. Compared to LRU, VDF-LRU improves the sys-
tem service rate by up to 28.4% with 80 threads under 8
disks and 524,288 blocks.

With the increasing number of I/O threads, the service
rate improvement increases accordingly and gets close
to the theoretical value calculated by the simulation re-
sults. Although the whole trace would be evenly dis-
tributed on all disks due to the round-robin addressing in
RAID, the incoming user requests might not be evenly
distributed on all the disks during a short period. There-
fore, with a larger number of threads, which implies a
longer scheduling window, the distribution of incoming
user requests is more balanced and the user service rate
is closer to the maximum system service rate.

With the same number of blocks and a fixed number
of threads, the service rate improvement of VDF-LRU
to LRU is consistent with the trend of the simulation re-
sult. However, to our surprise, the results of VDF-LFU
to LFU were just opposite with the trend of the simula-
tion result. As per our analysis, this was primarily due
to two reasons. First, from the simulation result, the rel-
ative RGR reduction of VDF-LFU to LFU with 524,288
blocks is in a small area from 33.7% to 35.6%. Sec-
ond, the number of concurrent threads is fixed, which
means that the number of threads per disk would increase
with the decreased total number of disks. Thus, based
on the above analysis, when the total number of disks is
small, the improvement is closer to the theoretical value.
Therefore, under close to theoretical peak service rates
and more I/O threads per disk, the trend of service rate
improvement of VDF-LFU to LFU is very possibly op-
posite with the trend of the simulation result. As a re-
sult, with the same number of disks and a fixed number
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of threads, which means a fixed number of I/O threads
per disk, the service rate improvement is quite consistent
with the trend of the simulation results.

6.5 Further Discussion

Several more issues deserve further discussion. The first
issue is the implementation cost of VDF. As we men-
tioned in Section 4, to make the smooth conversion be-
tween the original cache algorithms and the VDF-based
algorithms, two types of stacks should be employed to
implement VDF cache. This adds both spatial and tem-
poral overhead. The spatial overhead include the extra
information in each block head such as the timestamp
and the extra stack pointer of the local stack. Compared
to the buffer cache size, this overhead is very small. The
temporal overhead is the computation of the weight of
block at the bottom of each LS stack. Due to the high
computation ability of today’s CPU, this should not in-
fluence the overall system performance.

Second, can we integrate VDF into other optimiza-
tions in faulty mode? As the VDF cache essentially
reduces the user requests to the surviving disks, it can
be integrated with other optimizations in faulty mode,
such as optimization on data/parity/spare layout and re-
construction workloads. The approach of redirection of
reads utilizes the reconstructed data in a spare disk to
serve part of the reads to the faulty disk. Thus the miss
penalty of these reconstructed data block is zero in terms
of extra requests to the surviving disks. There still exist
hot data with large miss penalty on faulty disks. There-
fore, VDF can still help.

Third, could RGR be suitable to describe the status
of write operation? From its definition, RGR is deter-
mined by MPi and pi. The calculation of pi in write
operations is similar to read operations. However, the
calculation of MPi in write operations is quite differ-
ent from read operations, as they might be done with
two approaches based on the parity distribution in RAID
with faulty disk(s). One is the Read-Modify-Write, and
the other is Parity-Reconstruction-Write. Here, we take
an example of short writes on an n-disk RAID-5 with
one faulty disk to demonstrate the MPi calculation for
write operations. Once a short write is sent to the sur-
viving disks and the corresponding parity is not on the
faulty disk, the Read-Modify-Write should be performed
which results in two reads and two writes on the surviv-
ing disks, and thus the MPi is 4. Otherwise, the Parity-
Reconstruction-Write should be performed which results
in n − 1 reads and one write on the surviving disks, and
thus the MPi is n.

7 Conclusions and Future Work

In this paper, we present an asymmetric buffer cache
replacement strategy, named Victim (or faulty) Disk(s)
First (VDF) cache, to improve the reliability and perfor-
mance of a RAID-based storage system, particularly un-
der faulty conditions. The basic idea of VDF is to treat
the faulty disks more favorably, or give a higher priority
to cache the data associated with the faulty disks. The
benefit of this scheme is to reduce number of the cache
miss directed to the faulty disk, and thus to reduce the
I/O requests to the surviving disks overall. Less disk I/O
activity caused by the user workflow will (1) improve the
performance of the disk array, and (2) allow more band-
width for online reconstruction which in turn speeds up
the recovery, and thus improves the reliability. Our re-
sults based on both simulation and prototyping imple-
mentation has demonstrated the effectiveness of VDF in
terms of reduced disk I/O activities and a faster recovery.

To further understand VDF, we have the following
plans as our future work. First, we plan to build VDF into
more general cache algorithms such as CLOCK [30] and
ARC [26]. Second, we are working to implement VDF in
the kernel level and thus to directly run real benchmarks
to conduct more extensive measurements. Third, in addi-
tion to RAID-5, we will investigate the scheme to apply
VDF to other RAID levels such as RAID-4 and RAID-6.
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Abstract
Live migration enables a running virtual machine to
move between two physical hosts with no perceptible
interruption in service. This allows customers to avoid
costly downtimes associated with hardware maintenance
and upgrades, and facilitates automated load-balancing.
Consequently, it has become a critical feature of enter-
prise class virtual infrastructure.

In the past, live migration only moved the mem-
ory and device state of a VM, limiting migration to
hosts with identical shared storage. Live storage mi-
gration overcomes this limitation by enabling the move-
ment of virtual disks across storage elements, thus en-
abling greater VM mobility, zero downtime maintenance
and upgrades of storage elements, and automatic storage
load-balancing.

We describe the evolution of live storage migration in
VMware ESX through three separate architectures, and
explore the performance, complexity and functionality
trade-offs of each.

1 Introduction

Live virtual machine migration is a key feature of en-
terprise virtual infrastructure, allowing maintenance and
upgrades of physical hosts without service interruption
and enabling manual and automated load-balancing [1].

Live migration works by copying the memory and de-
vice state of a VM from one host to another with negli-
gible VM downtime [2]. The basic approach is as fol-
lows: we begin by copying most of the VM state from
the source host to the destination host. The VM contin-
ues to run on the source, and the changes it makes are
reflected to the destination , at some point the source and
destination converge – generally because the source VM
is momentarily suspended allowing the remaining differ-
ences to be copied to the destination. Finally, the source
VM is killed, and the replica on the destination is made
live.

Earlier live migration solutions did not migrate virtual
disks, instead requiring that virtual disks reside on the
same shared volume accessible by both the source and
destination hosts. To overcome this limitation, various
software and hardware solutions to enable live migra-
tions to span volumes or distance have been developed.
One such solution is live storage migration in VMware
ESX.

Live storage migration has several important use
cases. First, zero downtime maintenance – allowing cus-
tomers to move on and off storage volumes, upgrade
storage arrays, perform file-system upgrades, and ser-
vice hardware. Next, manual and automatic storage load-
balancing – customers in the field already manually load
balance their ESX clusters to improve storage perfor-
mance and automatic storage load balancing will be a
major feature of the next release of the VMware vSphere
platform. Finally, live storage migration increases VM
mobility in that VMs are no longer pinned to the storage
array they are instantiated on.

Multiple approaches to live storage migration are
possible, each offering different trade-offs by way of
functionality, implementation complexity and perfor-
mance. We present our experience with three differ-
ent approaches: Snapshotting (in ESX 3.5), Dirty Block
Tracking (in ESX 4.0/4.1) and IO Mirroring (in ESX
5.0). We evaluate each approach using the following cri-
teria:

• Migration time: Total migration time should be
minimized, and the algorithm should guarantee con-
vergence in the sense that the source and destina-
tion copies of the virtual disk eventually match. We
show that some algorithms do not guarantee conver-
gence and carry the risk of not completing without
significant disruption to the workload. We also em-
phasize predictability – Live storage migrations can
take a while; predictability allows end users to bet-
ter plan maintenance schedules.

1
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• Guest Penalty: Guest penalty is measured in ap-
plication downtime and IOPS penalty on the guest
workload. All live migration technologies strive to
achieve zero downtime – in the sense that there is
no perceptible service disruption. However, live mi-
gration of any sort always requires some downtime
during the hand-off from the source to the destina-
tion machine. Most applications can handle several
seconds of downtime without any network connec-
tivity loss. Highly available applications may only
handle one or two seconds of disruption before an
instance is assumed down. The final approach dis-
cussed in this paper exhibits no visible downtime
and a moderate performance penalty.

• Atomicity: The algorithm should guarantee an
atomic switchover between the source and destina-
tion volumes. This increases reliability and avoids
creating a dependence on multiple volumes. Atomic
switchover is a requirement to make physically
longer distance migrations safe, and for mission
critical workloads that cannot tolerate any notice-
able downtime.

We also compare how the three approaches perform
when migrating between volumes with similar and dif-
fering performance, and analyze their performance with
a synthetic online transaction processing (OLTP) and
real application (Exchange 2010) workload.

2 Design

We compare three approaches to live storage migration.
The first, based on snapshots was introduced in ESX 3.5,
the second based on an iterative copy with a Dirty Block
Tracking (DBT) mechanism was introduced in ESX 4.0
and refined in 4.1, and the most recent approach leverag-
ing synchronous IO Mirroring, will ship with ESX 5.0.

2.1 Background
Live storage migration can take place between any two
storage elements whether over fiber channel, iSCSI or
NFS.

All approaches to live migration follow a similar pat-
tern. A virtual disk(s) is migrated (copied) from a source
volume to a destination volume. Initially, a running vir-
tual machine is using the virtual disk on the source vol-
ume. As the disk on the source is copied to the desti-
nation, bits are still being modified on the source copy.
These changes are reflected to the destination so that
source and destination ultimately converge. Once the
two copies are identical, the running VM can be retar-
geted to use the destination copy of the virtual disk.

Guest  OS

Virtual  SCSI  (VSCSI)

Filter  Stack





Snapshot  
Filter

Mirror  
Filter

VMFS

LUN

DBT
Filter

Figure 1: Simplified ESX storage architecture diagram:
The guest operating system issues IO through the virtu-
alized SCSI (VSCSI) storage stack. The IOs are passed
through a stack of one or more filter drivers. As an ex-
ample, this diagram shows the snapshot filter that imple-
ments the virtual disk snapshot file format. Once IOs
pass through the filter stack, they are translated into file
handles that are used by VMware’s VMFS file-system or
NFS client service.

Our migration system is built with a combination of a
storage stack filter driver and a user-level thread. The
user-level thread, which facilitates the migration, is a
part of the VM management executive (VMX). The filter
drivers are depicted in the ESX storage stack in Figure 1.

More recent architectures i.e. DBT and IO Mirroring,
use the data mover (DM) copy engine that was added in
ESX 4.0. The DM is a kernel service that copies disk
blocks between locations with only DMAs. This elimi-
nates user-space and kernel crossing overheads, and en-
ables the use of copy off-load engines sometimes present
in storage arrays [3].

2.2 Snapshotting
Snapshotting, our first version of live storage migration,
was built to enable VMFS file system upgrades. To up-
grade from VMFS version 2 to version 3, version 2 vol-
umes were rendered read-only and virtual disks migrated
onto version 3 volumes.

Snapshotting leverages virtual machine snapshots, to
recap how snapshots work: when a snapshot is taken,
all disk contents at snapshot time are preserved. Future
modifications to the disk are logged in a separate snap-
shot file. Multiple levels of snapshots are possible, and
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multiple snapshots can be consolidated into a single disk
or a snapshot by applying modifications in each to the
previous snapshot or base disk. Once consolidated, in-
termediate snapshots can be discarded.

The migration begins by taking a snapshot of the base
disk, all new writes are sent to this snapshot. Concur-
rently, we copy the base disk to the destination volume.
Our first snapshot may reside on the source or destina-
tion volume, though the former is preferable to minimize
the time the virtual disk spans two volumes.

After we finish copying the base disk, we take another
snapshot. We then consolidate the first snapshot into the
base disk. By the time this consolidation is complete, we
expect more writes have occurred, the result is again a
delta between our source and destination.

We repeat the process until the amount of data in the
snapshot becomes smaller than a threshold. Once this
threshold is reached, the VM is suspended, the final snap-
shot is consolidated into the destination disk, and the VM
is resumed, now running with the virtual disk on the des-
tination volume.

Snapshot consolidation cannot be done using an ac-
tive writable snapshot due to the risk of inconsistency.
Consequently, the VM must be suspended to render it
inactive, resulting in downtime in our final consolida-
tion step. Online consolidation of a read-only snapshot is
possible, allowing us to implement our iterative consol-
idation step with minimal down time. A threshold, that
can be determined dynamically, specifies when to per-
form the final consolidation and what the resulting down-
time will be.

Snapshotting inherits the simplicity and robustness of
the existing snapshot mechanism. When compared with
the next design (DBT), Snapshotting shows significant
resilience in the face of differing performance character-
istics on the source and destination volumes. However, it
also exhibits two major limitations.

First, migration using snapshots is not atomic. Conse-
quently, canceling a migration in progress can leave the
migration in an intermediate state where multiple snap-
shots and virtual disks are spread on both source and
destination volumes. Similarly, a storage failure on ei-
ther volume necessitates termination of the VM. Snap-
shotting is not suitable for long distance migrations to a
remote destination volume, since a network outage can
cause an IO stall requiring us to halt the VM. We attempt
to create the initial snapshot on the source volume to help
mitigate this issue.

Second, there are performance and space costs associ-
ated with running a VM with several levels of snapshots.
More specifically, when iteratively consolidating snap-
shots there are multiple outstanding snapshots, a writable
snapshot that is absorbing all new disk modifications and
a read-only snapshot that is being consolidated. Using

both snapshots concurrently increases memory and IO
overheads during the migration. In the worst case, as-
suming both levels of snapshots grow to the size of the
full disk, the VM may temporarily use three times its
normal disk space.

2.3 Dirty Block Tracking

Our next design sought to overcome the limitations of
Snapshotting, including downtime penalties from con-
solidation overhead and the lack of atomic switches from
source to destination volumes for failure robustness.

Our approach, informed by our experience with live
VM migration, uses a very similar architecture. Dirty
Block Tracking (DBT) uses a bitmap to track modified
aka dirty blocks on the source disk, and iteratively copy
those blocks to the destination disk.

With DBT, we begin by copying the disk to the desti-
nation volume, while concurrently tracking dirty blocks
on the source disk in the DBT kernel filter. At the end
of the first copy iteration, we atomically get and clear
the bitmap from the kernel filter, blocks marked in the
bitmap are copied to the destination. This process is re-
peated until the number of dirty blocks remaining at each
cycle stabilizes i.e. no forward progress is being made or
a threshold based on a target downtime is reached. At
this point, the VM is suspended and the remaining dirty
blocks are copied.

DBT is done concurrently with bulk copying the disk
contents to the destination. If a block is dirtied but not
yet copied, we do not need to track that block, as it will
later be bulk copied. Using this technique results in a
roughly 50% speedup for the first copy iteration, assum-
ing a workload consisting of uniformly distributed ran-
dom writes, leading to an optimization we call incremen-
tal DBT.

DBT has several attractive properties. Operating at
the block instead of snapshot granularity makes new
optimizations possible. Also, DBT guarantees atomic
switch-over between the source and destination volumes
i.e. a VM on the source can continue running even if the
destination hardware or link fail, improving reliability
and making DBT suitable for migrating in less reliable
conditions, such as over the WAN.

DBT also introduces new challenges. Migrations may
take longer to converge if the guest workload is write in-
tensive. If the workload on the source dirties blocks at
a rate greater than the copy throughput then the migra-
tion cannot converge. The only remedy is to quiesce the
guest, imposing significant downtime, or to cancel the
migration.
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2.3.1 Hot Block Avoidance

We present an optimization that detects frequently writ-
ten blocks and defers copying them. We discuss the mo-
tivations for this optimization in section 2.3.2. In Sec-
tions 2.3.3 and 2.3.4 we present the implementation and
some preliminary results. Finally, in Sections 2.3.5 we
explore some of the challenges we encountered imple-
menting this solution. Due to these challenges, this fea-
ture was never enabled by default in a shipping release.
While we present these optimizations in the context of
DBT, we hope to apply them to future versions of IO
Mirroring.

2.3.2 Distribution of Disk IO Repetition

Real-world disk IO often exhibits temporal and spatial
locality. To help us better understand locality in a com-
mon enterprise workload, we analyzed VSCSI traces
from an Exchange 2003 workload with 100 users.

Our workload was generated using the Exchange Load
Generator [4] in a VM configured with three disks: a sys-
tem disk of 12GB with Windows 2003 server, a mailbox
disk of 20GB, and a log disk of 10GB. Exchange is con-
figured to use circular logs.

Our results are shown in Figure 2 that plots logical
block numbers (LBNs) sorted by decreasing popularity
i.e. most to least frequently written blocks, for all three
disks. All traces follow a zipf-like distribution. Once hot
blocks are identified, we can ignore them during the iter-
ative copy phase, and defer copying of hot blocks to the
end of the migration. This eliminates numerous repeated
copies that reduces IO costs and overall migration time.

2.3.3 Multi-stage Filter for Hot Blocks

We collect data from the DBT filter to identify candidate
hot blocks. Using a hash table to index the repetition
counters for large disks would be quite memory inten-
sive. Therefore, we use a multi-stage filter [5] to identify
blocks that have been written at least t times, where t is a
threshold. The multi-stage filter is similar to a counting
version of bloom filter, which can accurately estimate the
dirty blocks. Multi-stage filters provide a compact repre-
sentation of this data.

Our multi-stage filter has n stages. Each stage includes
an array of m counters and a uniform hash function Hi,
where 0 ≤ i ≤ n. When a block with LBN x gets modi-
fied, n different hash values of a block are calculated, and
the corresponding counters in all stages are increased.
The hotness of a block can be determined by checking
the counters of the block in all stages. When all counters
are greater than a threshold t, the corresponding block is
considered to be hot. Since the collision probability of

Figure 2: Distribution of Disk Write Repetition of Ex-
change Server Workload. The x-axis shows the logical
block number (LBN) of the disk sorted by hit frequency.
The y-axis shows the hit frequency for disk blocks from
hottest to coldest. The writes follow a zipf-like distribu-
tion.

all n counters decrease exponentially with n, the multi-
stage filter is able to filter out hot blocks accurately with
limited memory.

2.3.4 Analysis of Hot Block Avoidance

Our hot block avoidance algorithm uses the heat map
from our multi-stage filter to determine which blocks are
hot. Sampling is done during the initial copy phase. In
the iterative copy phase, we query the multi-stage filter
and defer copying of the hot blocks. At the end of the
migration, hot blocks are copied, prior to the last copy
iteration.

To appreciate the potential benefits, consider the dis-
tribution of write frequencies for the Exchange workload
shown in Figure 2. Several hundred megabytes of blocks
are hot, ignoring these until the final copy iteration can
yield substantial benefits.

These benefits can be seen in Figure 3, a migration us-
ing same Exchange workload described previously, with
and without our hot block and incremental DBT opti-
mizations. The initial copy phase is not shown, as it is in-
dependent of optimizations. Shorter bars on the left rep-
resent a migration with optimizations, the taller bars on
the right, without. Iterations 5 through 10 are not present
for our optimized case, since incremental DBT and hot
block avoidance eliminates the need for those iterations.

The consistent height of the bars with the red hatch
pattern shows the hot block avoidance algorithm detected
the approximate working set correctly. Note that the
blocks labeled with the red hatch pattern are not copied
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Figure 3: Dirty blocks copied vs. Iteration number. Ex-
change workload migration with and without our hot
block and incremental DBT optimizations. Shorter bars
on the left represent a migration with optimizations, the
taller bars on the right, without. The initial copy phase
is not shown, as it is independent of optimizations. Itera-
tions 5 through 10 are not present for our optimized case,
since hot block avoidance eliminates the need for those
iterations.

for the first two iterations. We displayed the graph like
this to make it easier to see the remaining blocks that
need to be copied. Most of the blocks copied in third it-
eration are so hot that they are necessarily copied again
during the switchover and completion of the virtual ma-
chine. In our implementation we attempted to copy the
hot blocks in next to last iteration in order to reduce the
remaining blocks for the final iteration. This is critical
because the final iteration occurs while the VM execu-
tion is suspended and accounts for our downtime.

Incremental DBT saves more than 50% on the first it-
eration. Our workload issues more writes towards the
end of the disk, and incremental DBT allows us to ig-
nore those blocks during our iterative copy phase, allow-
ing them to be taken care of by the bulk copy of the base
disk that is happening concurrently.

2.3.5 Problems with Hot Block Avoidance

Our hot block avoidance algorithm performed well in
most scenarios, however, we encountered several prob-
lems. First, we found hot block avoidance complex to
tune. Success was hard to reason about and we were con-
cerned about harming the performance of untested work-
loads.

Hot block avoidance also consumed significant
amounts of memory. Even with the multi-stage filter, we
could envision large VMs consuming upwards of a giga-

byte of memory. Our customers, many of whom run with
memory overcommitted, could find additional memory
pressure problematic.

Finally, some workloads e.g. the OLTP workload dis-
cussed in our evaluation, have little or no temporal local-
ity, and thus receive minimal benefit from this optimiza-
tion.

2.4 IO Mirroring

DBT is an adaptation of the technique used for live vir-
tual machine migration, namely, iterative pre-copying of
virtual machine memory pages. While DBT has benefits
over Snapshotting, they come at the cost of complexity.
To improve on DBT, we note a critical distinction be-
tween virtual memory and storage systems.

Virtual machine memory accesses are usually trans-
parent to the hypervisor and write traps are quite expen-
sive. Consequently, write traps are used only to note if
an already copied page has again been dirtied – i.e. only
the first write to a copied page is trapped – necessitat-
ing an iterative copying approach where all the writes to
a page of a given “generation” are captured by copying
the entire dirty page. In contrast, intercepting all storage
writes is relatively cheap. Our next approach leverages
this observation, using a much simpler architecture based
on synchronous write mirroring.

IO Mirroring, our most recent architecture, works by
mirroring all new writes from the source to the destina-
tion concurrent with a bulk copy of the base disk. We
again use a filter driver as shown in Figure 1. Our bulk
copy process is implemented using the VMKernel data
mover (DM). We drive the copy process from user-level
by issuing DM operations. The DM issues reads and
writes directly to the underlying file without the inter-
vention of the filter driver. Thus, if a VM could issue a
write while a DM read operation is in progress, without a
synchronization mechanism we would copy an outdated
version of the disk block. To prevent this situation, the
filter driver implements a synchronization mechanism to
prevent DM and VM IOs to the same region. When a
DM operation is issued first the filter acquires a lock on
the region in question, and then releases it on completion.

Locking in the IO Mirroring filter driver works by
classifying all VM writes into one of three types: writes
to a region that has been copied by the DM, writes to a
region being copied by the DM, and writes to a region
that will be copied by the DM. Two integers are used
to maintain the disk offsets that delineate these three re-
gions.

Writes to a region that has already been copied will be
mirrored to the source and destination – as the DM has
already passed this area and any new updates must be
reflected by the IO Mirror. Writes to the region currently
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being copied (in between the two offsets) will be deferred
and placed into a queue. Once the DM IO completes we
enqueue those writes and unlock the region by updating
the offsets. As part of the updating operation we wait
for inflight writes to complete. The final region is not
mirrored and all writes are issued to the source only – as
eventually any changes to this area will be copied over
by the DM. Reads are only issued to the source disk.

IO Mirroring fulfills all of our criteria, guaranteeing
an atomic switchover between the source and destination
volumes, making this method viable for long distance
migrations. It also guarantees convergence as the mir-
rored VM IOs are naturally slowed down to the speed of
the slower volume.

2.5 Implementation Experience

Snapshotting benefited from leveraging the existing
snapshot mechanism, making it simpler to implement,
and easier to bring into a hardened production quality
state. Further, it was the only approach that was feasi-
ble for the file system upgrade use case that originally
motivated its creation. For this use case, the source vir-
tual disk lives on an older read-only file system, and both
DBT and IO Mirroring require a writable source disk.
Finally, it required no complex tuning. Unfortunately,
it also inherited substantial limitations from leveraging
snapshots, most notably the atomicity, and the perfor-
mance limitations of snapshots.

DBT overcame most of those performance inadequa-
cies, but introduced many parameters that required sig-
nificant engineering effort to tune. Specifically, for the
convergence detection logic that determines whether a
migration needs additional copy iterations, is safe to
complete, or needs to be terminated.

This logic required several threshold values to deter-
mine whether the remaining dirty blocks at the end of the
iteration seem to be getting smaller. If the algorithm de-
tects a significant reduction in the remaining dirty blocks,
it continues for another iteration. If there is no dis-
cernible reduction or possibly an increase, the algorithm
determines whether to complete or abort the migration.

Two scenarios occur often enough that may cause
a noticeable increase in the dirty blocks remaining.
First, the workload may make a burst of changes e.g. a
database may flush its buffer cache, causing the migra-
tion progress to temporarily regress. To handle this, the
algorithm monitors progress for the last two copy itera-
tions. Analyzing the last two iterations prevents nearly
all migration aborts due to workload spikes. The second
cause of failure to converge is a slow destination. If the
workload running in a VM is too fast for the destination
the migration will terminate. There is no solution other
than to ask the user to quiesce such workloads manually.

IO Mirroring removed all of the tunable parameters
and convergence logic. Using a synchronous mirror nat-
urally throttles the workload to the speed of the destina-
tion volume. Switching to this approach eliminated sig-
nificant engineering and performance testing effort. To
our surprise, customers seemed most interested in the
predictability aspect of IO Mirroring, as it allows them
to better plan their maintenance schedules.

3 Evaluation

We evaluated total migration time, downtime, guest
performance penalty and convergence, using synthetic
(Iometer [6]) and real application (Exchange 2010)
workloads for each of our architectures. We also present
the IOPS profile for each architecture over the duration
of a migration.

Our synthetic workload uses Iometer in a VM running
Windows Server 2003 Enterprise, we varied disk size and
outstanding IOs (OIOs) to simulate workloads of vary-
ing size and intensity. The IO pattern simulates an OLTP
workload with 30% write, 70% read of 8KB IO com-
mands with a 32GB preallocated virtual disk. We used
Exchange 2010 for our application workload with loads
of 44 tasks/sec and 22 tasks/sec.

Snapshotting and DBT were evaluated using ESX 4.1.
IO Mirroring was evaluated using a pre-release version
of ESX 5.0. Our snapshot implementation was first avail-
able in ESX version 3.5 however, we used the version in
ESX 4.1 that included support for the DM and other ma-
jor performance improvements to get a more fair com-
parison with DBT.

Our synthetic workload ran on a Dell Poweredge R710
server with dual Intel Xeon X5570 2.93 GHz processors,
and two EMC CX4-120 arrays connected to the server
via 8Gb Fibre Channel(FC) links. We created 450GB
sized VMFS version 3 volumes on each array. Our test
VM has a 6GB system disk running Windows Server
2003 and Iometer, and a separate data disk. The Snap-
shotting implementation requires all disks to move to-
gether to the same destination. For a fair comparison we
migrated the system and data disk for all architectures.

Our application workload ran on a Dell PE R910 4
socket 8-core Intel Nehalem-EX processor with 256GB
of memory. Migration is done with 6 disks in RAID-0
configuration on the same EMC CX3-40 Clariion array
with separate spindles. Our Exchange 2010 VM is con-
figured with 8-vCPU with 28GB of memory and con-
tains multiple virtual disks. We only migrated the 350GB
Mailbox disk containing 2000 user mailboxes. We omit-
ted Snapshotting from this workload because it requires
all disks to be migrated together.
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Figure 4: Migration Time vs. OIO. IO Mirroring exhibits
the smallest increase by 11.8% at most. DBT variants
exhibit the largest increase up to 2.74x and 3.96x. At 32
OIOs, the DM struggles to keep up with the workload’s
dirty rate. Snapshotting exhibits a 1.4x increase.

3.1 Migration Time
Minimizing total migration time reduces the impact on
guest workloads, decreases response time for mainte-
nance events, and makes load balancing more responsive.
Ideally, migration time should not vary when workload
size and intensity change, as this makes migrations more
predictable, easing manual and automated planning.

Total migration time vs. OIOs for our synthetic work-
load is shown in Figure 4. For OIOs less than 16, each
architecture performs better than the previous one. In-
cremental DBT does marginally better than DBT, be-
cause the incremental dirty block tracking improvement
reduces the number of dirty blocks copied in the first it-
eration. The VMKernel data mover (DM), used by both
DBT variants, supports a maximum of 16 OIOs. Conse-
quently, for workloads with more than 16 OIOs, Snap-
shotting outperforms both DBT variants, which has a
bottleneck on the DM. IO Mirroring consistently offers
the lowest total migration time.

IO Mirroring also offers the smallest change in mi-
gration time under increasing load, as we see in Fig-
ure 4. Migration time only grows by 11.8% when chang-
ing OIOs from 2 to 32, a 4.9x increase in guest write and
read throughputs. In contrast, migration time increases
by 1.4x for Snapshotting, and 2.74x and 3.96x for DBT
and incremental DBT. IO Mirroring is less sensitive to
OIOs because it implements a single pass copy opera-
tion. The increased IO slows that single pass copy rather
than inducing additional copy iterations.

For comparison with the ideal case, we performed an
off-line disk copy with a 32GB virtual disk and 6GB
system disk, it took 176 seconds on the same hardware
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Figure 5: Migration Time vs. Disk Size. The x-axis de-
notes only the data disk size. Migration time includes
the additional 6GB system disk. The migration times
of IO Mirroring grows less than 3.4% with increasing
disk size. DBT, Incremental DBT and Snapshotting takes
13%, 2.4% and 85% longer than expected.

Type Migration Time Downtime
DBT 2935.5s 13.297s
Incremental DBT 2638.9s 7.557s
IO Mirroring 1922.2s 0.220s
DBT (2x) Failed -
Incremental DBT (2x) Failed -
IO Mirroring (2x) 1824.3s 0.186s

Table 1: Migration time and downtime for DBT, Incre-
mental DBT, and IO Mirroring with the Exchange work-
load. The double intensity version only completes with
IO Mirroring.

setup. Migration with IO Mirroring with 2 OIO and 32
OIO OLTP workloads took only 5.8% and 15.7% longer
to complete.

Total migration time vs. disk size for our synthetic
workload is shown in Figure 5. Again, each architec-
ture migrates faster than the previous one. Generally mi-
gration time grows linearly with disk size however, for
64GB disks, Snapshotting performs worse than expected.
This occurs because all subsequent snapshots grow in
size leading to an increase in the number of snapshot cre-
ation and consolidation iterations. IO Mirroring exhibits
minimal change as the disk size increases, with migra-
tion time growing less than 4%. Our figures include the
6GB system disk’s migration time. Thus, the migration
time for the 4GB and 64GB data disk tests corresponds
to a seven fold increase.

Our Exchange workloads are depicted in Table 1. For
the initial run, Incremental DBT offers a 11.2% reduction
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Figure 6: Downtime vs. OIO. IO Mirroring exhibits
near constant downtime below 0.5s. DBT variants ex-
hibit moderate downtime until OIO is 32 when the DM
becomes a bottleneck. Snapshotting exhibits the worst
downtimes except when OIO is 32.

in migration time compared to DBT. IO Mirroring re-
duces the migration time by 52.7% compared to DBT. IO
Mirroring is the only architecture to complete the double
intensity workload successfully. The migration time ap-
pears lower, but the 5% difference is within the noise
margin.

Overall, IO Mirroring exhibits the least change across
workload intensity and disk size variations, while DBT
and Snapshotting migration times increase significantly
with such variations.

3.2 Downtime

While outages up to five seconds and beyond can be tol-
erated by some applications, others such as highly avail-
able applications, audio and video make even sub-second
outages noticeable. Therefore we prefer to minimize
downtime.

Downtime vs. OIOs is shown in Figure 6. With IO
Mirroring downtime increases with increasing OIO by
one tenth of a millisecond. This slight increase is due
to the additional time required to quiesce the VM IO.
There is no other downtime dependence on OIO for this
architecture.

Both DBT variants choose their final copy thresh-
olds with the intention of keeping downtimes under five
seconds. Usually the algorithms overestimate, putting
downtime consistently in the two to three second range
for OIO under 8. From 8 to 16 we see that the downtime
increases slightly as the DM begins to struggle to keep
up. From 16 to 32, we see that the downtime jumps to
values greater than 28 seconds.
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Figure 7: Downtime vs. Disk Size. IO Mirroring exhibits
near constant downtime under 0.5s. DBT variants ex-
hibit downtimes below the 5s convergence logic thresh-
old. Snapshotting shows significant degradation beyond
32GB as snapshot overheads become prominent.

The reasons for this are two fold, first the DM becomes
a serious bottleneck however, our convergence logic also
takes into account total migration time. If we were will-
ing to wait an additional, potentially much longer time
to converge, we might end up with a smaller final dirty
page set, resulting in a shorter downtime.

Snapshotting shows a near linear growth in downtime
as the workload increases, better than the DBT variants
for the OIO equal to 32 case because the snapshot ap-
proach is consolidating the final snapshots on the desti-
nation volume.

Figure 7 shows the downtime as a function of disk
size. Both DBT and IO Mirroring scale well with disk
size. Snapshotting shows significant growth in down-
time and total migration time when moving 64GB disks.
As disk size increases, each snapshot create and consol-
idate iteration takes longer since there is increased disk
fragmentation, increased virtual disk block lookup over-
head, and other overheads related to the implementation
of snapshots that accrue. Migration times also increase
because the number of snapshot create and consolidate
operations has to increase to keep downtime low.

Our Exchange workload shown in Table 1 exhibits
larger downtimes for DBT and incremental DBT of
roughly 8 and 13 seconds. For the double intensity work-
load, the DBT variants do not converge. IO Mirroring
completes the migration for both the normal and double
intensity workloads with roughly 0.1s and 0.2s of down-
time.

IO Mirroring guarantees small constant downtimes.
DBT variants offer low downtimes if the DM can keep up
with the workload, but a slow destination volume or high

8
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5 Conclusions

We present our experience with the design and imple-
mentation of three different approaches to live storage
migration: Snapshotting (in ESX 3.5), Dirty block track-
ing (in ESX 4.0/4.1) and IO Mirroring (in ESX 5.0).
Each design highlights different trade-offs by way of im-
pact on guest performance, overall migration time and
atomicity.

The first two approaches exhibit several shortcomings
that motivated our current design. Snapshotting imposes
substantial overheads and lacks atomicity, this hinders
reliability and makes long distance migrations fragile.
DBT adds atomicity, and by working at the block level
allows a number of new optimizations, but also cannot
guarantee convergence and zero downtime for every mi-
gration.

While the IOPS penalty caused by Snapshotting to the
OLTP workload is around 70%, DBT and IO Mirroring
reduce this penalty to around 32% and 34%. The total
penalty for IO Mirroring is approximately 2x better than
DBT.

Our latest approach based on IO Mirroring offers guar-
anteed convergence, atomicity and zero downtime with
only a slightly higher IOPS penalty than DBT. When
moving a virtual disk to a slower volume, IO Mirror-
ing exhibited a graceful transition and completion. We
achieved consistent reduction in total migration time,
bringing the total live migration duration close to that
of a plain disk copy. For the OLTP workload, IO Mir-
roring, takes less than half the time of Snapshotting and
only 9.7% longer than an off-line virtual disk copy. We
showed that under varying OIO and disk size, IO Mirror-
ing offered very low variation in migration time, down-
time, and guest performance penalty.
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Abstract
We consider the problem of migrating user data be-

tween data centers. We introduce distributed storage
overlays, a simple abstraction that represents data as
stacked layers in different places. Overlays can be readily
used to cache data objects, migrate these caches, and mi-
grate the home of data objects. We implement overlays as
part of a key-value object store called Nomad, designed to
span many data centers. Using Nomad, we compare over-
lays against common migration approaches and show that
overlays are more flexible and impose less overhead. To
drive migration decisions, we propose policies for pre-
dicting the location of future accesses, focusing on a web
mail application. We evaluate the migration policies using
real traces of user activity from Hotmail.

1 Introduction
Internet web applications are increasingly important to

our everyday lives, as we rely on them for email, search-
ing, online storage, online calling, and much more. These
applications face a data scalability challenge that is get-
ting worse, for two reasons. First, there is a growing num-
ber of users in an increasing number of regions. And
second, the storage needs per user are growing as more
applications become available online, users accumulate
more data, and systems collect more information from
users to target ads and personalize their experience. As
a result, these applications need to be geo-distributed,
which means they are deployed across multiple data cen-
ters around the world, due to constraints on the size, band-
width, and power consumption of a single data center. Be-
sides providing scalability, geo-distribution also allows a
user to be served from a nearby data center, thereby re-
ducing user response times and bandwidth consumption.
For that, the user’s data should be at the right data cen-
ter, namely, a data center close to the user. This is called
access locality.

Unfortunately, data is not always where it should be:
users relocate, and the load at data centers becomes un-
balanced due to new applications, new data centers, and
changes in the network topologies. In these cases, user
data needs to be migrated from one location to another;
migration is essential to provide access locality and to
balance load. This paper considers the problem of migrat-
ing data across data centers. We propose a simple abstrac-
tion called distributed data overlay or overlay in short1,

∗Current affiliation: New York University
1not to be confused with a network overlay.

which represents data as stacked layers stored in different
places. Overlays are a flexible way to support data migra-
tion; they can be used to cache data at remote data centers,
migrate these caches from one data center to another, and
migrate the home of a data object—the data center where
the object is stored when it is not cached. If data is repli-
cated across data centers, overlays can be used to migrate
individual replicas.

With overlays, migration can be performed online, that
is, while the data is accessible to users. This is important
for three reasons. First, user data can be massive and the
bandwidth across data centers is limited, so that migration
can take a long time and we do not wish to disable the
user account during migration. Second, we want to mi-
grate data opportunistically in the background, using pos-
sibly small amounts of left-over bandwidth. This is so be-
cause large companies such as Microsoft pay for private
links with fixed bandwidth to connect data centers, which
means that unused bandwidth is wasted money. Third, the
policies of when to migrate data can be complex, and we
do not want to complicate them further with constraints
and predictions of when users will access their data.

Online migration is challenging due to races; it requires
careful coordination as clients in the network read and
write data while the migration process copies the data and
the system possibly creates, flushes, and removes caches
at remote locations. Overlays are an easy, flexible, and ef-
ficient way to handle this coordination, as we demonstrate
in this paper.

We implement overlays in a system called Nomad,
which is a key-value object store that supports online mi-
gration. Key-value stores were recently proposed to sup-
port large-scale applications in data centers (e.g., [16]).
Though Nomad is a key-value store, overlays are appli-
cable to other types of storage, such as distributed linear-
address stores [9], block stores [31], and file systems.

We evaluate the mechanism for migration using a wide-
area deployment on five data centers around the world.
Our experiments show that overlays impose a small over-
head and provide flexibility for supporting caching and
migration. They also show that overlay-based migration is
more efficient than existing methods based on data lock-
ing and logging.

The mechanism for migration is independent of the
policies used to trigger migration. We study some sim-
ple policies that track the location of users as they move.
We evaluate these policies using real traces of user ac-
cesses; we compare policies based on access count, time,
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and rate, and we show that, although they are all reason-
able, the one based on count performs the best.
Summary of contributions. We consider the problem of
building distributed storage systems deployed over many
data centers, with support for flexible online migration
of data across data centers. We propose distributed data
overlays, a simple but flexible abstraction designed to
hide the complex distributed protocols (which we pro-
vide) required to coordinate access to data at many lo-
cations. We also propose policies for driving the migra-
tion of user data, and evaluate them using real traces from
Hotmail. We implement overlays to produce the Nomad
system, and use it to compare our approach against less
flexible but common alternatives for storage migration.

2 Background
There are many data centers around the world, each

with thousands or more machines, subject to crash fail-
ures. We do not consider Byzantine failures in this paper.
We target a setting where partitions across data centers
are rare in the absence of disasters. This can be achieved
by connecting data centers via private leased lines with
high availability [1, 2]; by using redundant links to main-
tain operation during planned link downtime (e.g., using
a ring topology across data centers); and by routing traffic
via the Internet should all the redundant links become un-
available. The data centers run web applications that store
user data, such as these:

Application User data
web mail emails
web phone voice mails
web storage personal files
chat text/image history
search search history
ALL profile, activity logs

This data should often be stored at a data center closest
to the user, where the user logs into. Migration refers to
moving the data from one data center to another—to im-
prove access locality or to balance load across data cen-
ters. Online migration means that, during migration, the
data remains accessible to the applications.

We now illustrate some migration use cases with three
scenarios; we later explain overlays and how they sup-
port these use cases. In these scenarios, “user data” refers
to the data specific to a user that an application needs to
serve that user. For example, it could be the user’s emails.

Scenario 1 (A long trip to China): A French user goes
to China. After several days, the system starts to migrate
her user data to China. If she goes back, the French copy
is updated with any changes made in China. If she stays
in China longer, all her data is migrated and the French
copy is deleted.

Scenario 2 (Backpacking in Asia): The French user
makes a short trip to China and, soon after, the system
creates a cache at a data center in China containing her

recent user data (e.g., recent emails). She then travels to
Russia, and so the system migrates the cache in China to
a data center in Russia. She stays in Russia for some time,
and so the system starts to migrate her data from France
to Russia, which takes several days. Before the migration
is over, she returns to France, so the system applies all
updates done in China and Russia to her data in France.

Scenario 3 (Data center expansion): A data center in
France is nearing maximum storage capacity, and so a
data center in Spain is created and the system migrates
some users from France to Spain. During this migration,
the two above scenarios may happen with some of the
users being migrated from France to Spain.

More generally, migrations can be ephemeral or per-
manent. Ephemeral migrations are reversed in the future;
they are implemented by creating a cache of the user data
at a new location and possibly pre-fetching parts of the
data. Later, the cache is flushed if it has dirty data and then
removed. Permanent migrations are not reversed; they are
implemented by copying the user data to the new location,
while coordinating updates to the data so that they go to
the right location. Sometimes, a migration may start off as
being ephemeral, but may end up being permanent—this
could happen, for example, if a user travels to location
and ends up staying there for the rest of her life. In that
case, the cache gets transformed into the home of the data.
Ephemeral and permanent migrations may occur simulta-
neously, say because the user is traveling but her home
data center is being reassigned.

Migration must functionally appear as a no-op: reads
and writes should functionally behave the same way
whether or not migration has occurred or is in progress,
except in terms of performance (a completed migration
will improve performance by reducing the number of re-
mote accesses). Moreover, migration is an optimization
rather than a task required for correct operation of the sys-
tem. We do not wish migration to disrupt the performance
of the system by consuming large amounts of bandwidth
during busy times. We thus expect migrations to occur in
the background with low priority.

3 Distributed data overlays
In this section, we describe our approach to migration

using distributed data overlays or simply overlays. Our
description is targeted at a fairly general distributed stor-
age system. In Section 4, we provide the details of over-
lays for a specific key-value store system called Nomad.

Overlays are an abstraction to provide online migra-
tion. Migration results in partial copies of data at two
or more locations—such as cached fragments and partly-
copied data—which need to be managed carefully while
the system orchestrates accesses, to ensure writes are not
lost and reads return valid data. For example, if data is
written at the old location at the same time it is being
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Figure 1: Overlays.

server1

(a) (b) (c)

cache

server2

Figure 2: It is easy to use overlays to migrate data from server1
to server2. The black bars indicate regions with data. (a) Initially,
data is in server1, and there is a dirty cache at a data center
close to the user. (b) First, insert an overlay at server2 between
server1 and the cache, and copy data from server1 to server2.
(c) Then, remove the overlay at server1; dirty cache remains in
place. The distributed protocols that implement overlays ensure
that the insertion and removal of overlays will never cause the
loss of data in ongoing read or write operations.

migrated to a new location, the system may fail to mi-
grate the new write. This example becomes more com-
plex when there are dirty caches, those caches themselves
are being migrated, and/or migrations are canceled and
restarted; the number and complexity of the different sce-
narios that must be handled can be problematic for the
system developer. Overlays are an abstraction that helps
dealing with these scenarios in a simple and unified way.

As an everyday analogy, an overlay is a sheet of trans-
parent plastic that is placed over a piece of paper. Where
it is clear, the overlay reveals the contents underneath;
where it is written, the overlay overrides those contents
(Figure 1). Overlays can be stacked, to create many lay-
ers, so that looking at the stack reveals their combined
contents; if many overlays have content at the same place,
the higher overlays occlude the lower ones.

This idea has an analogue to storage systems. We now
explain it in a context where the user data is a byte se-
quence, such as a file, a data object, or the sequence of
blocks on a disk—depending on the nature of the storage
system. Data is stored at some base location and it may
be partly stored in another data center, which serves as a
cache. We can view the base location and cache as a stack
of two overlays, as shown in Figure 2(a), where each over-
lay is stored in a server in a data center. For uniformity,
the base layer is also called an overlay. The combination
of all overlays determines what data is seen on the stack,
with higher overlays having priority over lower overlays.

With the abstraction of overlays, migrating data is
straightforward: (1) we create an overlay below the
caching overlay, residing at the destination server, (2) we
populate the new overlay by copying data from the base
overlay, (3) we delete the base overlay, so that the new
overlay becomes the new base (see Figures 2(b) and 2(c)).
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Figure 3: Standard object store architecture used in Nomad.

Function Description
read(container, oid, off, len, buf) read object
write(container, oid, off, len, buf) write object
create(container, oid, len, buf) create and write object
delete(container, oid) delete object

Figure 4: Nomad API to access objects.

While migration occurs, data can be written at the cache,
and the cache can be flushed by writing its contents to
the new overlay. The protocols implementing overlays
(which are hidden from the designers who just want to
use them) ensure that reads and writes on an overlay stack
go to the right overlay, and that overlays can be created,
inserted, and removed atomically even if reads and writes
occur concurrently. With overlays, it is easy to support
the three scenarios described in Section 2, by inserting
overlays for caches or other copies of data, and copying
data between overlays to migrate. Note that each overlay
is kept at a fixed server, that is, an overlay does not move;
migration is achieved by creating overlays and copying
data between them.

4 Nomad design
We built Nomad, a prototype of a distributed key-value

object store that incorporates overlays to support flexi-
ble and online migration in a geo-distributed setting. We
describe overlays in Nomad for concreteness; however,
overlays are applicable to other types of storage systems,
such as file systems or block storage systems.

4.1 Basic architecture
Nomad has a typical architecture for a distributed key-

value object store, shown in Figure 3. This architecture is
not novel; we describe it in this section for completeness.

Objects are stored on a set of storage servers, which
are commodity machines running a standard operating
system; they store each object as a separate file in the
local file system. Throughout the paper, client refers to
the entity that uses Nomad, which is an application run-
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ning at a server in the data center, whereas user refers to
the entity that uses the application, which is often out-
side the data center—for example, the user could be a
person using a web mail system. Clients access Nomad
via a client library that implements functions for reading,
writing, creating, and deleting objects, as shown in Fig-
ure 4. There are also functions to read or write multiple
objects in the same request for efficiency; these are not
shown for simplicity. This interface is simple: a write as-
sociates a key with a new value, and a read returns the
latest value associated with the key. Each object is part
of a container, similar to a directory in a file system, a
bucket in Amazon’s S3 [5], or a blob container in Mi-
crosoft Azure [6]. A container is stored in one of the stor-
age servers, and there is a function for enumerating the
object identifiers in a container, and to create/remove con-
tainers (not shown). The mapping of containers to storage
nodes is kept by a directory service, which is replicated
asynchronously across data centers. For flexibility, No-
mad allows any container to be mapped to any storage
server; the mapping is represented as a list of container-
server pairs. The client library caches part of the map-
ping, and the directory service need not keep track of who
caches what: if the mapping changes (because the con-
tainer is migrated), the client library may try to access an
object at the wrong location, in which case the client li-
brary gets an error, consults the directory to find the right
location, and tries again. It is possible to expire entries in
the client cache for efficiency, so that the client does not
use too old information, but Nomad does not do that. The
directory service also indicates a migration coordinator
for each container (Section 4.5).

4.2 Migration granularity
At what data granularity should migration occur? We

discuss this issue from three perspectives: the application,
the system administrator, and the storage system.

From an application perspective, applications should
organize and migrate data in units that are likely to be ac-
cessed together within a given location, to provide local-
ity. For example, in a web application, a user usually logs
in at a data center close to where she lives; her persistent
data, such as personal information and preferences, form
a coherent unit for migration. It would not make sense to
migrate a user’s name without migrating her address, for
example.

From the system administrator’s perspective, the
choice of granularity comes from a balance of manage-
ability and control. On one hand, migration should be fine
enough to allow reasonable control over the allocation of
storage capacity and bandwidth. On the other hand, mi-
gration should be coarse enough so that the number of
units to be administered is small.

From the storage systems perspective, the migration
granularity should match the granularity of the mapping

at the directory service, so that the migration engine does
not have to reimplement this functionality. In particular,
before migration, the directory maps some unit of data to
some server; after migration, this unit must be mapped
to a different server without leaving behind intermediate
mappings.

Consequently, migrations in Nomad are done at the
granularity of a container, and we intend that applica-
tion designers collaborate with system administrators to
choose an appropriate organization around such contain-
ers. For example, in some web applications, all of a user’s
personal information and preferences could be stored in
a container. In a web mail system, there could be a con-
tainer per email folder per user, so that containers are not
extremely large.
A related consideration is the specificity of the desti-

nation of migration. In Nomad, the migration targets are
servers, but a high-level migration decision by an admin-
istrator could be to move a container from one data center
to another. In this case, there has to be a component that
refines this decision and picks actual servers; this com-
ponent, as well as the actual policies for migration, are
orthogonal to the migration mechanisms in Nomad.

4.3 Overlays in Nomad
Our description of overlays in Section 3 assumed sim-

plistically that the user’s data and migration granularity
is a sequence of bytes. We extend the description to No-
mad, where the migration granularity is an object con-
tainer, which consists of a set of objects, where each ob-
ject is a sequence of bytes. An overlay for the container is
an overlay for each object in the container plus an overlay
for an array of bytes representing the set of object iden-
tifiers in the container. All objects in the container have
identical overlays, except that the data contents for dif-
ferent objects are different. Thus, for efficiency, Nomad
keeps a single overlay structure per container, which rep-
resents the (identical) overlays of all objects in the con-
tainers, without any data; the data is kept separately as a
set of extents for each object at each overlay. An object
may have several extents at a given overlay.
Overlay internal information. Recall that the directory
service maps each container to a storage server, which in
turn stores the base overlay for the objects in that con-
tainer. Normally, the base overlay is the only overlay in
the stack, but when the container is being migrated or
cached, there may be additional overlays. The overlay
structure consists of the following information:

• container-id: container that the overlay refers to;
• location: server that stores the data in the overlay;
• above-pointer: pointer to the overlay above, or nil;
• below-pointer: pointer to the lower overlay, or nil;
• frozen: a flag indicating that overlay pointers cannot

be changed;
An overlay structure is associated with the following:
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Function Description
insert(server, overlay, direction, flags) create overlay and insert
remove(overlay) remove overlay
get stack(base overlay) get entire overlay stack
start copy(overlay, direction[, list]) copy to adjacent overlay
stop copy(copy job) stop copying

Figure 5: Operations on overlays.

• data: a set of extents for each object, with a unique
bit and a timestamp for each extent.

The unique bit is unset when the extent is a repetition of
data in a lower overlay; this bit is similar to the dirty bit
in a cache. The timestamp is used to handle concurrent
writes when data is replicated at many overlays: the write
with highest timestamp wins. We explain replication in
Section 4.6.
Reading and writing data. To write data to an object,
the client first finds the highest overlay Ohigh, by start-
ing with the base location and successively traversing
the above-pointer at each overlay until it becomes nil.
Then, the client sends the data to be written to the overlay
Ohigh. If the above-pointer at Ohigh remains nil, the stor-
age server at Ohigh accepts the write and sets the unique
bit for the newly written extent. (The checking that the
above-pointer is nil and the acceptance of the write must
be performed atomically with respect to the processing
of other client requests for the overlay.) Otherwise, there
has been a concurrent operation to insert an overlay above
Ohigh, so the storage server returns an error together with
the value of above-pointer; the client continues the traver-
sal to find the new highest overlay, and retries the write
there. When the client has completed the write, it caches
the identity of the highest overlay it found. In its next
write, the client starts the traversal from the cached over-
lay, for efficiency. The cached value could be an overlay
that no longer exists (because it was removed), in which
case the client gets an error and consults the directory ser-
vice to find the base location again.

To read an object, the process is similar but slightly
more complex, because the highest overlay may not hold
the data to be read; in that case, the client goes back to the
lower overlays until it finds the data it wants. It is possible
that an overlay holds only part of the interval to be read,
in which case the client goes to the lower overlays for the
missing pieces.

Note that when there is a single overlay—which is of-
ten the case for most objects—its location is the server
indicated by the directory service, and a read or write re-
quest proceeds as in a system without overlays, without
additional communication rounds.
Overlay operations. The operations that insert, remove,
and copy overlays are shown in Figure 5. The insert oper-
ation indicates the server for the new overlay, an existing
overlay where the new overlay will be inserted, a direction

(above or below) to specify whether to insert above or be-
low the specified overlay, and a flag with properties for the
new overlay. Currently, the only property is whether the
new overlay holds unique data or not. If it does not, then
when a write happens at the overlay, the write is also for-
warded to the overlay below; this mechanism can be used
to implement a write-through cache. The start copy oper-
ation copies the objects in the overlay to the overlay above
or below. It can copy all object or just those indicated on
a list—this is useful to populate caches with certain ob-
jects only. The remove operation is self-descriptive; the
system takes care of copying the overlay’s unique data to
the overlay below before removing it. It is not legal to re-
move an overlay if it is the only overlay in the stack. Not
shown in the figure are the operations that return the base
overlay for a container and for an object.

To simplify the design, we require that overlay opera-
tions be executed one at a time per container. This seri-
alization occurs per container, not across containers, and
so it does not pose a performance problem since over-
lay operations on a container are relatively rare. To seri-
alize, overlay operations can be called by only one server
per container: in Nomad, this server is indicated by the
directory service and it is called the coordinator of the
container. The coordinator ensures that an overlay has at
most one outstanding overlay operation. To achieve fault
tolerance, we can fail over the coordinator as we explain
later. Note that read and write operations are not overlay
operations: they can be executed concurrently with over-
lay operations and with each other, at many clients. The
protocols that implement overlay operations, described in
Section 4.5, ensure correct behavior in these cases.

4.4 Using overlays in Nomad
It is easy to use overlays to migrate data, create a cache,

migrate the cache, and migrate data back, as we now de-
scribe. We provide intuitive explanations in English, but it
is easy to translate these explanations into code that calls
the functions in Figure 5.
Migrate data to another server. The system creates an
overlay at the destination server on top of the source over-
lay to be migrated; at this point, writes will no longer go
to the source overlay. The system then invokes the oper-
ation to copy the data from the source to the destination
overlay. When the copy is finished, it removes the source
overlay. As we mentioned, because we designed the over-
lay operations so that clients can concurrently access data,
migration proceeds concurrently with these accesses, and
without causing reads or writes to be lost.
Cancel migration. Sometimes, migration should be
canceled because of changes in the workload. For in-
stance, if a user is traveling for some time and migration
starts, but the user returns before migration has finished,
the system may decide to cancel the migration. This is
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easy: we simply stop the copying operation and remove
the new overlay that was created for migration. Recall
that the operation to remove an overlay copies the over-
lay’s content to the overlay below. If the new overlay al-
ready has lots of data, the following optimization is effec-
tive. Note that only data written by the client needs to be
copied, not data written by the migration, which is already
present in the overlay below. To identify these writes, the
writes by the client have a special unique bit set (Sec-
tion 4.3), while the writes by the migration do not.
Create cache at a data center. We can create two types
of caches at a data center: write-back or write-through.
(Caching can also be done at the client; this can be done
by the application if desired, not by Nomad.) To establish
a cache, one simply inserts a new top overlay stored in the
desired data center; write-back or write-through behavior
is indicated by the flag parameter of the insert operation,
which indicates whether the overlay will forward writes to
the overlay below or not. To flush the cache, one invokes
the copy operation to the overlay below. To remove the
cache, one invokes the operation to remove the overlay.
Migrate the cache. To migrate a cache (which may have
dirty data), we use the procedure to migrate the data at an
overlay, described above.

4.5 Implementing the overlay operations
We now describe how to implement the overlay oper-

ations of Figure 5. We make the following design deci-
sions: (1) it is reasonable to serialize overlay operations
on the same container, but we should allow operations on
different containers to run in parallel, and (2) an overlay
operation on a container must allow reads and writes on
the container to proceed in parallel, because these opera-
tions are sensitive to performance. Therefore, we assign
a (migration) coordinator per container, which executes
overlay operations on that container one at a time, and we
design the coordinator protocol carefully so that reads and
writes are never blocked. The coordinator is indicated by
the directory service, and it manipulates the overlay state
at each server via remote procedure calls (RPCs), as we
now explain.
Inserting overlays. To insert an overlay O2 at storage
server S above overlay O1 and below overlay O3, O1

and O3 must point to O2, and O2 must point to both.
To do so, the coordinator executes the following actions
(using RPCs), in this order: (1) create O2 at S with point-
ers to O1 and O3; (2) change O1.above-pointer to O2;
(3) change O3.below-pointer to O2. Note that after (2)
before (3), O2 is already visible to read and write opera-
tions because O1 points to it, but O2 is in a funny state
where O3 does not point to it yet. This is not a problem,
because O2 has no data and it is impossible for it to get
any data (writes would go to O3 instead).

To insert O2 at the top, the process is similar except

that O2’s top pointer is nil, and step (3) above is skipped.
To insert O2 at the bottom, the process is also simi-
lar except that O2’s bottom pointer is nil, and step (2)
changes the base pointer at the directory service to point
to O2. There one subtlety: the directory service is repli-
cated asynchronously; the coordinator changes only the
directory server in its own data center and the others are
eventually updated; in the meantime, the remove direc-
tory servers may temporarily point to the wrong base;
this is not a problem since the directory service is used
only for finding the top overlay (see “Reading and writ-
ing data” in Section 4.3).
Removing overlays (part 1). To remove an overlay O2,
we first consider the case when O2 is completely oc-
cluded by the overlay above: that means all data in O2

is covered by data at the overlay above, so that the data
in O2 is useless. In that case, the coordinator can remove
O2 without fear of losing data; to do so, the coordinator
(1) changes the overlay below to point to overlay above,
(2) changes the overlay above to point to the overlay be-
low and sets the unique bit for all extents in the overlay
above2. If there is no overlay below, because O2 is the
base overlay, the coordinator changes the base pointer at
the local directory server (instead of the overlay below);
the other replicas of the directory server may temporarily
point to the deleted O2, so we leave a tombstone at O2

pointing to the overlay above; the tombstone is removed
after a period long enough that all directory servers have
seen the update (say, one hour).

Another easy case is to remove O2 when the overlay
below is in the same storage server. In that case, the coor-
dinator asks the storage server to execute three actions:
(1) locally copy the contents of O2 to the overlay be-
low O1, (2) redirect any writes to O2 so that it goes to
O1, and (3) make O1.above-pointer point to O2.above-
pointer. These three actions can be done without races
because they are done in the same server. Finally, if there
is an overlay above O2, the coordinator makes its below-
pointer point to O1.

The removal process we described so far does not allow
one to remove the top overlay, or some overlay that is not
completely occluded. We come back to that soon, because
such an operation uses the next operation.
Copying data between overlays. To copy data from an
overlay to the overlay below, the coordinator asks the
server of the overlay above to send the data to the server
below. This idea can also be used to copy from an over-
lay to the overlay above, but it is more efficient to ask for
the overlay above to pull the data from the overlay below,
because if the overlay above already has data for certain
objects, these objects need not be copied (since the over-
lay above occludes the overlay below at those objects).

2Setting the unique bit this way is a conservative choice.
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Removing overlays (part 2). We can now describe how
to remove an overlay O2 that is not completely occluded.
The procedure to do that reduces to invoking existing pro-
cedures that we already described. There are two cases:

1. If there is an overlay above O2, the coordinator
invokes the copy operation from O2 to that overlay, to
occlude O2. The coordinator then uses the previously-
described procedure to remove an overlay that is oc-
cluded. This works without any races, because once an
overlay is occluded, it remains occluded as no writes can
go to it—unless the overlay above is removed, but as we
explained above, this does not happen since all operations
on an overlay are serialized by the coordinator.

2. If O2 is the top overlay then it must have some over-
lay O1 below it at some storage server S (the last overlay
cannot be removed, which would result in data loss). The
coordinator first creates a new temporary overlayO3 over
O2 at storage server S. Then, the coordinator removes O2

using the above procedure, since O2 is no longer the top
overlay. We are left with overlays O1 and O3 at server S.
The coordinator now uses the above procedure to remove
an overlay when the overlay below is in the same storage
server.
Copy optimization. The coordinator serializes overlay
operations, but this is inefficient in one case: the copy op-
eration can take a long time and hence delay further over-
lay operations. For example, suppose that we have a base
overlay and a cache, and we want to migrate the base from
a server to another one. During this migration, we may
want to also migrate the cache to another place, but if the
overlay operations on the same container are serialized,
the cache migration must wait for the server migration
to finish, which is undesirable. We address this problem
by having copy operations run in the background, thereby
allowing concurrent execution of other overlay operations
on the same container. For this to work, we need to restrict
the other overlay operations so that they do not change the
source and destination overlays involved in a copy (for
example, it would be problematic to remove the source
or destination overlay while the copying is going on). We
do this simply by setting a “frozen” flag at the overlay;
an overlay operation that encounters the frozen flag ex-
its with an error and retries later. It suffices to freeze the
lower of the two overlays, because the operations to re-
move the higher or lower overlay or to insert an overlay
between them will access the lower overlay first and find
the frozen flag.
Correctness proof. The operations to insert, remove,
and copy data between overlays ensure that reads and
writes behave equivalently as if they were executing in
a single-overlay system, that is, a system that has a sin-
gle fixed overlay where all the reads and writes occur.3

3This holds when overlays are not replicated. Replication is dis-
cussed in Section 4.6. It provides a consistency guarantee that is dic-

As a consequence, read and write operations are lineariz-
able [20], which provides a strong form of consistency.
Roughly speaking, linearizability ensures that each oper-
ation appears to take place instantaneously at a point be-
tween the invocation and response of the operation.

To show the property of equivalence to a single-overlay
system, we examine the steps of the protocols to insert, re-
move, and copy data between overlays, and we show that
each of these steps always cause a concurrent write or a
read operation to occur at a proper overlay: a write always
occurs at an overlay that is not occluded (at the time the
write is applied to the overlay), so that the write behaves
equivalently as in the single-overlay system; and a read
always occurs at the highest overlay with data. The proof
requires an exhaustive examination of all cases, which is
long but conceptually simple.
Availability and fault tolerance of migration. We op-
timize to provide high-availability for reads and writes;
migration operations may pause due to failures. A coor-
dinator crash affects only its own migration operations:
we designed the protocols so all clients continue reading
and writing consistently without blocking if the coordi-
nator crashes. We recover from coordinator crashes using
standard techniques. The coordinator logs each operation
and each step within the operation; the log is stored in
Nomad itself. If the coordinator crashes, another coordi-
nator reads the log and picks up from where the crashed
coordinator left off.
Moving the coordinator. There is a unique coordinator
per container, indicated by the directory service, but the
coordinator can be easily changed, as follows. The old co-
ordinator finishes its current operation and then performs
three actions: (1) start the new coordinator, (2) change the
pointer at the directory service, (3) stop.

4.6 Replication
Data replication can be implemented at two places in

the component stack: at the storage node level, called
node-level replication, or at the directory level, called
directory-level replication.

With node-level replication, a storage node is respon-
sible for replicating itself, and all the replicas are treated
by the higher layers as a single virtual node. The migra-
tion engine is above the replication mechanism, and we
migrate data from one virtual node to another as if the
node were not replicated at all. For example, if there are
two replicas r1 and r2 of a storage node, they are both
treated as virtual node r; containers in r can be migrated
to another virtual node s that could have replicas s1 and
s2. The advantage of node-level replication is that it is
extremely simple and modular, because migration is de-
coupled from replication. For example, node-level repli-

tated by the replication scheme; for instance, asynchronous replication
provides only eventual consistency.
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Figure 6: Replication of base overlays. The overlays in New York
and San Francisco are asynchronous replicas. There are overlays
in Miami and San Diego used as caches of these locations.

cation can be easily provided using a disk array at the
storage nodes, or by using state machines coordinated via
Paxos [24]. The drawback of node-level replication is that
it cannot benefit from the versatility of overlays—for in-
stance, we cannot use overlays to cache or migrate indi-
vidual replicas, since these replicas are abstracted at a low
level in the system.

With directory-level replication, the directory service
maps an object/container to several servers (instead of a
single server) holding replicas of the base overlay; these
replicas are coordinated by the read-write protocol used
by clients. The migration engine is below the replication
mechanism, and migration moves data from one physi-
cal storage server to another. With directory-level repli-
cation, individual replicas can benefit from overlays, as
illustrated in Figure 6. This scheme is particularly use-
ful when data is replicated across data centers. We now
explain how Nomad can be extended to support repli-
cation of this sort. (This extension is not implemented
in our prototype.) The replicated base overlays are es-
tablished when a client creates a container and indicates
that it should be replicated. Each replicated base over-
lay may subsequently have a different stack of overlays
on top of it, so the stacks are not copies of each other.
The data in the different overlay stacks are kept in sync
using the desired replication scheme. We believe over-
lays should work with most replication schemes, by treat-
ing each overlay stack as a black-box to which the de-
sired replication protocol issues writes and reads. We il-
lustrate how this is done via three well-known replication
schemes—asynchronous primary-backup, asynchronous
timestamped, and synchronous. Under all schemes, the
directory service indicates the locations of all replicas of
the base overlay; when a client writes to one of the overlay
stacks, it performs the write at the other stacks as well; to
write on a given stack, the client uses the write procedure
described in Section 4.3. We now explain the specifics of
each replication scheme.

With asynchronous primary-backup replication, one of
the overlay stacks is designated as the primary and the
other stacks are read-only; writes are only permitted at
the primary stack, and the client applies the write asyn-
chronously (in the background) to the other stacks.

With asynchronous timestamped replication, writes are
permitted at all replica stacks, and the clients apply the
writes asynchronously to the other stacks; a write includes
a unique real-time timestamp to order concurrent writes
by other clients at other replicas. This is a standard tech-

nique: when writes occur at different replicas, the write
with higher timestamp obliterates the other writes; if a
replica receives a write with a lower timestamp than the
data it has, the replica ignores the write. Note that times-
tamps are globally unique (done by appending a machine
identifier to break ties). To obtain timestamps, we assume
that clocks are synchronized, say via NTP; machines with
faulty clocks can be disabled using a simple monitoring
service. Timestamps are kept forever for each extent. We
believe that is a small overhead, but if desired it is pos-
sible to garbage collect the timestamp at a replica after
it is known that the data at other replicas cannot have a
smaller timestamp, using the convention that data with no
timestamp is treated as having a −∞ timestamp.

With both schemes above (asynchronous primary-
backup or timestamped), if a client fails while writing,
the write may be applied to some but not all replicas. For
that reason, the migration coordinator runs a cleaner that
periodically checks for these failed writes and completes
them. To make it easy to recognize the failed writes, the
client leaves a mark in the overlays that it writes to, which
the client clears asynchronously after the client has writ-
ten to all replicas. If the client crashes without having
written to all replicas, the marker will be left at the over-
lay. Both asynchronous schemes described above provide
eventual consistency.

With synchronous replication, when a client issues a
write to one of the overlay stacks, the client must write
to the other replica stacks synchronously (i.e., before
the write is acknowledged to the client). As with asyn-
chronous replication, a write includes a timestamp to or-
der concurrent writes, and we use a marker to recognize
failed writes. To read, a client reads from one of the over-
lay stacks and then checks that the data being read has no
marker (the common case); if it has a marker, the client
writes the data and its timestamp synchronously to the
other replica stacks. This is done to ensure that later reads
at other replicas cannot not return data that is older than
the data being returned by the current read, to provide a
strong form of consistency. This synchronous replication
scheme provides linearizability [20].

With all of the replication schemes, we can migrate a
replica using the procedure described in Section 4.4.

4.7 Multi-way caching and split overlays
In Section 4.4, we described how to use overlays to

cache data at one location. It may be desirable to set up
multi-way caches, where data is cached at many locations
from a single replica. In other words, there is a single
replica of the full data set, and many caches each with
some (possibly overlapping) part of the data set. To do
this, we need the notion of a split overlay, which is illus-
trated in Figure 7. (This extension is not implemented in
our prototype.)
Caches exist for performance, and so they should al-
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Figure 7: Split overlays are used to cache the data in New York at
both San Francisco and Chicago.

low for efficient reads and writes without synchronization
across the caches in different data centers. As a result,
split overlays provide only a weak form of consistency,
namely eventual consistency. A split overlay occurs when
an overlay has several overlays over it on the next level;
each of these overlays is called a split. A split is estab-
lished using the operation to insert a new overlay of Fig-
ure 5, with a special flag indicating it is a split. This flag
causes the overlay below the point of insertion to store
an additional above-pointer to the new overlay. When a
write occurs at one of the splits, the write occurs as in any
other overlay: the data is marked as unique (dirty) and it is
not propagated to other splits. A client can cause the data
at a split to be copied to the common overlay below, via
the start copy operation of Figure 5. This corresponds to
flushing the cache. When the overlay below receives the
data, it invalidates older data at the same position in the
other splits, using the data’s timestamps to decide what
is older. As a result, content initially written to a split is
not visible at the other splits, but as soon as the content is
flushed down, it becomes visible. In the example of Fig-
ure 7, when the dirty writes in Miami are flushed to the
common overlay in New York, New York sends an invali-
dation message to Chicago, which causes Chicago to dis-
card any older writes. Subsequent reads in Chicago will
read the data from New York.

In general, the protocol works as follows. Suppose
there is an overlay O at level k and m splits O1, . . . , Om

at level k + 1. If a write occurs at an overlay Oi or above,
the write remains in the split with the unique bit set. Sub-
sequently, when the data at Oi is copied to overlay O, the
server of overlay O sends an invalidation message with
the data’s timestamp and position to the other splits at
level k+1. Each of these overlays checks whether it has
older data in the same position and, if it does, removes
such data from the overlay. If there are further overlays
above, the invalidation message is forwarded recursively.
If the server of an overlay crashes and recovers, it may
lose this invalidation message (e.g., it may have received
the message and then crashed without having the time to
process it). For that reason, the overlay that originates the
message retransmits it periodically until it gets acknowl-
edgements from the top overlays in each branch. An over-
lay may process the same invalidation message twice, but
this is not a problem since the message is idempotent.

Now suppose that we want to remove a split overlay—
say, in the example of Figure 7, we wish to remove the
split in Miami and be left with an unsplit stack with New

(a) (b)
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Figure 8: Removing a split overlay. Miami (Mia) and Chicago (Chi)
are initially split and we wish to remove Miami.

York and Chicago. We use the procedure to remove an
overlay described in Section 4.5, with a small modifica-
tion to incorporate the invalidation mechanism that we de-
scribed above. More precisely, as shown in Figure 8, we
first create an overlay in New York on top of Miami; we
then copy the data from Miami to the overlay above it in
New York; next we remove the overlay in Miami. We are
left with a split overlay where New York is on top of New
York, as shown in Figure 8(c). The final step is to locally
copy the data from the higher to the lower overlay in New
York, send invalidation messages to Chicago, and finally
remove the higher overlay in New York.

Note that split overlays can be migrated as well, using
the procedure described in Section 4.4. This modularity
makes overlays a flexible mechanism.

5 The policy of geo-distribution
Thus far, we have described the Nomad system and the

mechanism of migration it provides. We now discuss the
policy of migration: what data to migrate, where to mi-
grate it, and when to do so. There is no one-size-fits-all
policy: migration policies depend on the specifics of data
center deployments as well as application requirements.
Below, we describe some of the key deployment factors
that a policy layer must take into consideration.

Data center granularity: A geo-distributed system may
consist of a few large data centers, or many small data
centers. The former characterizes current deployments of
large companies such as Microsoft, while the latter alter-
native is based on the use of containers [12]. Smaller data
centers allow data to be closer to users, but place greater
strain on the migration scheme.

Network costs: A geo-distributed system usually com-
municates on two different networks: an internal one be-
tween data centers, and an external one to connect with
users (the Internet). The cost model for the internal net-
work can vary. If the internal network consists of ded-
icated, privately owned links, the cost and speed of the
network are fixed. Alternatively, network cost on leased
links can depend on the amount of data transferred; for
example, it is common for network operators to bill cus-
tomers based on 95th percentile network utilization. The
external network is provided by Internet ISPs, and the cost
depends on the amount of data transferred in and out.

Access protocols: When a user accesses the service via
the web, the request is redirected via DNS-based load-
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balancing to a local data center. If the data the user needs
(e.g., her inbox) is in a different data center, the system
has two options:

• Redirect. The system redirects the user to the appro-
priate data center. Subsequently, the local data center
is not in the communication path, and the communi-
cation from the user to the appropriate data center is
via the Internet. This option saves bandwidth on the
internal network, but may impair the user experience
because the Internet provides no quality of service.

• Relay. The local data center continues to serve the
user and fetches needed data from the remote data
center using the internal network. Thus, the local
data center is in the communication path. This op-
tion tends to provide more predictable access times,
and it allows the local data center to satisfy parts of
the request locally (e.g., ads). However, this option
is more expensive because one must provision the
internal network adequately.

Against this backdrop, a migration policy must trade
off migration bandwidth on the internal network for re-
duced access latencies. If the system uses the Relay op-
tion, the policy also has to factor in the bandwidth cost on
the internal network of remote accesses on non-migrated
data; in the Redirect model, this is not a factor.
A policy layer for online services. In addition to the
deployment factors listed above, migration policies also
depend on application characteristics. For example, No-
mad could be used with a policy layer that periodically
computes optimal placements for data given the location
of recent accesses of users and the capacity of each data
center, as in the Volley system [7]. The effectiveness of
this policy depends on the application; it works well if
user movements tend to be permanent, but can result in
excessive migration if users move back and forth.

We describe a new policy layer based on predictions
of future user movement. This layer provides insight into
how predictions of user movement can be used to achieve
access locality while eliminating unnecessary migrations.

Our policy layer makes the decision to migrate a user
based on the cost of doing so versus its predicted fu-
ture benefit. If we could perfectly predict the benefit, this
choice would be easy; since we cannot, we must settle for
heuristics that use past behavior to try to predict future ac-
cesses at the same location. We consider three simple mi-
gration policies. They all monitor the location of the user
when she accesses the data, and trigger migration when a
condition is met. The three conditions we consider are the
following:

• Count: Data is accessed from the same remote loca-
tion a certain number of times (e.g., 10 times);

• Time: Data is accessed from the same remote loca-
tion for a certain period (e.g., 10 days);

• Rate: Data is accessed from the same remote loca-
tion above a certain rate (e.g., 3 accesses per day).

For example, suppose Alice moves from Redmond to
London. Suppose she accesses her mailbox twice on each
of the first five days in London, twelve times on the sixth
day, and then returns to Redmond on the seventh day. The
Count-based policy with a threshold of 10 accesses mi-
grates her mailbox to London on the fifth day; the Time-
based policy with a threshold of 10 days does not migrate
her mailbox. The Rate-based policy with a threshold rate
of 3 accesses per day migrates her mailbox to London on
the sixth day. In this case, the Time-based policy is the
best. Since Alice returns to Redmond after a short trip,
her mailbox should not be migrated. In other cases, the
Count and Rate-based policies may work better.
We later report on the efficacy of these different poli-

cies when applied to real user traces taken from a large
web mail service. Since these policies are predicated on
the movement of users in the real world (rather than the
semantics of a specific application like webmail), we be-
lieve the results to be relevant for other web applications,
such as the ones mentioned in Section 2.

6 Implementation
We implemented overlays in a prototype of Nomad as

we described in Section 4, except that we did not im-
plement replication (Section 4.6) and split overlays (Sec-
tion 4.7)—which are unnecessary to compare Nomad to
other migration schemes. The Nomad prototype has 6,000
lines of C# code, comprising a client library, a storage
server, and directory server. The directory server provides
RPCs to get and set the location of the base overlay of a
container given its 64-bit identifier. A storage server pro-
vides RPCs for the following: (1) Read/write to an over-
lay; (2) Get the overlay above and below of an overlay;
(3) Delete an overlay; (4) Create new top overlay at an-
other storage server for a given overlay; (5) Copy data of
an overlay to its upper overlay; (6) Migrate an overlay to
another storage server.

Storage servers store data for an overlay as a directory
in the local file system, containing a metadata file and one
file for each extent of the overlay, named by the object
id, start offset and end offset. A write to an overlay may
merge extent files. Storage servers cache overlay meta-
data in memory to improve read performance.

7 Evaluation of mechanism
In this section, we evaluate the use of overlays for mi-

gration, through experiments that measure overlay over-
heads, verify their flexibility, and compare their perfor-
mance against alternatives.

7.1 Alternative schemes for migration
We consider two alternative schemes for migration,

which are often used in practice:
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• Lock-based migration: While the data is copied from
the old location to the new location, the system
blocks write operations. Read operations are not
blocked; they are served at the old location. Writes
are unblocked after the old location is marked as in-
valid and the directory is updated to point to the new
location.

• Log-based migration: The system creates a log at the
old location to store the updates while the data is
copied from the old to the new location. During the
copying, reads and writes are served at the old loca-
tion. Once the copying is finished, the system blocks
write operations, copies the log from the old to the
new location, marks the old location as invalid, mod-
ifies the directory to point to the new location, and
then unblocks write operations.

7.2 Experimental setup
Our setup consists of machines in data centers in

five locations: Mountain View (CA), Redmond (WA),
Boston (MA), Cambridge (UK), and Beijing (CN). Each
machine consists of a PC with two quad-core 2.27 GHz
Xeon processors, 16 GB of RAM, an internal disk array
with several 10,000 rpm SAS disks, running 64-bit Win-
dows Server 2008 R2. Machines are connected to a Gi-
gabit switch, and the various locations are connected by
a dedicated network. The median ping latencies between
locations are as follows, in ms:

WA MA CN UK
CA 19 112 167 237
WA 79 141 204
MA 220 283
CN 345

7.3 Overhead of overlays
We now evaluate the overhead imposed by overlays.

Access latency. In this experiment, we measure the la-
tency that overlays incur on accesses to data. A client
reads or writes a small object with up to five overlays in
different locations, as we measure the latency of reads or
writes in two separate experiments. The client is in the
same location as the top overlay, which is typical of hav-
ing a cache at the local data center.

Figure 9 shows the results for writes. We see that the
first write incurs a higher latency, because the client needs
to traverse overlays in different locations from bottom to
top. Once the client learns the top overlay, it caches it for
the entire container; subsequent writes on any object of
the container are much faster, incurring only a local-area-
network latency plus a disk-write latency. We can avoid
the higher latency for the first write by keeping a hint of
the location of the highest overlay at the directory service.
We implemented this optimization, but Figure 9 shows the
unoptimized scheme, representative of the worst case.
For reads, the situation is similar (not shown). The first

read discovers the overlays, while subsequent reads are
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Figure 9: Write latency using several overlays in many geograph-
ical locations. The x-axis indicates the number and location of
overlays.

faster. The exact latency for subsequent reads depends on
the first overlay that has the data: if it is the top over-
lay, it is just a local-area-network latency, otherwise it is
the sum of the latencies to communicate with each suc-
cessive overlay until data is found. We implemented an
optimization so that if a read does not hit the top overlay
then it writes the data there so that the next read of the
same data will be faster—thereby treating the top overlay
as a cache. A client-settable flag determines whether this
optimization is enabled or not.

Overlay space. We measure the space overhead of over-
lays. The on-disk or in-memory metadata for each overlay
is smaller than 1 KB. A larger overhead occurs because
lower overlays may store useless data occluded by higher
overlays. In theory, a container’s storage space across all
servers could be multiplied by the number of overlays.
In practice, most overlays are usually empty, but even if
they were not, it is easy to introduce a garbage collection
mechanism that periodically detects and erases occluded
data (we have not implemented this). The garbage col-
lection period can be many minutes because most storage
systems are over-provisioned.

7.4 Flexibility of migration mechanism
In terms of functionality, overlays provide the flexibil-

ity to migrate data while clients are concurrently reading
and write data; during migration, the system may create
or flush a remote cache, and the cache itself could be in-
dependently migrated. Lock-based and log-based migra-
tion do not provide this flexibility, but they could sup-
port a static cache layer, which cannot be removed or
added. With extensions, lock-based and log-based migra-
tion could support migration of the cache layer, possibly
concurrently with migration of the storage layer, but this
requires additional careful design. The flexibility of each
scheme is summarized in the table below.
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support create remove migrate
Scheme static cache cache cache

cache layer layer
Lock-based Yes No No Extension
Log-based Yes No No Extension
Overlay Yes Yes Yes Yes

We devised an experiment to demonstrate the flexibil-
ity of overlays as a user moves between four locations.
The user is initially at the United Kingdom (UK), where
she has 50 MB of data. Her workload consists of reading
or writing small objects within some working set of size
2 MB. At time 60s, she moves to Boston (MA). At that
time, we start a process to migrate her data to MA, start-
ing with her active set, using 300 Kbps of bandwidth. This
could be the maximum bandwidth a given user is allowed
to consume in a system with many users. The entire mi-
gration will take around 1600s, but her active set can be
copied in 60s. At time 180s she moves to Redmond (WA),
but the migration UK-MA has not finished yet, so we cre-
ate a cache in the WA data center and start populating it
with her working set, copying the data from the MA data
center at a rate of 400 Kbps. At time 300s, she moves
to California (CA), and we migrate her cache from WA
to CA at a rate of 400 Kbps. There are separate experi-
ments for reads and writes. Note that in this experiment,
we compress travel time so that we can fit the scenario in
one small graph. In a more realistic setting, the user may
remain at a location for several days, and the correspond-
ing graph would look like the one we give, except it would
have large segments depicting no interesting information
while the user remains at a location.

Figure 10 shows the latency of the user’s reads and
writes during this scenario. The latency refers to a client
running on the user’s behalf at the data center closest to
the user—this client could be a web application that reads
and writes within the data center. We can see that ini-
tially the latency is close to 0, reflecting a local access. At
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60s, once the user moves and migration starts, the latency
spikes to around 1s for a few accesses: this is the time it
takes to lookup the user’s data and traverse the overlay
stack. Soon after, the write latency drops to ≈0, because
writes are now done locally. The read latency gradually
drops as the working set is migrated from UK to MA,
which takes ≈70s. At 180s and 300s, we observe the same
phenomenon, except that the working set is copied faster,
in ≈40s, since more bandwidth is available for populating
or migrating the client’s cache.

7.5 Performance comparison
In this experiment, we evaluate the latency of accesses

to data during migration. A container with 50 MB of data
is initially located in the WA data center (source location)
and a client periodically reads or writes small objects in
that container from the CA data center. At 50s, the sys-
tem starts migrating the container to CA (destination lo-
cation), which is the same data center as the client, using
2 Mbps of bandwidth. We measure the latency of reads
and writes to the objects as the migration progresses.

Figure 11 shows the results for Nomad and log-based
migration. With the latter, there is a period of write un-
availability at the end of migration when the log is copied.
The write unavailability is given by the formula:

filesize
migrate-rate

×
write-rate

migrate-rate
=
filesize× write-rate

migrate-rate2

where write-rate refers to the new writes during migra-
tion, and migrate-rate is the rate at which data is copied.

The unavailability can be reduced by using a second
log to store updates while the log is being migrated (and
this can be done repeatedly).

Log-based migration has two other drawbacks com-
pared to Nomad. First, read and write latency remains
high during migration because operations are served at
the source location until migration is completed. In con-
trast, with Nomad, the write latency immediately de-
creases when the migration starts while the read latency
progressively decreases, because the client reads ran-
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Figure 12: Movement patterns of sample users that traveled
>2000 miles for >3 weeks with >7 accesses. Disclaimer: sample is
not statistically significant, provided for illustrative purposes only, not nec-
essarily representative of Hotmail’s market penetration.

domly chosen objects and, as time passes, a larger frac-
tion of these objects are in the same location as the client.
Another drawback of log-based migration is that it con-
sumes three times as much bandwidth for new writes
done during migration (not shown on the graph). These
writes must be (1) received at the source, (2) sent from the
source, and (3) received at the destination. Intuitively, this
is because writes during migration are sent to the source.
This must be so, because reads are served at the source. In
contrast, with overlay-based migration, writes can go di-
rectly to the destination, because the system can use over-
lays to serve reads from a combination of the source and
the destination.

We also tried lock-based migration (not shown on the
graph). The result is what one would expect: during mi-
gration there are no writes, and reads have high latency
since they are served at the source location.

8 Evaluation of policy
We evaluate three simple migration policies using real

traces from Hotmail. Generally, migration can be trig-
gered by a combination for factors, including balancing
of storage capacity, balancing of bandwidth, and move-
ment of users. The policies we consider here are based
on movement of users; a more comprehensive set of poli-
cies may consider the other factors as well [7]. We evalu-
ate policy independent of the mechanism used for migra-
tion, to separate concerns. Our traces comprise the login
records of ≈50,000 randomly chosen Hotmail users, col-
lected over two months (Aug-Sept 2009). For each user,
it contains the login time and IP address from which the
user logged in. We use a public IP-based geolocation ser-
vice to map each IP address to latitude, longitude coor-
dinates. To apply our policies, we view each login as a
separate access, and the unit of migration is a mailbox.
Figure 12 shows examples of the movement patterns in
the trace.

To eliminate errors introduced by the geo-location ser-
vice, we first pre-process the trace by clustering se-
quences of close-by accesses by a user (less than 150

miles from each other) into visits. Thus, if a user logged
in twice from New York City and twice from New Jersey
(which are very close), we consider that as a single visit
of four accesses. If the user then logs in from Seattle, and
later again from New York City, that is three visits.
As we explained in Section 5, data center granularity

is an important consideration: the movement of a user is
only relevant for migration if the closest data center to the
user changes. We consider that the data center changes
only if the distance between one visit and the next is
above a threshold. We consider three such thresholds, cor-
responding to three data center granularities:

• Large-DC: Threshold is 2000 miles, corresponding
to a deployment with massive data centers serving a
large area. 1% of the users in the trace have visits
that satisfy this criteria.

• Medium-DC: Threshold is 1000 miles, correspond-
ing to data centers serving a mid-sized geographical
region. 1.8% of the users in the trace have visits that
satisfy this.

• Small-DC: Threshold is 450 miles, correspond-
ing to having data centers for individual states or
metropolitan areas. 3.5% of the users in the trace
have visits that satisfy this.

For each data center granularity, we study the three mi-
gration policies described in Section 5. For each user, we
scan the trace until we find a remote visit—a visit whose
distance from the first visit exceeds the distance thresh-
old (2000, 1000 or 450). We then apply the policy to that
remote visit to see if migration is triggered; for example,
the Count policy with a threshold of 10 triggers migration
if the visit contains 10 or more accesses.

Figure 13 shows what fraction of users trigger migra-
tion as a function of each policy’s threshold. The fraction
is relative to the users with at least one remote visit.
We now examine the effectiveness of the three policies

using the metric of saved remote accesses, which mea-
sures the benefit of migration: these are accesses that,
without migration, would have been served at the origi-
nal data server far from the user, but with migration, are
served from a data center close to the user. For example,
if a user accesses her mailbox 500 times during a trip,
and we use the Count policy with a threshold of 50, the
number of saved accesses is 450.

Figure 14 shows the average number of saved accesses
per migrated mailbox on the y-axis. Each point corre-
sponds to a different threshold for each policy, for the
Large-DC and Small-DC granularity (the Medium-DC is
between those two, and not shown). The x-axis has the
percentage of migrated users using that threshold; points
to the right correspond to thresholds that migrate more
users. For the Count and Rate policies, the curves de-
crease monotonically as more users are migrated; there-
fore, most of the migration benefit is obtained by choos-
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ing a threshold that migrates few users, with more aggres-
sive thresholds providing diminishing returns. The graph
shows that the Count and Rate-based policies are better
than the Time-based policy.

Figure 14 can be used to determine the break-even
point for each policy, where the benefit of migration
(saved remote accesses) outweighs the cost of migration,
assuming the Relay access model (Section 5), in which
remote accesses and migration consume bandwidth on
the same internal network and can be quantitatively com-
pared. The line marked “Migration Cost” illustrates a spe-
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Figure 16: Effectiveness of policies in saving remote accesses.

cific case where the bandwidth needed for migration is
equivalent to 100 remote accesses (e.g., for migrating re-
cent emails). This number could be different, correspond-
ing to different horizontal lines. The break-even point is
where the horizontal line intersects the curve of each pol-
icy.

In both the Relay and the Redirect model, the inter-
nal network may have limited bandwidth for migration if
other traffic is given priority. In this case, migration can be
done opportunistically, using spare bandwidth during in-
termittent idleness of the links. Which mailboxes should
be migrated to offer the greatest benefit? Figure 14 indi-
cates that mailboxesmigrated by the largest thresholds of-
fer more benefit than those migrated with smaller thresh-
olds. This argues for adaptively changing the threshold to
match available bandwidth.
Figure 15 explains why the Count policy works well. It

plots the distribution of the number of accesses per remote
visit; we see that the distribution is linear on a log-log
scale and can be fitted to a heavy-tailed Pareto distribu-
tion, with a few visits containing many accesses. This ex-
plains the monotonically decreasing benefit of the Count
policy on the previous graph: it can be analytically shown
that a Pareto distribution always exhibits this property (we
omit the analysis for lack of space).
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Finally, we determine the overall effectiveness of the
different policies by measuring the total percentage of re-
mote accesses saved. Figure 16 plots this metric on the
y-axis. The Count and Rate policies are very effective in
saving remote accesses; for example, with thresholds that
migrate 10% of all users, both policies save 55 to 60% of
all remote accesses in the Large-DC case. As expected,
the Time policy is not very effective, requiring almost all
users to be migrated to achieve similar savings.

9 Related work
Migration mechanism. There has been a lot of work
on distributed file systems [15, 17, 18, 21, 23, 28, 32–34].
These systems either do not support migration, or em-
ploy lock-based or log-based migration. For example,
AFS [21] allows a volume to be moved from one server
to another using log-based migration. xFS [33] allows a
client to borrow a file for exclusive writing, but this is dif-
ferent from migration since the file is ultimately returned
to its home server, which serves as a coordination point
(e.g., if multiple clients want to write). In Pangea [32], mi-
gration is achieved by simply creating a new replica, but
the system provides only eventual consistency, in contrast
to Nomad. Ceph [34] allows (the metadata of) a directory
to be moved from one server to another, using lock-based
migration. Coda [28] allows clients to hoard files for dis-
connected operation; this is different from migration since
hoarded files are eventually returned to the server that
owns the file. Farsite [17] appears to support migration of
metadata, by changing the mapping from identifier pre-
fixes to servers, using a lock to avoid races. GFS [18] ap-
pears to support migration of chunks, by copying a chunk
from one server to another, and then updating the map-
ping from chunk id’s to servers at the master using a lock
to avoid races.

Migration of a virtual machine (VM) is a well under-
stood technology, done by VMware [3], and a couple of
years later in Xen [13]. This technology is about moving a
functional VM to another host. In a first round, the entire
VM’s memory is copied; if a page of memory changes af-
ter being copied, it is marked dirty and the marked pages
are copied in a subsequent round. The system may ex-
ecute many rounds as further pages are marked, until it
decides to pause the VM, copy the remaining dirty pages,
and start the destination VM. Subsequent work on VM
migration considered the copying of direct attached stor-
age [22]. This body of work is different from ours because
it focuses on migration of data accessed by a single ma-
chine whether in memory or disk, whereas we consider a
distributed setting and must address the required coordi-
nation among several servers (which we do via overlays).

In PNUTS [14], data is replicated across data centers
and migration consists of changing the master replica.
This scheme requires many replicas across data centers,

which we must avoid. Cloud storage services support mi-
gration between different locations. In Amazon’s storage
server [4], the approach to migrate an elastic block store
(EBS) is as follows: (1) the user stores a snapshot of the
EBS in S3, and (2) the user creates an EBS at a differ-
ent location and populates it with the content in S3. This
scheme, though simple, will fail to migrate any writes
done on the original EBS during migration.

Distributed object systems support migration of objects
(see [11, Section 5.2.2]), which is more complex than mi-
grating data, since objects have threads, TCP connections,
and other contextual state. The migration mechanism em-
ployed is lock-based migration.

Commercial disk array solutions such as the HP-UX
logical volume manager [26] support online migration by
essentially using the logging technique. In this context,
Aqueduct [25] is a system that controls migration traffic
to maintain low access latencies during migration.

The work in [8,19,27,30] shows how to add or remove
replicas in a replicated state machine or a quorum system.
These techniques can be used for migration, by adding
a replica at a new location and removing from the old
location. This work is theoretical and would be inefficient
for wide-area-network storage.

Migration policy. Volley [7] uses system logs of ac-
cesses to determine placement of data across data cen-
ters, based on data access interdependencies, who has ac-
cessed the data and when, and a balance of storage capac-
ity across data centers. This is different from our work
because of four reasons: (1) Volley’s placement algo-
rithm computes a global placement for all data, whereas
our scheme determines where a particular piece of data
should be migrated, (2) Volley’s algorithm does not con-
sider the cost of migrating data, so the algorithm is not
applicable to our setting where migration has as a cost;
in fact, the consideration of cost-benefit of migration is
central to our scheme, (3) Volley does not propose mecha-
nisms for migration, (4) Volley does not attempt to predict
future user movement.
Previously, data placement has been extensively stud-

ied in the context of web servers and Content Delivery
Networks (CDNs) [29]. Since data in these settings is
read-only, most of these solutions are centered on replica
creation and placement.
Predicting the movement of users has been explored

in mobile systems [10]. In contrast to this work, we are
concerned with predicting movement at coarse grain (e.g.,
is user staying in Asia or returning to Europe?) instead of
precise locations.

10 Conclusion
This paper addresses the problem of providing online

migration of data across data centers—a problem that oc-
curs as users move and/or data centers become unbal-
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anced due to new applications, unforeseen growth, and
new data centers. To design a migratable storage system,
we propose an abstraction called distributed data over-
lays, which has a simple real-world analogy based on
transparent pieces of paper. We implemented this abstrac-
tion within a prototype of a key-value object store called
Nomad, which spans multiple data centers and allows for
migration and caching of object containers across data
centers. It is very easy to use overlays to implement mi-
gration; the complexity is hidden by the protocols that im-
plement overlays (which we provide), as these protocols
must coordinate concurrent reads, writes, migrations, and
the dynamic creation and removal of remote caches. We
also study some policies that might trigger the migration
mechanism based on user movement, but other policies
could be applied as well [7].
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Abstract
Energy consumption has become a major concern for

all computing systems, from servers in data-centres to
mobile phones. Processor manufacturers have reacted to
this by implementing power-management mechanisms in
the hardware and researchers have investigated how op-
erating systems can make use of those mechanisms to
minimise energy consumption. Much of this research
has focused on a single class of systems and compute-
intensive workloads.

Missing is an examination of how much energy can
actually be saved when running realistic workloads on
different classes of systems. This paper compares the
effects of using dynamic voltage and frequency scaling
(DVFS) and sleep states on platforms using server, desk-
top and embedded processors. It also analyses workloads
that represent real-world uses of those systems. In these
circumstances, we find that usage of power-management
mechanisms is not clear-cut, and that it is critical to anal-
yse the system as a whole, including the workload, to
determine whether using mechanisms such as DVFS will
be effective at reducing energy consumption.

1 Introduction
Energy consumption, which was previously only a

concern for mobile systems, has become important for
all classes of systems. Processor manufacturers have
implemented various mechanisms for managing energy
consumption, some of which allow the operating system
(OS) to trade performance against power. These are col-
lectively known as power-management mechanisms.

Some mechanisms, such as dynamic voltage and fre-
quency scaling (DVFS) and fine-grained clock-gating,
are used while the processor is executing instructions,
while other mechanisms are designed to reduce power
consumption when the processor is not in use. The most
common of these is the sleep mode or C state, which can
be used to put the processor (or some part of it) into a
low-power mode. Modern processors include several dif-
ferent C states which result in different power consump-
tion and have different overheads.

These two types of power-management mechanisms
present a trade-off to the OS designer: either run a task
at a reduced CPU frequency (consuming less power) but

remain active for a longer period of time (i.e. slow down),
or, run a task at a high CPU frequency (with higher power
draw) and as soon as possible enter a low-power idle state
(an approach known as race-to-halt or sleep).

Prior research has focused on improving energy effi-
ciency by using DVFS, resulting in a number of tech-
niques that can be employed by the OS [6, 8, 10]. How-
ever, much of this research used workloads, especially
SPEC CPU benchmarks, which are not representative
of real-world system use. In addition, the methodology
used in some of these studies unfairly biases the results
toward those using high CPU frequencies—less static en-
ergy is consumed at a high frequency due to reduced task
execution time. Consequently, the findings from this re-
search must be interpreted with caution.

We recently presented an analysis of several server-
class systems examining the effectiveness of DVFS at
improving the energy efficiency of CPU-intensive work-
loads, such as the SPEC CPU workloads [5]. However,
that work suffered from a common limitation in that it
used unrealistic workloads. It also focused exclusively
on high-end platforms. In this paper, we address these
shortcomings by looking at workloads that are more rep-
resentative of real system use, such as multimedia decod-
ing/playback and serving of web pages. These workloads
exhibit frequent, short idle periods (or bursty behaviour)
which allows the trade-offs presented by DVFS and mul-
tiple C states to be examined more thoroughly.

We also look at a wider range of platforms in order to
better understand the technology trends that we identi-
fied in our previous publication. Specifically we look at
a desktop-class system based on an Intel Core i7 870 pro-
cessor (the Dell Vostro 430s) and two platforms built on
the most popular high-end low-power processor micro-
architectures—the Intel Atom Z550 (the fitPC2) and the
ARM Cortex A9-based Texas Instruments OMAP4430
(the Pandaboard). The specifications of these systems
are provided in Table 1.

The rest of this paper is structured as follows. Sec-
tion 2 discusses related work and Section 3 provides an
overview of the power-management mechanisms that are
available on the three platforms. Section 4 presents our
experimental methodology. Section 5 then discusses the
findings of our evaluation and Section 6 outlines our con-
clusions.

1
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System Dell Vostro
430s fit-PC2 Pandaboard

Processor Intel Core
i7 870

Intel Atom
Z550

OMAP
4430

Cortex A9

ISA 64-bit x86 32-bit x86 32-bit
ARMv7

Class Desktop Embedded Embedded
Cores /
Threads 4 / 8 1 / 2 2 / 2

Frequency
(GHz)

1.2–2.93,
TB 3.6 0.8–2.0 0.3–1.008

Voltage (V) 0.65–1.40 0.75–1.1 0.93–1.35
Process 45 nm

TDP 95 W 2.4 W Unknown

L2 cache 4×256 KiB 512 KiB 1 MiB
(shared)

L3 cache 8 MiB - -
4 GiB 1 GiB 512 MiB

Memory DDR3 DDR2 LPDDR2
1,333 MHz 533 MHz 800 MHz

Storage
500 GiB

3.5” SATA
hard-drive

80 GiB
SATA 2.5”
hard-drive

64 GiB
USB SSD
4 GiB SD

MPEG
decode
assist

None PowerVR
VXD IVA-HD

Table 1: Specifications of the three processors and sys-
tems we analyse [1, 2]. Thermal Design Power (TDP) is
the maximum processor power dissipation expected.

2 Related Work
Barroso and Hölzle presented the case for energy-

proportional computing in 2007 [4]. Their analysis of
several thousand servers in a Google data-centre showed
that these servers spent most of their time significantly
under-utilised. This is an interesting finding, and sug-
gests that power-management research should be fo-
cused on workloads that result in this low level of system
utilisation. In this paper, we intend to show how DVFS
and sleep states can improve energy efficiency for under-
utilised systems running real-world workloads, such as
serving web pages.

A separate problem which has been tackled by many
researchers is when to invoke DVFS and to what level.
These decisions are often made by the operating system
(OS). OS power management has been under active in-
vestigation since 1994 when Weiser et al. introduced the
idea of changing the CPU frequency based on the system
load [9]. This technique is now widely used, including
in mainstream Linux.

More complex systems have been devised which make
use of mathematical models to estimate the impact of
reduced CPU frequency on the performance of a work-
load. Systems such as those proposed by Weissel and
Bellosa [10] and Snowdon et al. [8] use hardware per-
formance counters which are commonly available to pa-
rameterise models on which to base power-management
decisions. Using these techniques, energy savings of up
to 20 % were achieved on systems based processors such
as the Pentium-M and PXA255. However, Snowdon et
al. focused on using SPEC CPU workloads which do not
cover a wide range of real-world use-cases. This lim-
its what can be learnt from this work about the practical
potential for energy management.

In 2002, Miyoshi et al. showed that the decrease in
slack time resulting from running at a lower CPU fre-
quency could offset any savings achieved by using DVFS
[7]. By using a web-server workload similar to our
own they found that it was more energy-efficient to run
at a high frequency (i.e. race-to-sleep) for both high-
utilisation and low-utilisation scenarios. However, the
systems that were available 10 years ago are very dif-
ferent from those available today. Many low-power idle
states are now available, and their usage results in signifi-
cantly reduced power draw. Furthermore, static power is
growing as a proportion of total system power, reducing
the impact of DVFS on overall power draw.

This paper builds on previous work by looking at a
wider range of workload classes and more recent systems
with modern power-management mechanisms.

3 CPU Power-management Mechanisms
With the increasing importance of reduced energy

consumption, it is not surprising that processor man-
ufacturers have implemented an increasing number of
power-management mechanisms. Two of these, DVFS
and sleep states are described below.

3.1 DVFS
DVFS is a mechanism that exploits the relationship be-

tween the power consumption of a CMOS device, and
the frequency at which it is clocked,

P = CfV 2 + Pstatic, (1)

where C is the sum of capacitances within the circuit
(which depends on transistor feature size), f is the oper-
ating frequency and V is the supply voltage. Pstatic rep-
resents power consumed from leakage mechanisms such
as sub-threshold (weak-inversion), short-circuit and gate
leakage. The voltage required for stable operation is de-
termined by the frequency at which the circuit is clocked
and can be reduced if the frequency is also reduced.

In the past, DVFS has been used to optimise the energy
consumption of a system by reducing the CPU frequency

2
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Figure 1: Possible C state transitions for the Core i7. All
transitions must go through C0 except the special C1E
state, which is used when all cores enter C1.

when it is determined that a lower-performing system
would be acceptable. Unfortunately, static power is un-
affected by frequency and a longer run time resulting
from a lower clock rate increases the energy consumed
through static power. Static power draw is increasing in
modern systems and is a major factor contributing to the
declining effectiveness of DVFS [5].

The Core i7 processor in the Dell Vostro also has a fea-
ture called TurboBoost, which increases the frequency of
one or more cores if sibling cores are idle. The proces-
sor is sold as a 2.93 GHz model, however, the frequency
of one or more cores can be increased up to 3.6 GHz
(in steps) depending on the power requirements and heat
dissipation of the processor. This can improve single-
threaded workload performance. When and how much
the frequency is increased is managed by firmware.

3.2 Idle states (C states)
Modern processors tend to offer multiple idle states

often referred to as ACPI C states. These are denoted
by Cx where x is a number from 0 to some maximum.
Higher x values yield a deeper idle state, resulting in
lower power consumption, but higher entry and exit la-
tencies. C states are defined at the thread, core and pack-
age level, with C0 being the state in which a core is exe-
cuting instructions. Beyond that there is no specification
of C states, allowing manufacturers freedom to choose
implementation techniques.

Because a single processor can have multiple cores
and multiple hardware thread contexts (HyperThreads),
constraints exist between thread, core and package idle
states. There are also constraints on state transitions, as
shown in Figure 1 for the Core i7 processor.

For the Core i7 and Atom Z550, Intel defines several
C states which progressively apply more power-saving
techniques in order to reduce power draw. For exam-
ple, on the Core i7, entering C1 simply uses clock-gating
to reduce processor activity, while entering C3 causes a
core’s local L2 cache to be flushed to the shared L3 cache
and then powered down. When entering C6, a core’s
power supply is completely shut off, reducing leakage
as well. To illustrate the impact of C state usage on sys-
tem power draw, Figure 2 shows the total system power
draw for the Dell Vostro 430s when all cores in the Core

Figure 2: Idle power draw for the Dell Vostro 430s when
all four cores of its Core i7 processor are placed in the
same C state. Normalised scale on right-hand side.

i7 are placed in the same C state. C0 is essentially a tight
idle loop, thus the power drawn in C0 is frequency de-
pendent.

In contrast, ARM does not specify any C states for
the OMAP 4430—it is left to the OS designer to choose
(based on hardware constraints) what parts of the proces-
sor to power down and to what level.

Overhead from C state usage varies for a number of
reasons. Firstly, in deeper C states, more power-reducing
actions are taken, such as cache flushes (allowing caches
to be powered down) and voltage/frequency changes.
Flushing caches takes time as cache lines are written
to backing stores, and voltage/frequency changes take
time as voltage regulators settle and PLLs relock. Sec-
ondly, workload characteristics determine C state transi-
tion rates. A higher rate of transitions will cause higher
overhead. Thirdly, the workload’s memory access pat-
tern will determine how much overhead results from
cache flushes. Workloads which already have a high
cache-miss rate will not be affected as much as work-
loads with a low miss-rate that still rely on the reuse of
cached data.

4 Experimental Methodology
As discussed in Section 1, the SPEC CPU workloads

that are commonly used for energy efficiency studies are
not representative of the workloads that are run on most
real systems. Real systems usually exhibit some level of
idleness, allowing CPU sleep states to be used frequently.
In contrast, the SPEC CPU workloads are CPU intensive,
never allowing the CPU to idle during execution.

Therefore, we chose three real-world workloads that
we believe cover a range of workload scenarios:

• MPEG playback using mplayer and gstreamer,
• serving web-pages using Apache, and
• the SPEC JBB2005 Java benchmark.

The first is a common workload for mobile and desk-
top systems and, being a single-threaded soft real-time
task, it creates prolonged periods of idleness. The second

3
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is a common multi-threaded server workload, which cre-
ates idleness due to the sporadic nature of web requests.
Finally, the third is another multi-threaded server work-
load, but is written using Java and runs inside a Java vir-
tual machine (JVM). These three workloads all allow the
CPU’s cores to enter idle states during their execution,
thus allowing the effectiveness of both DVFS and differ-
ent C states to be examined. Furthermore, these tasks
all run for a fixed length of time regardless of CPU fre-
quency. This means we can analyse the energy efficiency
of each of them running at different CPU frequencies
without having to account for static energy consumption
(by padding) due to different execution times.

The three test systems (as shown in Table 1) are con-
nected to their power sources through a power meter. As
a result, all energy consumption data we report is for the
total system.

We ran Ubuntu Linux (10.10) on each system, with
kernel version 2.6.35 and use the cpuidle framework to
measure C state transition rate. We used a custom cpui-
dle governor to allow us to choose the C state that would
be used. We ran ten iterations of each benchmark, and
averaged these results to obtain the final result. Standard
deviation was less than 1% of the mean.

For the MPEG decode/playback workload, we de-
coded and played the first 60 seconds of an H.264 video
on each of the platforms. We used a high-definition (HD)
movie on the Core i7, and a lower resolution movie on
the two embedded platforms, since due their reduced
computational performance, they were unable to decode
the HD movie on the applications processor without
dropping frames and losing sync.

For the web-server workload, we used the ERTOS
public website (http://www.ertos.nicta.com.au) as the
web-server root, which contains a mix of static HTML
pages and large PDF files. Tests were run over 10 minute
intervals to allow for a warm-up period, allowing data to
be brought from disk to the buffer-cache in memory. We
used Siege [3] on two separate machines to generate load
on the test system.

For the SPEC JBB2005 workload, we used from 1–
4 warehouses. Throughput decreased as the number of
warehouses was increased past four. Tests ranged from
0.5–4 minutes depending on the number of warehouses.

5 Results
In the following sections, we analyse the results from

each of the three workload types. Graphs for some work-
loads and platforms are omitted for brevity.

5.1 MPEG playback workload
On the Core i7, decoding a high-definition (HD)

MPEG stream resulted in very low CPU utilisation of
between 7–17 % depending on CPU frequency. Due to

Figure 3: System load (top) and normalised energy con-
sumption (bottom) when playing an HD-quality movie
on the Vostro Desktop (Core i7) at several CPU frequen-
cies with different C states.

the single-threaded nature of the MPEG decoding work-
load, only a single core could be utilised and all other
cores could reside in a deep C state. The C state transi-
tion rate was approximately one transition every 10 ms,
which is an order of magnitude lower than the web-server
workload. As a result, negligible overhead was observed
when deep C states were used, as shown in the top graph
of Figure 3. There was a small anomaly in system load
when using TurboBoost, as due to higher power draw in
C0, there were fewer opportunities for TurboBoost to be
invoked, resulting in slightly higher system load when
C0 was used.

As shown in the bottom graph of Figure 3, when the
C0 C state was used, reducing the CPU frequency us-
ing DVFS on this platform resulted in significant energy
savings. However, as deeper C states were used, DVFS
became much less effective at reducing energy consump-
tion. All data was normalised to the lowest observed en-
ergy consumption at 2.13 GHz using C6. No noticeable
reduction in playback quality (dropped frames or loss of
audio/video sync) was observed.

MPEG decoding and playback on the two embedded
platforms was more interesting, as their processors have
dedicated MPEG decode acceleration hardware (i.e. a
DSP). Figure 4 shows energy consumption when sev-
eral different power-management scenarios were used,
including the Linux ondemand and conservative gov-
ernors. Data is normalised to the maximum CPU fre-
quency of each platform (circle points). As the bottom
graph shows, using the DSP (as well as reduced CPU
frequency) on the OMAP to decode the MPEG stream

4



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 221

Figure 4: Normalised energy consumption of the fitPC
(Atom, top) and the Pandaboard (OMAP, bottom). Points
in the left-hand side are using the DSP to decode, points
in the right-hand side are using the CPU.

resulted in energy savings of up to 25%, with no loss
in playback quality. In fact, these DSPs are designed
to decode HD-quality MPEG streams, which the CPU’s
on these platforms are incapable of doing in real-time—
at 0.3 GHz on the OMAP, mplayer was forced to drop
frames to maintain sync, thus we omit that point. Using
the DSP on the Atom also resulted in significant energy
savings of up to 18 % when combined with conservative
and menu on the fitPC2.

5.2 Apache web-server workload
As Barroso and Hölzle found, Google’s servers spend

most of their time under-utilised [4]. Therefore, to test
the effectiveness and impact of DVFS and C state usage
on this workload, we used Siege to generate a request
rate that resulted in an under-utilised system. The top
graph in Figure 5 shows that CPU utilisation on the Dell
Vostro was between 12–28% depending on the CPU fre-
quency and C state used. We observed a higher rate of
C state transitions—greater than once per millisecond,
more than ten times as frequent as was observed with the
MPEG playback workload. As a result, using the C3 and
C6 C states caused slightly higher system load. Despite
this, total system energy consumption was minimised at
the lowest CPU frequency (1.20 GHz) using the deepest
C state (C6) as shown in the middle graph. Additionally,
we found that reducing the CPU frequency had no mea-

Figure 5: System load (top), normalised energy con-
sumption (middle) and energy efficiency in requests per
Joule (bottom) for Apache on the Dell Vostro (Core i7).

sured impact on either throughput or response latency.
As a result, energy efficiency (in requests per Joule) was
maximised at the lowest CPU frequency, using the deep-
est C state, as shown in the bottom graph of the figure.

Similarly to the MPEG workload, we found that when
deeper C states were used, the effectiveness of DVFS
at improving energy efficiency was diminished. As
C states improve in the future, this will become even
more marked.

Using embedded-class systems in the data-centre is
becoming a hot topic. Therefore, we also ran the Apache
workload on the fitPC2 and Pandaboard. We found sim-
ilar results to the Vostro Desktop. However, the through-
put achieved on these systems was much lower than on
the Vostro, and resulted in energy efficiency being sig-
nificantly lower. Given that these platforms were not de-
signed for this purpose—the Pandaboard uses a USB net-
work interface—it is unclear whether low-power proces-
sors will have a significant impact on energy efficiency
in the data-centre. Further investigation is required.

5.3 SPEC JBB2005 workload
The SPEC JBB2005 workload is a throughput-

oriented benchmark. It stresses the CPU and memory

5
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Figure 6: Throughput in billions of operations per second
(top) and normalised energy efficiency in operations per
Joule (bottom) of SPEC JBB2005 with four warehouses
on the Vostro 430s using the C6 sleep state at several
CPU frequencies.

hierarchy and is also designed to test the scalability of
SMP systems. This resulted in a much higher level of
CPU utilisation than the MPEG playback or web-server
workloads. The total CPU utilisation was also depen-
dent on the number of warehouses that were used. Us-
ing a single warehouse resulted in a system load of ap-
proximately 30 % spread over all cores. As the number
of warehouses was increased, CPU utilisation also in-
creased to a point where contention on other resources
resulted in a bottleneck. The maximum CPU utilisa-
tion we observed with four or more warehouses on the
quad-core Core i7 was about 90 %. CPU frequency had
a negligible effect on the level of CPU utilisation, but
throughput was impacted when CPU frequency was re-
duced, as shown in the top graph of Figure 6. We found
that energy-efficiency (shown in the bottom graph) was
maximised at 2.13 GHz using the C6 C state and four
warehouses. C state transition frequency was similar to
the MPEG workload, and, as a result, negligible over-
head was observed when C6 was used.

6 Conclusions
We have extended previous work on energy-efficiency

optimisation with DVFS by looking at realistic work-
loads on different classes of systems based on recent pro-
cessors. Using these workloads rather than SPEC CPU
benchmarks, we have shown that DVFS can still improve
energy efficiency on systems that are under-utilised. This
suggests that simple approaches to DVFS based on sys-
tem load, like those taken by the Linux ondemand gov-
ernor, should perform well. We also found that use of
deep C states had only a small negative effect on per-
formance, but significantly improved energy efficiency.

The important factors to consider are: is the system is
under-utilised and, will scaling the CPU frequency affect
throughput or latency (QoS). For the MPEG playback
and web-server workloads, we found that reducing CPU
frequency and using the deep C states had no measurable
impact on either, resulting in improved energy efficiency.
This suggests that DVFS could be beneficial in the data-
center where servers must be provisioned based on the
expected worst-case load, and therefore spend most of
the time under-utilised. Further investigation is needed
to confirm this finding for different web-server work-
loads, such as those that are highly dynamic and database
driven. This is left as future work. We found that the
SPEC JBB workload was different because CPU utilisa-
tion was independent of CPU frequency. This resulted in
significantly lower throughput when CPU frequency was
reduced.

From our analysis, it appears that system-level energy
efficiency can be improved by both slowing the CPU
down and using deep sleep states. However, the trends
we previously identified [5] will continue, and, as a re-
sult, we will surely have to come back to this question in
the future.
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[4] BARROSO, L. A., AND HÖLZLE, U. The case for energy-

proportional computing. IEEE Comp. 40, 12 (Dec 2007), 33–37.
[5] LE SUEUR, E., AND HEISER, G. Dynamic voltage and fre-

quency scaling: The laws of diminishing returns. In 2010 Hot-
Power (HotPower’10) (Vancouver, Canada, Oct 2010).

[6] MERKEL, A., AND BELLOSA, F. Resource-conscious schedul-
ing for energy efficiency on multicore processors. In 5th EuroSys
Conf. (Paris, France, Apr 2010).

[7] MIYOSHI, A., LEFURGY, C., HENSBERGEN, E. V., RAJA-
MONY, R., AND RAJKUMAR, R. Critical power slope: under-
standing the runtime effects of frequency scaling. In 16th Int.
Conf. Supercomp. (New York, NY, USA, Jun 2002), ACM Press,
pp. 35–44.

[8] SNOWDON, D. C., LE SUEUR, E., PETTERS, S. M., AND
HEISER, G. Koala: A platform for OS-level power management.
In 4th EuroSys Conf. (Nuremberg, Germany, Apr 2009).

[9] WEISER, M., WELCH, B., DEMERS, A. J., AND SHENKER, S.
Scheduling for reduced CPU energy. In 1st OSDI (Monterey, CA,
USA, Nov 1994), pp. 13–23.

[10] WEISSEL, A., AND BELLOSA, F. Process cruise control—event-
driven clock scaling for dynamic power management. In CASES
(Grenoble, France, Oct 8–11 2002).

6



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 223

Low Cost Working Set Size Tracking ∗

Weiming Zhao1, Xinxin Jin2, Zhenlin Wang1, Xiaolin Wang2, Yingwei Luo2, and Xiaoming Li2

1Dept. of Computer Science, Michigan Technological University
2Dept. of Computer Science and Technology, Peking University

Abstract

Efficient memory resource management requires knowl-

edge of the memory demands of applications or systems

at runtime. A widely proposed approach is to construct

an LRU-based miss ratio curve (MRC), which provides

not only the current working set size (WSS) but also

the relationship between performance and target mem-

ory allocation size. Unfortunately, the cost of LRUMRC

monitoring is nontrivial. Although optimized with AVL-

tree based LRU structure and dynamic hot set sizing, the

overhead is still as high as 16% on average. Based on

a key insight that for most programs the WSSs are sta-

ble most of the time, we design an intermittent tracking

scheme, which can temporarily turn off memory track-

ing when memory demands are predicted to be stable.

With the assistance of hardware performance counters,

memory tracking can be turned on again if a significant

change in memory demands is expected. Experimental

results show that, by using this intermittent tracking de-

sign, memory tracking can be turned off for 82% of the

execution time while the accuracy loss is no more than

4%. More importantly, this design is orthogonal to exist-

ing optimizing techniques, such as AVL-tree based LRU

structure and dynamic hot set sizing. By combining the

three approaches, the mean overhead is lowered to only

2%. We show that when applied to memory balancing for

virtual machines, our scheme brings a speedup of 1.85.

1 Introduction

Modeling the relationship between physical memory al-

location and performance is indispensable for optimiz-

ing memory resource management. As early as the

∗Supported by NSF Career CCF0643664, the 973 Program of China

No. 2007CB310900, NSFC No. 90718028 and No. 60873052, the 863
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1970s, working sets were considered as effective tools

for modeling memory demands [1]. Because working

sets provide a desirable metric for memory management,

many solutions have been proposed to track them. One

widely proposed approach is to build page-level LRU-

based miss ratio curves (MRCs). This approach tracks

memory accesses, and constructs a miss ratio curve to

correlate memory allocation with page misses. Studies

show that this approach can estimate not only the current

working set size (WSS) but also the performance impact

when the system or application’s memory allocation is

varied [2, 3, 4, 5].

However, the runtime overhead of maintaining such

miss ratio curves is nontrivial. Especially because the

complexity and data size of modern applications increase

dramatically, the overhead of MRC tracking may over-

shadow its potential benefits. For example, for SPEC

CPU2006, using a simple linked-list-based implementa-

tion, the overall execution time is increased by a factor of

1.73. Although some previous research optimizes MRC

monitoring in terms of data structures [4], the overhead

is still considerably high.

This paper introduces a low cost working set size

tracking approach. We have implemented an AVL-based

LRU structure and dynamic hot set sizing (DHS), which

are detailed in our technical report [6], to lower the

tracking overhead. However, our experiments show that

it is still as high as 16% on average.

By taking advantage of the phase behavior of pro-

grams, we further design a novel technique, intermittent

memory tracking (IMT), to lower the overhead without

a significant loss of accuracy. This idea is based on the

fact that the execution of a program can be divided into

phases, within each of which, the memory demands are

relatively stable [1]. Thus, when the monitored system

or process is predicted to stay in a phase, the memory

tracking can be temporarily disabled to avoid tracking

cost. Later on, when a phase change is predicted to oc-

cur, the memory tracking is resumed to track the working
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set size of the new phase.

The key challenge is to predict phase changes when

memory tracking is off. Fortunately, we observe that the

stability of memory demands is closely correlated with

that of some hardware events such as data TLB misses,

and L1 and L2 cache misses. This inspired us to uti-

lize these hardware events to predict phase changes when

memory tracking is off. However, DTLB and cache-level

events show much higher fluctuations (noise) than mem-

ory demands, which challenge the accuracy of phase pre-

diction. Worse yet is that the noise level varies by appli-

cation or even different phases of the same program.

To solve this problem, we design a quick self-

adaptivemechanismwhich can adaptively select a phase-

detection threshold. Experimental results show that, dur-

ing an average of 82% of the time of program execution,

memory tracking can be turned off and mean relative er-

ror is merely 3.9%.

2 Background and Related Work

2.1 Working Set and Miss Ratio Curve

The active working set of an application refers to the

set of pages that it has referenced during the recent

working set window. Knowing the working set size

(WSS) enables memory resources to be utilized more ef-

ficiently. Many approaches have been proposed to esti-

mate the WSS. VMware ESX server adopts a sampling

strategy [7]. During a sampling interval, accesses to a

set of random pages are monitored. By the end of sam-

pling period, the page utilization of the set is used as an

approximation of global memory utilization. This tech-

nique can tell how much memory is inactive but it cannot

predict the performance impact when memory resources

are reclaimed. Geiger [5] detects memory pressure and

calculates the amount of extra memory needed by mon-

itoring disk I/O and inferring major page faults. How-

ever, when the memory is over-allocated, it is unable to

tell how to shrink the memory allocation.

In addition to the current WSS of a system, when

memory resource competition occurs, in order to achieve

optimal overall performance, we also need to know how

performance would be affected by varying the memory

allocation size. The miss ratio curve (MRC) that plots

the page miss ratio against various amounts of available

memory allocation solves the problem. Given an MRC,

we can redefine WSS as the size of memory that results

in less than a predefined tolerable page miss rate.

A common method to calculate an MRC is the stack

algorithm [2]. The stack orders the page numbers based

on their recency of accesses. Each stack entry i is associ-

ated with a counter, denoted as Hist(i). When a reference

hits a page, its stack distance, dist, is computed, then

Hist(dist) is incremented by one, and finally this page is

moved to the top of the stack. From Hist, the page miss

ratio with respect to various memory allocation sizes can

be computed. Constructing an MRC requires capturing

or sampling a sufficient amount of page accesses. Previ-

ous research traced MRCs through a permission protec-

tion mechanism in the OS or hypervisor [8, 3, 4]. The

OS or hypervisor can revoke access permission of pages,

so the next accesses to those pages will cause page faults

and be captured to build the MRC. For each page inter-

ception, the overheadmainly comes from page fault han-

dling and the operation to find the stack distance which

is bounded by the WSS. Zhou et al. [3] also proposed a

hardware-based approach, but it needs extra circuits.

Hypervisor exclusive cache [9] uses an LRU-based

MRC to estimate the WSS for each virtual machine. The

overhead of MRC construction is analyzed but not quan-

tified in this work. MEB [8] also uses the permission

protection mechanism to build the WSS for each VM to

support memory balancing. However, the overhead from

MRC monitoring is significantly high, especially for ap-

plications with poor locality and very large WSSs. For

example, Gems.FDTD in SPEC CPU2006 exhibits a

238% overhead. To optimize cache utilization, Zhang et

al. [10] propose to identify hot pages through scanning

the page table of each process using “locality jumping”

as an optimization. However, the cost of monitoring a

virtualized OS is not evaluated.

2.2 Phase Prediction

Most programs show a typical phasing behavior where

the program behavior in terms of IPC, branch predic-

tion, memory access patterns, etc. is stable within a

phase while there exists disruptive transition between

phases [1, 11].

Shen et al. [11] predict locality phases by a combi-

nation of offline reuse distance profiling and runtime

signal processing. Sherwood et al. [12] identify differ-

ent phases by profiling basic block frequency and using

Fourier analysis to filter out noise. However, for online

phase detection, the methods that require profiling and

sophisticated signal processing techniques are inappro-

priate. RapidMRC [13] estimates the L2 cache MRC

by utilizing the PowerPC-specific Sampled Data Address

Register. It selects L2 cache miss rate as the parameter

to detect a phase change.

3 Intermittent Memory Tracking

Most programs show typical phasing behavior in terms

of memory demands. Within a phase, the WSS remains

nearly constant. This inspired us to temporarily disable

memory tracking when the monitored program enters a
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stable phase and re-enable it when a new phase is en-

countered. Through this approach, the overhead can be

substantially lowered. However, when memory tracking

is off, the memory tracking mechanism itself is unable to

detect phase transitions anymore. Hence, an alternative

method is required to wake up memory tracking when it

predicts a phase change.

We find that a phase change of WSS tends be accom-

panied by sudden changes of the occurrences of memory-

related hardware events like TLB misses, L2 misses, etc.

And when the WSS remains stable, the activeness of

those events is relatively stable too. These events can

be monitored by special registers (Performance Monitor

Counters, PMCs) built into most modern processors and

accessed with negligible overhead. The key challenge is

to differentiate phase changes from random fluctuations.

We propose a simple yet effective algorithm to detect

behavior changes for both memory demands and perfor-

mance counters. First, a moving average filter is ap-

plied for signal de-noising. Let vi denote the sampled

value (WSS or the number of occurrences of some hard-

ware event) during ith time interval. We pick f(i) =

(vi + vi−1 + . . . + vi−k+1)/k as the filtering function to

smooth the sampled values, in which k is the filtering pa-

rameter, an empirical value. When the moving average

filter has not been filled up with k data, memory track-

ing is always enabled. Once enough data have been sam-

pled, let vj be the current sampled value and let fmean =

mean({f(x)|x ∈ (j − k, j]}) , errr = f(j)/fmean and

erra = |f(j)−fmean|. errr is the relative difference be-

tween the current sampled value (smoothed) and the av-

erage of history data in the window and erra is the abso-

lute difference between the two. If errr ∈ [1−T, 1+T],

where T a small threshold of choice discussed later, we

assume the input signal is in a stable phase. Otherwise,

we assume that a new phase is encountered. In this case,

all the data in the moving average filter is cleared so the

data that belong to the previous phase will not be used.

Fixed-Threshold Phase Detection T is the key pa-

rameter in phase detection. We first propose a scheme

that uses a fixed T. One phase detector, based on past

WSS, checks if the memory demands reach a stable state

so the WSS tracking can be turned off. The other detec-

tor uses PMC values to check if a new phase is seen so

the WSS tracking should be woken up.

For the stability test of WSS, T can be set to a small

value (0.05 in our evaluation) to avoid accuracy loss. In

addition, erra can also be used to guide memory track-

ing. For example, if memory tracking is at a MB gran-

ularity, then as long as erra < 1MB, WSS can still be

assumed in a stable state even when errr > T.

For phase detection of hardware performance events,

an over-strict threshold may cause memory tracking to be

enabled unnecessarily and thus undermine performance.

On the other hand, if the threshold were too large, WSS

changes would not be detected, causing inaccurate track-

ing results. Our experiments show that, for a given hard-

ware event, the appropriate T may vary between pro-

grams or even vary between phases for the same pro-

gram. In practice, an empirical value of T can be used

though it may not be the optimal one.

Adaptive-Threshold Phase Detection To improve

upon fixed-threshold phase detection, we propose a self-

adaptive scheme which adjustsT dynamically to achieve

better performance. The key is to feed the current stabil-

ity of WSS back to the hardware performance phase de-

tector to construct a closed-loop control system, as illus-

trated in Figure 1. Initially, the PMC-based phase detec-

tor can use the same threshold as used in fixed-threshold

phase detection. When memory tracking is on, its current

stability is computed and compared with the PMC-based

phase detector’s decision.

If both of the results are consistent, nothing will be

changed. If the current memory demands are stable,

while the PMC-based detector makes the opposite de-

cision (errr > T), it implies that the current threshold

is too tight. As a result, its T is relaxed to its current

errr . Next time, with increased T, the PMC-based de-

tector will most likely find that the system enters a “sta-

ble” state and thus turn off memory tracking. On the con-

trary, if the current memory demands are unstable, while

the PMC-based phase detector assumes stable PMC val-

ues, i.e. errr < T, it implies an over-relaxed threshold.

Thus, its current T is lowered to errr . In short, when

the WSS is stable and memory tracking is on, it is only

because the PMC-based phase detector is overly sensi-

tive. As a result, T will be increased until PMC values

are considered to be stable too. Then, memory tracking

will be turned off.

However, when memory tracking is off, this self-

calibration is paused as well, which might miss the

chance to tighten the threshold as it should had mem-

ory tracking been on. To solve this problem, we intro-

duce a checkpoint design. When memory tracking has

been disabled for ckpt consecutive sampling intervals, it

is woken up to check if T should be adjusted or not. If

no adjustment is needed, it will be turned off again un-

til it reaches the next checkpoint or meets a new phase.

The value of ckpt is adaptive. Initially, it is set to some

pre-defined value ckptinit. Afterward, if no adjustment

is made in the previous checkpoint, it can be increased

by some amount (ckptstep) until it reaches a maximum

value ckptmax. Whenever an adjustment is made, ckpt
is restored to ckptinit. In the ideal case, the ratio of the

time that memory tracking is on to the whole execution

time, called up ratio, is nearly 1/ckptmax.
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Figure 1: Adaptive-Threshold IMT

4 Implementation and Evaluation

To verify the effectiveness of our WSS tracking and eval-

uate its application in virtualized environments, we use

the Xen 3.4 [14] hypervisor, an open source virtual ma-

chine monitor, as the base of our implementation. When

a para-virtualized guest OS that runs in user mode at-

tempts to modify its page tables, it has to make a hyper-

call to explicitly notify the hypervisor to do the actual

update. In our modified hypervisor, once such requests

are received, our code will first perform the requested

update as usual and then revoke the access permission

by setting the corresponding bit on the page table entry.

For hardware-assisted virtualized machines (HVM), this

permission revoking mechanism can be done during the

emulation of page table writing or propagation of guest

page tables to shadow page tables. Later on, if the guest

OS attempts to access that page, it will trigger a minor

page fault, which will trap into the hypervisor first. In the

modified page fault handling routine, the miss ratio curve

is updated for that access and permission is restored.

To verify the effects of our WSS tracking in memory

balancing, we use the VMmemory balancer that was im-

plemented in [8]. Both IMT and the memory balancer

run on Dom-0, a privileged virtual machine. IMT is writ-

ten in about 300 lines of Python code, with a small C pro-

gram to initiate hypercalls. Via customized hypercalls,

IMT communicates with the WSS tracker to receive cur-

rent WSS estimation and PMC counter values and send

its decisions to the WSS tracker. Based on the assump-

tion that the memory access pattern is nearly unchanged

in a stable phase, when the WSS tracker is woken up,

it uses the same LRU list and histogram as in the last

tracking interval. In our experiments, WSS and PMCs

are sampled every 3 seconds. For checkpointing, its ini-

tial value (ckptinit), the increment, and ckptmax are set

to 10, 5, and 20 sampling intervals, respectively, which

means the minimum up ratio is nearly 0.05.

All experiments are performed on a server equipped

with one 2.8 GHz Intel Core i5 processor (4 cores with

HT enabled) and 8 GB of 800 MHz DDR2 memory.

Each virtual machine runs 64-bit Linux 2.6.18, config-

ured with 1 virtual CPU and 3 GB of memory (except in

T = 0.05 T = 0.2 T = 0.3 Adaptive

UR MRE UR MRE UR MRE UR MRE

.27 .057 .13 .100 .11 .126 .11 .039

Table 1: Mean Up Ratios and MREs of SEPC 2006

thememory balancing test). We select a variety of bench-

mark suites, including the SPEC CPU2006 benchmark

suite and DaCapo [15], a Java benchmark suite, to rep-

resent real world workload and evaluate the effectiveness

of our work.

In this section, we first evaluate the performance of

IMT with various configurations. However, even for the

same program, its WSS may not be identical among all

runs, which undermines the fairness of comparison. Be-

sides, if IMT is actually used and when it turns off mem-

ory tracking, the accuracy loss caused by IMT cannot

be precisely measured. As a result, we run IMT against

simulated inputs. Then we examine the overhead ofWSS

tracking with actual runs. Finally, we design a scenario

to demonstrate the application of WSS tracking.

4.1 Performance of IMT

The performance of IMT is evaluated by two metrics:

(1) the time it saves by turning off memory tracking,

reflected by up ratio, and (2) the accuracy loss due to

temporary inactivation of memory tracking, indicated by

mean relative error. We first run each benchmarks and

sample the WSS and PMC values every 3 seconds with-

out IMT. Then, we feed the trace results to the IMT al-

gorithm to simulate its operations. That is, given in-

puts {M0, . . . , Mi} and {P0, . . . , Pi}, the IMT algo-

rithm outputs mi, in which Mi and Pi are the i-th mem-

ory demand and i-th PMC value sampled in the trace re-

sults, respectively, and mi is the estimated memory de-

mand. When the IMT algorithm indicates the activation

of memory tracking, mi = Mi, otherwise, mi = Mj

where j is the last time that memory tracking is on.

Given a trace with n samples, its mean relative error is

computed as MRE = (

n∑
i=1

|Mi − mi|

Mi

)/n.

To evaluate the performance of fixed and adaptive

thresholds for IMT, we use a DTLB miss as the hard-

ware performance event for phase detection. We have

indeed examined three memory related hardware events,

DTLB misses, L1 references, and L2 misses as well as

their combinations, for phase detection. Interestingly,

there is no obvious difference both in accuracy and up

ratio [6]. For fixed thresholds,T varies from 0.05 to 0.3,
two extreme ends of the spectrum. Table 1 shows mean

up ratios and MREs of SPEC CPU2006. The results of

individual programs are presented in [6].

Using fixed thresholds, when T = 0.05, memory
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tracking is off nearly three fourths of the time with an

MRE of about 6%. When T is increased to 0.3, mem-

ory tracking is activated for only about one tenth of the

time, while the MRE increases to 13%. With adap-

tive thresholds, its up ratio is nearly the same as that of

T = 0.3, while its MRE is even smaller than that of

T = 0.05. Clearly, adaptive thresholding outperforms

the fixed-threshold algorithm.

Figure 2 shows the results of several cases using

adaptive-threshold IMT. The upper parts of each figure

show the status of memory tracking: a high level means it

is enabled and a low level means it is disabled. In the bot-

tom parts, thick lines and thin lines plot theWSS and nor-

malized data TLB misses from the traces (sampled with-

out IMT), respectively. Dotted lines plot the WSS as-

suming IMT is enabled. Figure 2(a) shows the common

case where there are multiple phases in terms of WSS

and DTLB misses. In Figure 2(b) and Figure 2(c), two

representative cases, where checkpointing and adaptive

thresholding take effect, are presented. For Figure 2(b),

when examined from an overall scope, the WSS varies

gradually. However, the WSS looks more stable when

examined from each small time window. This makes the

program assume that the WSS is in the stable mode and

thus turns off memory tracking. Nonetheless, with the

checkpointing mechanism, the WSS variances are still

captured. Figure 2(c) shows that, though the WSS is

stable most of the time, the DTLB miss fluctuates ran-

domly. With the adaptive algorithm, the noise is filtered

by increased thresholds.

With adaptive-threshold IMT, 429.mcf shows an

MRE of 38.7% while all others are less than 8% with

a mean of 2%. For 429.mcf, as Figure 2(a) shows,

most of the time, the WSS estimation using IMT follows

the one without using IMT. The high relative error is be-

cause its WSS changes dramatically up to 9 times at the

borders of phase transitions. Though after a short de-

lay, IMT detects the phase change and wakes up memory

tracking, those exceptionally high relative errors lead to

a large MRE. More specifically, during 67% of its exe-

cution time, the relative errors are below 4%, and during

84% of the time, the relative errors remain within 10%.

4.2 Overhead Evaluation

To evaluate the actual effects of using IMT, we mea-

sure the WSS tracking overhead on actual runs. As

Table 2 shows1, even optimized with AVL-based LRU

and dynamic hot set sizing, the mean overhead of SPEC

CPU2006 is 16% due to large WSSs and/or bad locality

of some programs. For example, for high-overhead pro-

grams, such as 429.mcf and 433.milc, the average

WSSs are 859 MB and 334 MB, respectively, while the

1The complete list is in [6].
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Figure 2: Examples of Using Adaptive-Threshold IMT

average WSSs of 401.bzip2 and 416.gamess are

only 24 MB and 45 MB, respectively.

Enhanced with fixed-threshold IMT (T = 0.2), the

mean overhead is lowered to 6%. Using adaptive-

threshold IMT, the mean overhead is further reduced to

2% by cutting off half of the up time of memory tracking.

4.3 Applications to VMMemory Balancing

One typical scenario for WSS tracking is memory bal-

ancing. Two VMs are monitored on a Xen-based host.

One VM runs 470.lbm, meanwhile, the other VM runs

433.milc. Initially, each VM is allocated 700 MB of

memory. In the baseline setting, no memory balancing

or WSS tracking is used. With memory balancing, three

variations are compared: memory tracking without IMT,

using IMT with a fixed threshold of 0.2 and using IMT

with an adaptive threshold. Figure 3 shows the normal-

ized speedups with memory balancing against the base-

line setting. Note that, the balancer is designed to reclaim
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Program
Norm. Exec. Time Up Ratio

L A+D
A+D

+ If

A+D

+ Ia
If Ia

401.bzip2 1.03 1.02 1.01 1.01 0.76 0.14

416.gamess 1.01 1.01 1.00 1.00 0.18 0.09

429.mcf 59.16 1.75 1.41 1.04 0.72 0.37

433.milc 13.08 3.83 2.46 1.05 0.52 0.11

470.lbm 4.31 1.77 1.01 1.00 0.17 0.10

. . . . . . . . .
Mean 2.73 1.16 1.06 1.02 0.26 0.12

Table 2: Normalized Execution Time and Up Ratios

L: linked list, A+D: ABL and dynamic hot set, If :

fixed-threshold IMT (T = 0.2), Ia: adaptive-threshold IMT

unused memory, so the total allocated memory to the two

VMs may be less than 1400 MB.
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Figure 3: Speed-Ups With Memory Balancing

When balanced without IMT, the performance of

470.lbm degrades by 10% due to the overhead of mem-

ory tracking, while the performance of 433.milc is

boosted by 2 times due to the extra memory it gets from

the other VM. Using IMT, the performance impact of

memory tracking on 470.lbm is lowered to 4%. For

433.milc, with fixed-threshold or adaptive-threshold

IMT, its speedup is increased from 2.96 to 3.06 and 3.56

respectively. The overall speedups of balancing without

IMT, with fixed-threshold IMT and adaptive-threshold

IMT are 1.63, 1.72 and 1.85. Hence, using adaptive-

threshold IMT, an additional 22% speedup is gained.

5 Conclusion and Future Work

LRU-based working set size estimation is an effec-

tive technique to support memory resource management.

This paper makes this technique more applicable by sig-

nificantly reducing its overhead. We present a novel in-

termittent memory tracking scheme. Experimental eval-

uation shows that our solution is capable of reducing the

overheadwith sufficient precision to improvememory al-

location decisions. In an application scenario of balanc-

ing memory resources for virtual machines, our solution

boosts the overall performance. In the future, we plan

to develop theoretical models that verify the correlations

among various memory events.
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Abstract
Fast Virtual Disk (FVD) is a new virtual machine (VM)

image format and the corresponding block device driver
developed for QEMU. QEMU does I/O emulation for
multiple hypervisors, including KVM, Xen-HVM, and
VirtualBox. FVD is a holistic solution for both Cloud and
non-Cloud environments. Its feature set includes flexible
configurability, storage thin provisioning without a host
file system, compact image, internal snapshot, encryp-
tion, copy-on-write, copy-on-read, and adaptive prefetch-
ing. The last two features enable instant VM creation and
instant VM migration, even if the VM image is stored on
direct-attached storage. As its name indicates, FVD is
fast. Experiments show that the throughput of FVD is
249% higher than that of QCOW2 when using the Post-
Mark benchmark to create files.

1 Introduction
Despite the existence of many popular virtual machine

(VM) image formats (e.g., QEMU QCOW2 [5], Virtu-
alBox VDI [10], VMWare VMDK [11], and Microsoft
VHD [6]), FVD came out of our unsatisfied needs in the
IBM Cloud [9]. FVD distinguishes itself from existing
image formats in multiple aspects: flexible configurabil-
ity, high performance, and rich features.

Flexible configurability. As virtualization becomes per-
vasive, virtual disks of virtual machines (VM) may be
used in diverse settings. For example, the main require-
ment can be storage thin provisioning or high disk I/O
performance. A disk image can be stored as a regular file
or a logical volume. It can use direct-attached storage,
network-attached storage, or storage-area network.

Existing image formats support diverse settings in a
one-size-fit-all manner, by bundling all functions into one
inseparable, monolithic piece. This can cause inefficiency
even in common cases. Consider, for example, the copy-
on-write (CoW) feature of virtual disk. QCOW2, VDI,
VMDK, and VHD all mix the function of CoW dirty
block tracking with the function of storage space alloca-
tion. In a common setting where the image is stored on
a host file system, this leads to doing storage allocation
twice (first in the image format and then in the host file
system), which causes data fragmentation twice and dou-
bles the disk I/O overhead for metadata access.

By contrast, a design principle of FVD is to make all
functions orthogonal so that each function can be enabled

or disabled individually, even for two virtual disks at-
tached to the same VM. The purpose is to support diverse
use cases without being burdened with the overhead of
all functions. This is a significant departure from exist-
ing image formats and challenges some conventional wis-
dom in image format design. For the specific example
above, FVD can be configured to enable CoW dirty block
tracking, disable its own storage allocation, and delegate
storage allocation entirely to the host OS, which has abun-
dant options to optimize for a given workload, e.g., stor-
ing the image on a logical volume, or storing the image
as a regular file in a host file system, with the choices of
ext2/ext3/ext4, JFS, XFS, ReiserFS, etc.

VM mobility in a Cloud. FVD is a feature-rich, holis-
tic solution for both Cloud and non-Cloud environments.
This paper is focused on its copy-on-read and adaptive
prefetching features, which improve VM disk data mobil-
ity in a Cloud.

In a Cloud like Amazon EC2, the storage space for
a VM can be allocated from multiple sources, which
offer different performance, reliability, and availability
at different prices. In EC2, a VM is provided with
170GB or more ephemeral storage (i.e., direct-attached
storage (DAS)) at no additional charge. Persistent storage
(i.e., network-attached storage (NAS)) is more expensive,
which is charged not only for the storage space consumed
but also for every disk I/O performed. For example, if a
VM’s root file system is stored on persistent storage, even
the VM’s disk I/O on its temporary directory /tmp incurs
additional costs. As a result, it is popular to use ephemeral
storage for a VM’s root file system. However, using DAS
slows down the process of VM creation and VM migra-
tion, which diminishes the benefits of an elastic Cloud.

The discussion below uses KVM and QEMU as ex-
amples. In a Cloud, VMs are created based on read-
only image templates stored on NAS and accessible to
all hosts. A VM’s virtual disk can use different image
formats. QEMU’s RAW format is simply a byte-by-byte
copy of a physical disk’s content stored in a regular file.
If a VM uses the RAW format, the VM creation process
may take a long time and cause resource contentions, be-
cause the host needs to copy a complete image template
(i.e., gigabytes of data) from NAS across a heavily shared
network in order to create a new RAW image on DAS.
This problem is illustrated in Figure 1(a).
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Figure 1: Comparison of the VM creation processes. This
example creates three VMs concurrently.

QCOW2 [5] is another image format supported by
QEMU. It does copy-on-write, i.e., the QCOW2 image
only stores data modified by a VM, whereas unmodified
data are always read from the base image. QCOW2 sup-
ports fast VM creation. The host can instantly create and
boot an empty QCOW2 image on DAS, whose base im-
age points to an image template stored on NAS. Using
QCOW2, however, limits the scalability of a Cloud, be-
cause a large number of VMs may repeatedly read un-
modified data from the base image, generating excessive
network traffic and I/O load on NAS.

The solution in FVD is to do copy-on-read (CoR) and
adaptive prefetching, in addition to copy-on-write (CoW).
CoR avoids repeatedly reading a data block from NAS, by
saving a copy of the returned data on DAS for later reuse.
Adaptive prefetching uses resource idle time to copy from
NAS to DAS the image data that have not been accessed
by the VM. These features are illustrated in Figure 1(b).

In addition to instant VM creation, FVD also supports
instant VM migration, even if the VM’s image is stored on
DAS. FVD can instantly migrate a VMwithout first trans-
ferring its disk image. As the VM runs uninterruptedly on
the target host, FVD uses CoR and adaptive prefetching
to gradually move the image from the source host to the
target host, without user perceived downtime.

2 Overview of FVD
This paper is focused on the Cloud-inspired features of

FVD, i.e., copy-on-read and adaptive prefetching. To set
stage for the detailed discussion in Section 3, this sec-
tion first describes how a virtual disk works today, using
KVM [4], QEMU [1], and QCOW2 [5] as examples, and
then presents an overview of the holistic FVD solution.

L1 Table L2 Tables Data Blocks

X

Y

Figure 2: QCOW2’s two-level lookup index.

2.1 How a Virtual Disk Works Today
When a VM issues a disk I/O request for data at a vir-

tual block address (VBA), the host Linux kernel forwards
the request to QEMU running in the user space. QEMU’s
QCOW2 driver translates the VBA into an image block
address (IBA), which specifies where the requested data
are stored in the QCOW2 image file, i.e., IBA is an offset
in the image file. Specifically, QCOW2 uses the index in
Figure 2 to perform the address translation. A VBA d is
split into three parts, i.e., d = (d1, d2, d3). The d1 entry
of the L1 table points to an L2 table X . The d2 entry of
the L2 table X points to a data block Y . The requested
data are located at offset d3 of the data block Y .

Initially, a QCOW2 image contains only the L1 table,
with all data blocks and L2 tables unallocated. A data
block is allocated at the end of the image file upon the
first write to that block. As a result, a block’s IBA solely
depends on when it is written for the first time, regardless
of its VBA. This behavior may end up with an undesir-
able data layout on the physical disk. For example, when
the guest OS creates a file system, it writes out the file
system metadata, which are all grouped together and as-
signed consecutive IBAs by QCOW2, despite the fact that
the metadata’s VBAs are deliberately scattered for bet-
ter reliability and locality, e.g., co-locating inodes and file
content blocks in block groups. As a result, it may cause
a long disk seek distance between accessing a file’s meta-
data and accessing the file’s content blocks. This problem
is not unique to QCOW2. It exists in all popular image
formats, including VDI, VMDK, and VHD.

When the guest VM reads data at the VBA
d=(d1, d2, d3), the QCOW2 driver determines whether
the data block is allocated in the QCOW2 image by check-
ing if the corresponding L1 or L2 table entry is empty. If
so, the data are read from the base image. Otherwise the
data are read from the QCOW2 image. Since the lookup
index implements both dirty block tracking and storage
allocation, the two functions become inseparable.

2.2 How FVD Works
Below, we summarize the on-disk metadata used by

FVD to provide a diverse set of functions:

• A bitmap for implementing copy-on-write.
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• A one-level lookup table for implementing storage al-
location.

• A metadata journal for committing changes of the
bitmap and the lookup table.

• A reference-count table for implementing internal
snapshot.

Bitmap. The bitmap is enabled only if a new FVD image
is created based on an existing image template (so-called
base image). When the VM issues a disk write, the base
image is not modified. Instead, the new data are saved in
the FVD image. This behavior is called copy-on-write. A
bit in the bitmap tracks where the latest content of a block
is stored. The bit is 0 if the block is in the base image, and
the bit is 1 if the block is in the FVD image. The unit of a
block is configurable per virtual disk, with a default size
of 64KB. To represent the state of a 1TB base image, FVD
only needs a 2MB bitmap, which can be easily cached in
memory. The bitmap also implements copy-on-read and
adaptive prefetching.

Lookup table. The lookup table implements storage al-
location. One entry of the look table maps a data chunk’s
VBA to its IBA. The unit of a chunk is configurable per
virtual disk, with a default size of 1MB. (Note that VDI
uses 1MB chunks. VHD and the ESX version of VMDK
use 2MB chunks.) For a 1TB virtual disk, the size of
FVD’s lookup table is only 4MB. Because of the table’s
small size, there is no need to use a more complicated
two-level index as that in QCOW2.

Because FVD itself is capable of managing storage al-
location, one valid configuration is to store an FVD im-
age directly on a logical volume to avoid the overhead of
a sophisticated host file system. This configuration still
supports storage thin provisioning. The initial size of the
logical volume can be small. During the execution of the
VM, FVD asks the host OS to increase the size of the log-
ical volume when more storage space is needed.

Separating the implementation of copy-on-write from
the implementation of storage allocation provides several
benefits. First, the lookup table can be optionally disabled
to avoid the overhead and data fragmentation caused by
doing storage allocation at the image level. In this case,
FVD maintains a linear mapping between a chunk’s VBA
and IBA without any address translation, and relies on the
host file system for storage allocation.
Another benefit is that it makes the metadata smaller

and easier to cache, by using the bitmap to track data at
the finer block granularity, and using the lookup table to
track data at the coarser chunk granularity. The bitmap is
small because of its efficient representation. The lookup
table is small because the large chunk size leads to less
table entries. For a 1TB virtual disk, FVD’s bitmap and
one-level lookup table together are only 6MB, whereas
QCOW2’s two-level lookup table is 128MB.

Metadata journal. When the bitmap and/or the lookup
table need be modified, the changes are saved in the jour-
nal, as opposed to updating the bitmap and/or the lookup
table directly. The journal size is configurable per vir-
tual disk, with a default size of 16MB. When the journal
is full, which happens infrequently, the entire bitmap and
the entire lookup table are flushed to disk. Then the jour-
nal can be recycled for reuse. The flush avoids the over-
head of fine-grained journal cleaning operations that are
common in journaling file systems. The flush is quick,
because the bitmap and the lookup table are small.
The journal provides several benefits. First, updating

both the bitmap and the lookup table requires only a single
write to the journal. Second, k concurrent updates to any
potions of the bitmap or the lookup table are converted
to sequential writes in the journal. Finally, it increases
concurrency by allowing multiple parallel updates to the
same sector in the bitmap or the lookup table.

Reference-count table. There are two ways of imple-
menting virtual disk snapshot: external snapshot and in-
ternal snapshot. External snapshot can be easily imple-
mented on top of any image form that already supports
copy-on-write (CoW), including VMDK, QCOW2, and
FVD. When the user takes a snapshot, the current image
file Si−1 is made read-only and a new CoW image file
Si is created based on Si−1. After a series of snapshots
are taken, it creates a chain of dependent snapshot files
S0 ← S1 ← · · · ← Si. Deleting a snapshot Sj−1 in the
middle of a snapshot chain can be a slow operation. Be-
fore removing the snapshot file Sj−1, it must physically
copy from Sj−1 to Sj those data chunks modified in Sj−1

but not modified in Sj .
Internal snapshot avoids this problem by storing all

snapshots in a single file. For each data chunk C in use,
an entry in the reference-count table records the number
of snapshots using C. Creating/deleting a snapshot sim-
ply amounts to incrementing/decrementing the reference
count of data chunks that form the snapshot. A data chunk
is free for reuse when its reference count becomes zero.

QCOW2 and FVD are the only two image formats that
support internal snapshot, but they differ in implementa-
tion and performance. Conceptually, an image consists
of an arbitrary number of read-only historical snapshots
and a single writable current view (WCV). The WCV is
the virtual disk content perceived by the running VM.
QCOW2’s reference-count table tracks all data chunks
used by either snapshots or the WCV. Because the WCV
changes as the VM runs, during normal executions of the
VM, QCOW2 incurs disk I/O overhead for updating the
on-disk reference-count table and memory overhead for
caching the reference-count table. By contrast, FVD’s
reference-count table tracks chunks used by snapshots but
does not track chunks used by the WCV (since the WCV
is already tracked by the lookup table). Because read-only
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snapshots do not change during normal executions of the
VM, FVD need not update or cache the reference-count
table during normal executions of the VM.

3 Using FVD’s Bitmap to Support Copy-
on-Write, Copy-on-Read and Prefetching

FVD is a comprehensive solution with many features.
Due to the space limitation, the rest of this paper is fo-
cused on using FVD’s bitmap to support copy-on-write,
copy-on-read, and adaptive prefetching. The discussion
below assumes that the bitmap is enabled but all other
metadata (the lookup table, the metadata journal, and the
reference-count table) are disabled. This configuration
by itself is a functional, high-performance image format.
Figure 3 shows FVD under this configuration.

3.1 Basic Read/Write Operation
With the lookup table disabled, FVD maintains a linear

mapping between a block’s VBA and IBA. When the VM
writes to a block with VBA d, FVD stores the block at
offset d of the “FVD Data Region” in Figure 3, without
any address translation. FVD relies on the host OS for
storage allocation. If the FVD image is stored on a host
file system that supports sparse files, no storage space is
allocated for a data block in the virtual disk until the VM
actually writes to that block.

To start a new VM in a Cloud, the host creates an FVD
image on its DAS, whose base image points to an image
template on NAS. The “FVD Data Region” in Figure 3
can be larger than the base image, because an image tem-
plate can be used to create VMs whose virtual disks are
of different sizes, depending on how much the user pays.
resize2fs can expand the file system in the base image to
the full size of the virtual disk.

When handling a disk write request issued by the VM,
the FVD driver stores the data in the FVD image and
updates the bitmap to indicate that those data now are
in the FVD image rather than in the base image. The
bitmap-update step is skipped if the corresponding bit(s)
in the bitmap are set previously. If the write request is not
aligned on the block boundary, before writing the data to
the image, the FVD driver reads a full block from the base
image and merges it with the data to be written.

When handling a disk read request issued by the VM,
the FVD driver checks the bitmap to determine if the re-
quested data are in the FVD image. If so, the data are
read from the FVD image. Otherwise, the data are read
from the base image and returned to the VM. While the
VM continues to process the returned data, in the back-
ground, a copy of the returned data is saved in the FVD
image. Future reads for the same data will get them from
the FVD image on DAS rather than from the base image
on NAS. This copy-on-read behavior helps avoid generat-
ing excessive network traffic and I/O load on NAS.

original disk data

FVD Metadata

Base Image

header bitmap
space for

disk data

space for expanded

disk data

FVD Data Region (FDR)

Figure 3: An simplified view of the FVD image format,
with only the bitmap enabled.

3.2 Optimizations for Read/Write
Compared with the RAW image format, a copy-on-

write image format always incurs additional overhead in
reading and updating its on-disk metadata. Below, we
summarize several optimizations that eliminate this over-
head in common cases. The word “free” below means no
need to update the on-disk bitmap.

In-memory bitmap: Eliminate the need to repeatedly
read the bitmap from disk by always keeping a complete
copy of the bitmap in memory. The bitmap is only 20KB
for a 1TB FVD image based on a 10GB image template.
Note that, in Figure 3, the bitmap size is proportional to
the base image size rather than the FVD image size.

Free writes to beyond-base blocks: Eliminate the need
to update the on-disk bitmap when the VM writes to a
block residing in the “space for expanded disk data” in
Figure 3. This is a common case if the base image is re-
duced to its minimum size by resize2fs. Note that 1) a
minimum-sized image template has no unused free space,
and 2) most data in an image template are read-only and
rarely overwritten by a running VM due to the template
nature of those data, e.g., program executable. Conse-
quently, disk writes issued by a running VM mostly target
blocks residing in the “space for expanded disk data” in
Figure 3. Since those “beyond-base” blocks cannot re-
side in the base image and hence have no state bits in the
bitmap, there is simply no need to update the bitmap when
writing to those blocks.

Free writes to zero-filled blocks: Eliminate the need to
update the on-disk bitmap when the VM writes to a block
whose original content in the base image is completely
filled with zeros. This is a common case if the base image
is not reduced to its minimum size by resize2fs and has
many empty spaces. This optimization is realized by us-
ing a tool to search for zero-filled blocks in the base image
and preset their state bits to 1 in the FVD bitmap. This is
an offline process only done once per image template.

Free copy-on-read and free prefetching: Eliminate the
need to update the on-disk bitmap when the FVD driver
saves a block in the FVD image due to either copy-on-
read or prefetching. This does not compromise data in-



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 233

tegrity in the event of a host crash, because the block’s
content in the FVD image is identical to that in the base
image and reading from either place gets the correct data.

Zero overhead once prefetching finishes: Entirely elim-
inate the need to read or update the bitmap, once all blocks
in the base image are prefetched. This is because the
bitmap’s content is known in a priori to be 1 for all bits.

3.3 Adaptive Prefetching
FVD uses copy-on-read to bring data blocks from NAS

to DAS on demand as they are accessed by the VM. Op-
tionally, prefetching uses resource idle time to copy from
NAS to DAS the rest of the image that have not been ac-
cessed by the VM. Prefetching is a resource intensive op-
eration, as it may transfer gigabytes of data across a heav-
ily shared network. To avoid causing a contention on any
resource (including network, NAS, and DAS), FVD can
be configured to limit prefetching rate and pause prefetch-
ing when a resource contention is detected.

Two throughput limits (KB/s) control the behavior of
prefetching data from the base image. The base image
read throughput is capped at the upper limit using a leaky
bucket algorithm. If the throughput drops below the lower
limit, the FVD driver concludes that a resource contention
has occurred. It makes a randomized decision. With a
50% probability, it temporarily pauses prefetching for a
randomized period of time. If the throughput is still be-
low the lower limit after prefetching resumes, it pauses
prefetching again for a longer period of time, and so forth.
Similarly, two throughput limits control the behavior of
writing prefetched data to the FVD image.

4 Experimental Results
We implemented FVD in QEMU. Due to the space

limitation, this paper only presents the results of one ex-
periment. (More results are available in the longer ver-
sion of this paper [8]). In this experiment, FVD’s bitmap
is enabled but all other metadata (the lookup table, the
metadata journal, and the reference-count table) are dis-
abled. Moreover, since QCOW2 does not support CoR
and prefetching, those features are disabled in FVD in or-
der to make a fair comparison of the basic CoW feature.

The experiment is conducted on IBM HS21 blades con-
nected by 1Gb Ethernet. Each blade has two 2.33GHz
Intel Xeon 5148 CPUs and a 2.5-inch hard drive (model
MAY2073RC). The blades run QEMU 0.12.30 and Linux
2.6.32-24 with the KVM kernel modules. QEMU is con-
figured to use direct I/O.

Figure 4 shows the performance of PostMark [3] under
different configurations. The execution of PostMark con-
sists of two phases. In the first “file-creation” phase, it
generates an initial pool of files. In the second “trans-
action” phase, it executes a set of transactions, where
each transaction consists of some file operations (creation,
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Figure 4: Performance of PostMark.

deletion, read, and append). In this experiment, the total
size of files created in the first phase is about 50GB, and
the size of an individual file ranges from 10KB to 50KB.

In Figure 4, the “Hypervisor” bar means running Post-
Mark in a native Linux without virtualization. The
“RAW”, “FVD”, and “QCOW2” bars mean running Post-
Mark in a VM whose image uses the different formats,
respectively. Like that in a Cloud, a QCOW2 or FVD im-
age V is stored on the local disk of a blade X , whereas the
base image of V is stored on another blade Y accessible
through NFS. The base image contains Ubuntu 9.04, and
is reduced to its minimum size (501MB) by resize2fs. A
RAW image is always stored on the local disk of a blade.
The VM’s virtual disk is divided into two partitions. The
first partition of 1GB stores the root file system. The sec-
ond partition of 50GB disk is formatted into an ext3 file
system, on which PostMark runs.
For the “IDE-partition” group in the figure, the VM’s

block device uses the IDE interface and the VM image is
stored on a raw partition in the host. For the “virtio-ext3”
group, the VM’s block device uses the paravirtualized vir-
tio interface and the VM image is stored on a host ext3 file
system, which is reformatted before each run of the exper-
iment. For the “virtio-partition” group, it uses virtio and
the VM image is stored on a raw partition in the host.
Figure 4 shows significant advantages of FVD over

QCOW2. In the file creation phase, the throughput of
FVD is 249% higher than that of QCOW2 (by com-
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paring the “FVD” bar and the “QCOW2” bar in the
“virtio-partition” group of Figure 4(a)). In the transaction
phase, the throughput of FVD is 77% higher than that of
QCOW2 (by comparing the “FVD” bar and the “QCOW2
bar in the “virtio-partition” group of Figure 4(b)).

To understand the root cause of the performance dif-
ference, we perform a deep analysis for the results in
the “virtio-partition” group of Figure 4(a). We run the
blktrace tool in the host to monitor disk I/O activities.
QCOW2 causes 45% more disk I/Os than FVD does, due
to QCOW2’s reads and writes to its metadata. Moreover,
the average seek distance in QCOW2 is 5.6 times longer
than that in FVD, due to QCOW2’s VBA-IBA mismatch-
ing problem, as explained in Section 2.1.

5 Related Work
Despite the widespread use of VMs, there is no pub-

lished research on how image formats impact disk I/O
performance. Existing popular image formats (including
QCOW2 [5], VDI [10], VMDK [11], and VHD [6]) all
allocate storage space for a data block at the end of the
image file when the block is written for the first time, re-
gardless of the block’s virtual address. This mismatch be-
tween VBA and IBA invalidates many optimizations in
guest file systems, as discussed in Section 2.1. More-
over, they all unnecessarily mix the function of CoW dirty
block tracking with the function of storage space alloca-
tion. This leads to doing storage allocation twice (first in
the image format and then in the host file system), which
causes data fragmentation twice and doubles the disk I/O
overhead for metadata access.

Existing virtual disks support neither copy-on-read
(CoR) nor adaptive prefetching. Some virtualization solu-
tions do support CoR or prefetching, but they are imple-
mented for specific use cases, e.g., virtual appliance [2]
and VM migration [7]. By contrast, FVD provides CoR
and prefetching as standard features of a virtual disk,
which can be easily deployed in many different use cases.
Moreover, those previous works use CoW and CoR but do
not study how to optimize the CoW and CoR techniques
themselves to reduce overhead.

Collective [2] provides desktop as a service across the
Internet. It uses CoW and CoR to hide network latency.
Its local disk cache makes no effort to preserve a linear
mapping between VBA and IBA, and may cause a long
disk seek distance as that in popular CoW image for-
mats. Collective also performs adaptive prefetching. It
halves the prefetch rate if a certain “percentage” of re-
cent requests experience a high latency. Our evaluation
shows that it is hard to set a proper “percentage” to re-
liably detect congestion. Because storage servers and
disk controllers perform read-ahead in large chunks for
sequential reads, a large percentage (e.g., 90%) of a VM’s
prefetching reads hit in the read-ahead caches and experi-
ence a low latency. When a storage server becomes busy,

the “percentage” of requests that hit in the read-ahead
caches may change little, but the response time of those
cache-miss requests may increase dramatically. In other
words, this “percentage” does not correlate well with the
achieved disk I/O throughput.

6 Conclusion
FVD is a holistic virtual disk solution for both Cloud

and non-Cloud environments. A design principle of
FVD is to make all functions orthogonal so that each
function can be enabled or disabled individually. The
purpose is to support diverse use cases without be-
ing burdened with the overhead of all functions. Us-
ing copy-on-write, copy-on-read, and adaptive prefetch-
ing, FVD supports instant VM creation and instant VM
migration, even if the VM image is stored on direct-
attached storage. The source code of FVD is pub-
licly available at https://researcher.ibm.com/
researcher/view project.php?id=1852.
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Abstract
Synchronous small writes play a critical role in the re-
liability and availability of le systems and applications
that use them to safely log recent state modications and
quickly recover from failures. However, storage stacks
usually enforce page-sized granularity in their data trans-
fers from memory to disk. We experimentally show that
subpage writes may lead to storage bandwidth waste and
high disk latencies. To address the issue in a journaled
le system, we propose wasteless journaling as a mount
mode that coalesces synchronous concurrent small writes
of data into full page-sized blocks before transferring
them to the journal. Additionally, we propose selective
journaling that automatically applies wasteless journal-
ing on data writes whose size lies below a xed precon-
gured threshold. In the Okeanos prototype implemen-
tation that we developed, we use microbenchmarks and
application-level workloads to show substantial improve-
ments in write latency, transaction throughput and stor-
age bandwidth requirements.

1 Introduction
Synchronous small writes lie in the critical path of sev-
eral contemporary systems that target fast recovery from
failures with low performance overhead during normal
operation [1, 4, 5]. Typically, synchronous small writes
are applied to a sequential le (write-ahead log) in order
to record updates before the actual modication of the
system state. In addition, the system periodically copies
its entire state (checkpoint) to permanent storage. After a
transient failure, recent state can be reconstructed by re-
playing the logged updates against the latest checkpoint.
Write-ahead logging improves system reliability by pre-
serving recent updates from failures; it also increases
system availability by substantially reducing the subse-
quent recovery time. The method is widely applied in
general-purposele systems [6], relational databases [5],
distributed key-value stores [4], event processing en-
gines [3], and other mission-critical systems [7]. Further-

more, logging is useful for checkpointing parallel appli-
cations to preserve multiple hours or days of processing
after an application or system crash [1].

Today, several le systems use a log le (journal) in
order to temporarily move data or metadata from mem-
ory to disk at sequential throughput. Thus, they post-
pone the more costly writes to the le system without
penalizing the corresponding latency perceived by the
applications. A basic component across current oper-
ating systems is the page cache that temporarily stores
recently accessed data and metadata in case they are
reused soon. It receives byte-range requests from the
applications, and communicates with the disk through
page-sized blocks. The page-sized block granularity of
disk accesses is prevalent across all data transfers, in-
cluding data and metadata updates or the correspond-
ing journaling whenever it is used. Asynchronous small
writes improve their efciency, when multiple consecu-
tive requests are batched into page-sized blocks before
they are ushed to disk. Instead, each synchronous write
is ushed to disk individually causing data and metadata
trafc of multiple full pages, even if the bytes actually
modied across the pages collectively occupy much less
space.

In Figure 1, we measure the amount of data written to
the journal across different mount modes. We use a syn-
thetic workload that consists of 100 concurrent threads
with periodic synchronous writes of varying request sizes
(one req/s). We include the ordered, writeback, and
journal –refered to as data journaling from now on for
clarity– modes of the ext3 le system (Section 4). As
the request size increases up to 4KB, the trafc of data
journaling remains almost unchanged at a disproportion-
ately high value. At each write call, the mode appends to
the journal the entire modied data and metadata blocks
rather than only the corresponding block modications.
Instead, the ordered and writeback modes incur almost
linearly increasing trafc, because they only store to the
journal the blocks that contain modied metadata.

1
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Figure 1: During a 5min interval, we measure the total
write trafc to the journal device across different mount
modes of the ext3 le system on Linux.

We set as objective to reduce the journal trafc so that
we improve the performance of reliable storage at low
cost. Thus, we introduce wasteless journaling and selec-
tive journaling as two new mount modes, that we pro-
pose, design and fully implement in the Linux ext3 le
system. We are specically concerned about highly con-
current multithreaded workloads that synchronously ap-
ply small writes over common storage devices [1, 4, 7].
We target to save the disk bandwidth that is currently
wasted due to unnecessary writes of unmodied data,
or writes with high positioning overhead. The opera-
tions in both these cases occupy valuable disk access
time that should be used for useful data transfers instead.
To achieve our goal we transform multiple random small
writes into a single block append to the journal.

We summarize our contributions as follows: (i) Con-
sider the reduction of journal bandwidth in current sys-
tems as a means to improve the performance of reli-
able storage at low cost; (ii) Design and fully implement
wasteless and selective journaling as optional mount
modes in a widely-used le system; (iii) Discuss the im-
plications of our journaling optimizations to the consis-
tency semantics; (iv) Apply micro-benchmarks, a storage
workload and database logging traces over a single jour-
nal spindle to demonstrate performance improvements
up to an order of magnitude across several metrics; (v)
Use a parallel le system to show that wasteless journal-
ing doubles, at reasonable cost, the throughput of parallel
application checkpointing over small writes.

In the remaining paper, we summarize the related re-
search in Section 2, present architectural aspects of our
design in Section 3, while in Section 4 we describe
the implementation of the Okeanos prototype system.
In Section 5, we explain our experimentation environ-
ment, in Section 6 we present performance measure-
ments across different workloads, and in Section 7 we
outline our conclusions and future work.

2 Related Work
The log-structured le system addresses the synchronous
metadata update problem and the small-write problem by
batching data writes sequentially to a segmented log [9].
In transaction processing, group commit is a known
database logging optimization that periodically ushes
to the log multiple outstanding commit requests [5]. The
above approaches gather multiple block writes into a sin-
gle multi-block request instead of tting multiple sub-
page modications into a single block that we do. Also,
subpage journaling of metadata updates is already avail-
able in commercial le systems, such as IBM JFS and
MS NTFS [8]. Adding extra spindles to improve I/O
parallelism or non-volatile RAM to absorb small writes
could also reduce latency and raise throughput [6]. How-
ever, such solutions carry drawbacks that primarily have
to do with increased cost and maintenance concerns.

A structured storage system may maintain numerous
independent log les to facilitate load balancing in case
of failure [4]. However, concurrent sequential writes to
the same device create a random-access workload with
low disk throughput. To address this issue, the sys-
tem may store multiple logs into a single le and sepa-
rate them by record sorting during recovery. Similarly,
for the storage needs of parallel applications in high-
performance computing, specialized le formats are used
to manage as a single le the data streams generated by
multiple processes [1]. Instead, we aim to handle the
above cases at low cost through the mount modes that
we add to a general-purpose le system.

The Echo distributed le system logged subpage up-
dates for improved performance and availability, but by-
passed logging for page-sized or larger writes [2]. How-
ever, Echo was discontinued in the early nineties partly
because its hardware lacked fast enough computation rel-
ative to communication. Recent research introduced se-
mantic trace playback to rapidly emulate alternative le
system designs [8]. In that context, the authors emulated
writing block modications instead of entire blocks to
the journal, but didn’t consider the performance and re-
covery implications. Due to the obsolete hardware plat-
form or the high emulation level at which they were ap-
plied, the above studies leave open the general architec-
tural t and actual performance benet of journal band-
width reduction in current systems.

3 System Design
We set as objective to safely store recent state updates
on disk and ensure their fast recovery in case of fail-
ure. We also strive to serve the synchronous small writes
and subsequent reads at sequential disk throughput with
low bandwidth requirements. We are motivated by the
important role that small writes play for reliable stor-
age and the lack of comprehensive studies on subpage
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data logging in current systems. In order to reduce the
storage bandwidth consumed by data journaling, we de-
signed and implemented a new mount mode that we call
wasteless journaling. During synchronous writes, we
transform partially modied data blocks into descrip-
tor records that we subsequently accumulate into special
journal blocks. We synchronously transfer all the data
modications from memory to the journal device. After
timeout expiration or due to shortage of journal space,
we move the partially or fully modied data blocks from
memory to their nal location in the le system.

With goal to reduce the journal I/O activity during se-
quential writes, we further evolved wasteless journaling
into selective journaling. In that mount mode, the system
automatically differentiates the write requests based on a
xed size threshold that we call write threshold. Depend-
ing on whether the write size is below the write threshold
or not, we respectively transfer the synchronous writes to
either the journal or directly the nal disk location. Thus,
we apply data journaling in only those cases that either
multiple small writes can be coalesced into a single jour-
nal block according to wasteless journaling, or different
data blocks that have been fully modied are scattered
across multiple locations in the le system. We antici-
pate that journaling of the modied blocks will reduce
the latency of synchronous writes through the sequential
throughput offered by the journal device.

For consistency across system failures, each write op-
eration delays metadata updates on disk, until the com-
pletion of the corresponding data updates. In wasteless
journaling, we log both data and metadata into the jour-
nal to consider a write operation effectively completed.
Synchronous writes from the same thread are added to
the journal sequentially. In case of failure, a prex of
the operation sequence is recovered through the replay of
the data modications that have been successfully logged
into the journal. Instead, selective journaling allows a
synchronous write sequence to have a subset of the mod-
ied data added to the journal, and the rest of the mod-
ied data directly transferred to the nal location in the
le system. Given that a synchronous write from a single
thread must be transferred to disk immediately, it only
makes sense to accumulate into a journal block the writes
from different concurrent threads. As a result, wasteless
and selective journaling are mostly benecial in concur-
rent environments with multiple writing streams that in-
clude frequent small writes.

In selective journaling, we call update sequence of a
disk block a series of multiple incoming updates applied
to the same block buffer. The updates don’t have to be
back-to-back, but there should be no in-between transfer
of the respective buffer to the nal disk location. If the
rst update in such a sequence has subpage size, we log
to the journal the entire update sequence of this buffer.

Thus, we handle consistency in a relatively clean way,
because we eliminate the case that we turn off the jour-
naling of a particular buffer halfway through a transac-
tion. On the other hand, if the rst update of the buffer
is page-sized, we decide to skip journaling for the entire
update sequence of the corresponding block. In our ex-
perience, the above two transitions in update sizes along
a sequence occur infrequently. Therefore, we anticipate
low impact to the journaling activity of selective journal-
ing.

4 The Okeanos Prototype Implementation
We implemented wasteless and selective journaling in
the Okeanos prototype that we developed based on Linux
ext3. Originally, ext3 rst copies the modied blocks
into the journal, then transfers them to their nal disk
location. In data journaling mount mode, data and meta-
data blocks are copied to the journal, before they update
the le system. To reduce the risk of data corruption,
the ordered mode only copies the metadata blocks to the
journal, after the associated data blocks have updated the
le system. The writeback mode copies only metadata
blocks to the journal, without any constraint in the rela-
tive order of data and metadata updates to the le system.
It is the weakest mode in terms of consistency and we
don’t consider it any further in the rest of the paper.

The Linux kernel uses the page cache to keep in mem-
ory data and metadata of recently accessed disk les. For
every disk block cached in memory, a block buffer stores
its data and a buffer head maintains the related bookkeep-
ing information. The page cache manages disk blocks
in page-sized groups called buffer pages. We use block
and page interchangeably, because they typically have
the same size. Ext3 implements the journal as either a
hidden le in the le system or a separate disk partition.
Each log record in the journal contains an entire modied
block instead of the byte range actually affected. How-
ever, the system only needs to log the updated part of
each modied block and merge it into the original block
to get its latest version during a recovery. To achieve that,
we introduce a new type of journal block that we call
multiwrite block. We only use multiwrite blocks to accu-
mulate the updates from data writes that partially modify
block buffers. When a block buffer contains metadata or
is fully modied by a write operation, we can send it di-
rectly to the journal without the need to create an extra
copy rst in the page cache. We call regular block such
a journal block.

When a write request of arbitrary size enters the ker-
nel, the request is broken into variable-sized updates of
individual block buffers. In wasteless journaling, if the
size of a buffer update is less than the block size, we
copy the corresponding data modication into a multi-
write block. Otherwise, we point to the entire modied

3
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Figure 2: Alternative execution paths
of a write request in the selective jour-
naling mode.

(a) (b)

Figure 3: (a). In data journaling, the system sends to the journal the entire
blocks modied by write operations. (b) In wasteless journaling, we accumu-
late multiple data writes into a single multiwrite journal block.

block in the page cache. For selective journaling, we
have the write threshold xed to the page size of 4KB.
When a buffer update has size smaller than the write
threshold, then we mark the corresponding page as jour-
naled. Correspondingly, we copy the modication to the
multiwrite block. We clear the journaled ag, after we
transfer the corresponding block to its nal location on
disk. In Figure 2, we use a owchart to summarize the
possible execution paths of a write request through selec-
tive journaling.

A system call may consist of multiple low-level op-
erations that atomically manipulate disk data structures
of the le system. For improved efciency, the system
groups the records of multiple calls into one transaction.
Before the transaction moves to the commit state, the ker-
nel allocates a journal descriptor block with a list of tags
that map block buffers to their nal disk location. For
each block buffer that will be written to the journal, the
kernel allocates an extra buffer head specically for the
needs of journaling I/O. Additionally, it creates a jour-
nal head structure to associate the block buffer with the
respective transaction. For writes that only modify part
of a block, we expanded the journal head with two extra
elds that contain the offset and the length of the mul-
tiwrite block pointed to by the buffer head (Figure 3).
When we start a new transaction, we allocate a journal
descriptor block that contains multiple xed-length tags,
one per write. In our system, we introduce three new
elds in each tag: (i) a ag to indicate the use of a multi-
write block, (ii) the length of the write in the multiwrite
block, and (iii) the starting offset of the modication in
the nal data block.

A transaction is committed, if it has ushed all its
records to the journal; it is checkpointed, if all the blocks
of a committed transaction have been moved to their -
nal location on disk and the corresponding log records
are removed from the journal. If the journal contains log

records after a crash, the system initiates a recovery pro-
cess during which we retrieve the modied blocks from
the journal. In the case of multiwrite blocks, we apply
the updates to blocks that we read from the correspond-
ing nal disk locations. We read into memory and update
the appropriate block, as specied by the nal disk loca-
tion and the starting offset in the tag. However, if the
multiwrite ag is not set, then we read the next block of
the journal and treat it as a regular block. We write every
regular block directly to the nal disk location without
need to read rst its older version from the disk.

Both data and wasteless journaling guarantee the
atomicity of updates, because they replay the modica-
tions of the committed transactions until they fully reach
the le system. Instead, selective journaling makes a
decision whether to journal or not an update sequence
based on the size of the rst write. Journaling of an
update sequence implies atomicity of the modication
for the corresponding block, while direct transfer of the
block to the le system implies consistency similar to
that of ordered mode.

5 Experimentation Environment

We developed the Okeanos prototype implementation
of wasteless and selective journaling by modifying 684
lines of code across 19 les of the original Linux kernel
version 2.6.18. Members of our team used the proto-
type system as working environment for several months.
In our experiments we use x86-based servers with one
quad-core 2.66GHz processor, 3GB RAM, two Seagate
Cheetah SAS 300GB 15KRPM disks and one active gi-
gabit ethernet port. Unless we specify differently, we as-
sume synchronous write operations with the journal and
data partition on two separate disks. Our results have
half-length of 90% condence interval within 10% of the
reported average. We ushed the page cache between all
the repetitions of our experiments.
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Figure 4: (a) At 1Kbps, the journal throughput (lower is better) of selective and wasteless journaling lies approaches
that of ordered, unlike data journaling which is several factors higher. (b) In comparison to ordered at 1Kbps, the
remaining three modes reduce le system throughput by several factors (lower is better). (c) At 1Mbps, the selective
and ordered modes incur much higher latency in comparison to the other ext3 modes or NILFS. (d) If we create
multiple les concurrently, read requests of 4KB with NILFS take an order of magnitude longer with respect to ext3.

6 Performance Evaluation

First, we produce a random I/O trafc by running a
number of concurrent threads directly on the le server.
Each thread appends data to a separate le by calling
one synchronous write per second. At increasing num-
ber of 1Kbps streams, Figure 4(a) shows that the journal
throughput of data journaling is an order of magnitude
higher than that of the other modes (up to 27MB/s). On
the contrary, selective and wasteless journaling limit the
trafc up to about 4MB/s. In Figure 4(b), we measure the
write throughput of the le system device. The ordered
mode wastes disk bandwidth by sending each write to
the nal location in units of 4KB. Instead, wasteless, se-
lective and data journaling leave dirty pages temporarily
in memory before coalescing them into the le system.
With controlled system crashes, we additionally found
that selective and wasteless journaling tend to reduce the
recovery time of data journaling (by more than 20% in
some cases).

Next, we examine the average latency of synchronous
writes. In Figure 4(c) with 1Mbps streams, ordered and
selective incur orders of magnitude higher latency than
the other modes. At 1Kbps (not shown), selective tends
to become identical to wasteless journaling. In asyn-
chronous writes that we also tried, we found selective
and wasteless journaling to reduce the latency of ordered
and data journaling up to two orders of magnitude. In
Figure 4(c), we also consider a stable Linux port (NILFS)
of the log-structured le system [9]. The write latency of
NILFS is comparable to that of wasteless and data jour-
naling. In Figure 4(d), we use a thread to read sequen-
tially one after the other different numbers of les that
we previously created concurrently at 1Mbps each, us-
ing NILFS or ext3. Then, we measure the average time
to read a 4KB block. We observe that NILFS is an order

of magnitude slower with respect to ext3. In fact, NILFS
interleaves the writes from different les on disk, which
may lead to poor storage locality during sequential reads.

We use the Postmark benchmark to examine the per-
formance of small writes as seen in electronic mail, net-
news and web-based commerce. We apply version 1.5
with synchronous writes added by FSL of Stony Brook
Univ. We assume an initial set of 500 les and use 100
threads for a total workload of 10,000 mixed transac-
tions. We draw the le sizes from the default range, while
I/O request sizes lie between 128 bytes and 128KB. In
Figure 5(a), we observe that the transaction rate of waste-
less journaling gets as high as 738tps. Across different
request sizes, wasteless journaling consistently remains
faster than the other modes, including data journaling.
Instead, selective journaling lies between data journaling
and ordered mode, which are slower than wasteless.

We also examine the OLTP performance benchmark
TPC-C as implemented in Test 2 of the Database Test
Suite. We used the MySQL open-source database sys-
tem with the default InnoDB storage engine. We tested
a conguration with 20 warehouses and 20 connections,
10 terminals per warehouse and 500s duration. InnoDB
supports three methods for ushing the database transac-
tion log to disk. In the default method 1 (Cmt/Disk), the
log is ushed directly to disk at each transaction commit.
In method 0 (Prd/Disk), the transaction log is written to
the page cache and ushed to disk periodically. Finally,
in method 2 (Cmt/Cache), the transaction log is written
to the page cache at each transaction commit and period-
ically ushed to disk. During an execution of TPC-C, we
collect a system-call trace of the MySQL transaction log.
Subsequently, we replay a varied number of concurrent
instances of the log trace over the ordered and wasteless
journaling. In Figure 5(a), we see that wasteless jour-
naling takes up to tens of seconds to complete each log

5
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Figure 5: (a) Wasteless journaling consistently achieves the highest transaction rate in Postmark. (b) Across the three
ushing methods of MySQL/InnoDB, wasteless journaling substantially reduces the latency to ush the transaction
log to disk. (c) Wasteless journaling almost doubles the data throughput (higher is better) of ordered mode. (d) We
measure the write trafc (lower is better) to BerkeleyDB (BDB), the journal (Journal) and the le system (Final) at the
data server of PVFS2. Selective and wasteless journaling incur less trafc under the MPI-IO benchmark.

ush across the three methods of InnoDB at high load.
Instead, ordered mode takes hundreds of seconds, as the
number of instances approaches or exceeds 64.

Finally, we use our mount modes in the storage server
of a PVFS2 multi-tier conguration. In a networked clus-
ter, we use thirteen machines as clients, one machine as
PVFS2 data server and one as PVFS2 metadata server.
By default, each server uses a local BerkeleyDB database
to maintain local metadata. At the data server we placed
the BerkeleyDB on one partition of the root disk, and
dedicated the entire second disk to the user data (le sys-
tem and journal). We xed the BerkeleyDB partition to
ordered mode and tried alternative mount modes at the
data disk. We enabled data and metadata synchroniza-
tion, as suggested to avoid write losses at server failures.
We used the LANL MPI-IO Test to generate a synthetic
parallel I/O workload on top of PVFS2. In our cong-
uration each process writes to a separate unique le, as
suggested for best performance [1]. We varied between
4 and 40 the number of processes on each of the thir-
teen quad-core clients leading to total processes between
52 and 520. We tried 65000 writes of size 1024 bytes.
In Figure 5(c), wasteless journaling almost doubles the
throughput of ordered mode, while data journaling and
selective lie between the other two modes. In Figure
5(d), wasteless journaling reduces by 42% the journal
trafc of data journaling, while selective journaling fur-
ther reduces the write volume of wasteless journaling.

7 Conclusions and Future Work
We rely on journaling of data updates in a le system to
ensure their safe transfer to disk at low latency and high
throughput without storage bandwidth waste. We design
and implement a mount mode that we call wasteless jour-
naling to merge into page-size blocks concurrent sub-
page writes to the journal. Additionally, we develop the

selective journaling mode that only logs updates below a
write threshold and transfers the rest directly to the le
system. We experimentally demonstrate reduced write
latency, improved transaction throughput with low jour-
nal bandwidth requirements. Our plans for future work
include extension of our journaling methods for virtual-
ization environments and solid-state disks.
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and Dejan Kostić
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Abstract

Making distributed systems reliable is notoriously dif-

ficult. It is even more difficult to achieve high reliabil-

ity for federated and heterogeneous systems, i.e., those

that are operated by multiple administrative entities and

have numerous inter-operable implementations. A prime

example of such a system is the Internet’s inter-domain

routing, today based on BGP.

We argue that system reliability should be improved

by proactively identifying potential faults using an on-

line testing functionality. We propose DiCE, an approach

that continuously and automatically explores the system

behavior, to check whether the system deviates from its

desired behavior. DiCE orchestrates the exploration of

relevant system behaviors by subjecting system nodes to

many possible inputs that exercise node actions. DiCE

starts exploring from current, live system state, and op-

erates in isolation from the deployed system. We de-

scribe our experience in integrating DiCE with an open-

source BGP router. We evaluate the prototype’s ability to

quickly detect origin misconfiguration, a recurring oper-

ator mistake that causes Internet-wide outages. We also

quantify DiCE’s overhead and find it to have marginal

impact on system performance.

1 Introduction

Internet’s inter-domain routing, based on the standard

Border Gateway Protocol (BGP), is a prime example

of a distributed system that is fundamentally federated

and heterogeneous. Multiple administrative domains au-

tonomously control their own BGP routers and policies,

while ensuring universal connectivity. Further, the open

standards upon which the Internet is built allow for and

promote numerous, mutually inter-operating implemen-

tations of BGP. Examples of other systems of such nature

include DNS, electronic mail, peer-to-peer content distri-

bution [10], content and resource peering [5].

Recent events have shown that Internet’s routing falls

short of ensuring reliable operation at all times. For

example, Pakistan Telecom mistakenly managed to hi-

jack the vast majority of traffic directed toward YouTube,

making the popular website unreachable to many users

for almost two hours [2]1.

In general, system behavior is the aggregate result of

interleaved actions of system nodes, each of which is

generally driven by code as well as configuration. Un-

derstandably, it is hard to reason a priori about every

corner case and anticipate all possible combinations of

system configurations. As a consequence, insidious bugs

can survive until the system is deployed or configuration

mistakes become a problem under certain unanticipated

conditions — all these with dire consequences for the

system’s reliable operation.

We argued [9] that making heterogeneous and feder-

ated distributed systems reliable is challenging because

(i) the source code of every node may not be read-

ily available for testing and (ii) competitive concerns

are likely to induce individual providers to keep private

much of their current state and configuration.

Our overarching vision is to harness the continuous

increases in available computational power and band-

width to improve the reliability of distributed systems.

In particular, we argue for an online testing functionality

that strives to detect what node actions lead to potential

faults (i.e., deviations of system components from their

expected behavior).

We have to address several difficult challenges (of

which a more thorough account is in [9]). First, the fed-

erated nature of the systems we target give rise to a num-

ber of issues because of the different administrative do-

mains desire to keep private their node states and config-

urations. Most importantly, no single node can have un-

restricted access to remote node state and configuration.

1This problem persists to this day. China Telecom managed to hi-

jack 10% of the Internet prefixes as recently as April 2010. Google’s

services were mistakenly hijacked in July and August of 2010 [1].
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This affects how we can drive the exploration of system

behavior and how we can check system-wide state to de-

tect faults. This also hinders the possibility of simply

applying existing approaches that drive exploration from

the initial state (e.g., [22]). In addition, we need to care-

fully consider what information crosses domain bound-

aries and how to preserve its confidentiality. Second, sys-

tem heterogeneity makes it difficult if not impossible to

have local access at one node to the source or binary code

of other nodes. This difficulty and other constraints we

mentioned above mean that we cannot use existing tech-

niques for live model checking (e.g., [21]) that operate

locally. Last but not least, systematic exploration of sys-

tem behavior or even single node behavior runs into the

problem of exponential explosion of the number of pos-

sible node actions.

In this paper, we introduce DiCE, an approach that

continuously and automatically explores the system be-

havior, to check whether the system deviates from its

desired behavior. DiCE orchestrates the exploration of

relevant system behaviors by subjecting system nodes to

many possible inputs that systematically exercise node

actions. To quickly reach relevant states and overcome

problems with an exponential number of actions, DiCE

starts exploring from current system state, while it oper-

ates in isolation from the deployed system.

We describe our general vision and outline the prob-

lem we want to address in DiCE (§2.1). We provide an

initial design (§2.3) and discuss our experience in inte-

grating DiCE with a BGP router (§3). We evaluate (§4)
the prototype’s ability to quickly detect origin misconfig-

uration, a recurring operator mistake that causes Internet-

wide outages. We also quantify DiCE’s overhead and

find it to have marginal impact on system performance.

2 DiCE

We start by providing an overview of the problem that

we want to address.

2.1 Problem overview

Our goal is to systematically explore system behavior so

as to detect potential faults. At the same time, the ap-

proach that orchestrates the exploration of system behav-

ior needs to accommodate the constraints of federated

and heterogeneous environments.

A central question for reaching this goal is in under-

standing how to drive system behavior. We observe that

distributed system behavior is the aggregate result of in-

terleaved node actions. In turn, these actions are deter-

mined by the paths taken through the code running at

the nodes that is driven by the configuration and the in-

puts. Therefore, to explore node actions, we want to sub-

ject the node’s code to inputs that systematically exercise

the node’s possible actions. In other words, we need a

mechanism that systematically exercises the node’s code

paths.

In practice, achieving extensive path coverage is

greatly limited by the exponential explosion in the num-

ber of possible code paths. Given our desire to quickly

detect potential faults, we would ideally just focus on

covering relevant states. However, these are usually deep

in the execution path. Recall that we target systems that

are likely to run for a long time over which a large his-

tory of inputs accumulates. Thus, we need to avoid the

need to replay a long history of inputs from initial state

to reach a desired point in the code, as doing so can be

prohibitively time-consuming.

An intriguing question is whether local testing of a

single node is sufficient to detect such actions. While

local testing is certainly a necessary step, we argue that

it alone is not sufficient. In fact, local testing does not al-

low to observe far reaching consequences of single node

actions. These consequences need to be observed from a

system-wide perspective.

Therefore, we still need to be able to judge the system-

wide consequences of node actions. In the general case,

this cannot be done locally because a node does not

know, and we assume cannot obtain the state and con-

figuration, of other nodes. Also, a remote node could

be running a different implementation. Effectively, we

face the problem of how to let the local node communi-

cate with remote nodes during exploration of behavior.

However, we must not affect the deployed system and, at

the same time, we need to support checking node states

while preserving confidentiality of private information.

In summary, we are trying to address these questions:

(i) how can we automatically exercise code paths? (ii)
how can we enable code path exploration to guide state

space exploration? (iii) how can we extend the hori-

zon of local state space exploration to reach across the

network? and (iv) how can we check for faults while

preserving privacy between parties?

In this paper, we focus on the first two of these ques-

tions and provide a discussion around the other two. Be-

fore presenting our initial design, we proceed to briefly

review certain software testing techniques that offer the

basic mechanics necessary for systematically exploring

a node’s code paths.

2.2 Background

Symbolic execution (e.g., see [8, 13]) is an automated

testing technique that executes a program by treating the

inputs to the program as symbolic. Upon encountering

a branch that involves symbolic values, the symbolic ex-

ecution engine creates the constraints that correspond to

2
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Figure 1: A concolic execution engine negates the pred-

icates to try to systematically explore code paths (blocks

that are executed in each run are shown as shaded).

both sides of the branch, and schedules execution to take

place down both paths. It then queries a constraint solver

to determine which paths are feasible, so that they can be

explored. While symbolic execution is in theory capable

of exploring all possible paths in the program, in prac-

tice it is severely limited as the number of paths to ex-

plore in an application grows exponentially with the size

of the input and the number of branches in the code. A

typical symbolic execution engine starts exploring paths

from the beginning of the program and progressively ex-

plores all paths for which it can find suitable input values.

Concolic execution (e.g., see [7, 11]) is a variant of

symbolic execution that, instead of strictly operating on

symbolic inputs, executes the code with concrete inputs

while still collecting constraints along code paths. To

drive execution down a particular path, the concolic ex-

ecution engine picks a constraint (e.g., branch predicate)

and queries the constraint solver to find a concrete input

value that negates the constraint. Figure 1 illustrates this

process. The main benefit of concolic execution is the

ease in interacting with the environment (due to the use

of concrete values), and less overhead during execution

than the “classic” symbolic execution (e.g., only one call

to the constraint solver for every branch).

2.3 Initial design

DiCE employs a concolic execution engine to solve

the mechanical problem of exercising all possible code

paths. Unlike standard concolic execution, DiCE starts

exploring from the current, live state because of the de-

sire to (i) quickly detect potential faults, and (ii) avoid
the overhead of replaying execution from initial state to

reach a desired point in the code (as we expect a large

history of inputs).

First, DiCE takes a node checkpoint. Then, DiCE

clones this checkpoint and feeds it with a previously ob-

served input (i.e., a message) to record the constraints

that are encountered on the code path executed by invok-

ing a message handler with that input. We rely on the

programmer to identify message handlers and we only

use those to process inputs for path exploration. This

design decision lets us quickly zoom in on the relevant

code, at the expense of requiring some developer in-

volvement2. After completing the recording of these ini-

tial constraints recording, the concolic execution engine

starts negating constraints one at a time, resulting in a set

of inputs. To explore a particular input, DiCE makes a

clone of the checkpoint, and then resumes execution with

that input from the checkpointed state. The constraints

encountered on the code path during execution with that

particular input are once again recorded and used to up-

date the aggregate set of constraints so far encountered.

Updating the aggregate set is important for achieving full

coverage, since the previous runs might not have reached

all branches that exist in the code.

Note that we want the exploratory execution over a

node checkpoint to work alongside the running system.

Therefore, DiCE intercepts the messages generated dur-

ing exploration.

2.4 Discussion

We consider the ability to explore node actions that we

described as the initial building block for providing a full

online testing functionality.

In fact, once we can locally exercise all possible node

actions, we can then turn to how to observe their conse-

quences on the system-wide state. We anticipate that we

would let these actions result into messaging with other

nodes in a way that doesn’t affect the live system. For

instance, we could intercept all messages and let them

go through isolated communication channels. In addi-

tion, we would enable remote nodes to checkpoint their

state and process these messages in isolation over their

checkpointed states. Effectively, this would extend the

scope of the concolic execution engine to reach across

the network and exercise system behavior.

Ultimately, we want to check system-wide states for

faults. We envision that, by having a notion of desired

system behavior, we could check whether the system de-

viates from its desired behavior during the exploration

with particular inputs. However, it is challenging to

check system-wide states without compromising the con-

fidentiality of private information. As we noted earlier,

there cannot be unrestricted access to node states and

configurations. In essence, we would want to control the

information shared across domains and ensure that nodes

only communicate state information through a narrow in-

terface yet capable to allow us to detect faults.

2Given the great importance of the deployed federated systems, this

effort is well-justified.

3
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3 Experiences with the BGP use case

This section describes our DiCE prototype and details

our experiences for integrating with the BGP implemen-

tation of BIRD [3] 1.1.7 open-source routing daemon.

Because of space limit, we omit a review of BGP and

point the reader to [14] for a succinct overview and to the

RFC [20] for full details. We first introduce Oasis [11],

the concolic execution engine we use.

3.1 Oasis

We use the Oasis concolic execution engine [11] as the

basis for code path exploration. Oasis is a result of sub-

stantial modification of the Crest [7] concolic execution

engine. Oasis instruments C programs using CIL [18] to

be able to track at run-time the statements executed and

record the constraints on symbolic inputs. Oasis handles

the entire C language and supports interaction with the

network and filesystem. Oasis has multiple search strate-

gies, and it can execute multiple explorations in parallel.

The default exploration strategy, which we use, attempts

to cover all execution paths reachable by the set of con-

trolled symbolic inputs.

3.2 Prototype implementation

Our DiCE prototype consists of a modified version of

Oasis and a part written in C and integrated in BIRD.

We modify Oasis in three ways. First, we introduce

support in Oasis to explore by resuming execution from

a checkpoint instead of starting a new execution for each

set of inputs. Second, we change the Oasis filesys-

tem/network model to control the interactions of the pro-

gram under test with the environment and ensure isola-

tion from the running system. Third, we modify Oasis to

allow both the original and the instrumented code to be

automatically compiled and linked in a single executable,

where they co-exist and operate on the same data in a

similar fashion to the work by Anagnostakis et al. [6].

This enables the running systems to run with virtually no

overhead, and only during exploration, which takes place

off the critical path, switch to the instrumented code.

For integrating with BIRD, we first change its BGP

implementation to mark certain inputs as symbolic. We

choose to treat UPDATE messages as the basis to derive

new inputs during exploration. In BGP, UPDATE mes-

sages are the main drivers for state change while the other

state changing messages are only responsible for estab-

lishing or tearing down peerings and we leave them for

future work.

A simple approach would be to mark an entire UP-

DATE message as symbolic. However, this has the ef-

fect of causing Oasis to produce a large variety of in-

valid messages that simply exercise the message pars-

ing code3. This is undesirable for us because we want

to explore node actions, and so we need to go deeper

in the message processing code. As the format of BGP

messages is well-defined in the RFC [20], we selectively

define as symbolic small-sized inputs that directly de-

rive from the message. For instance, the Network Layer

Reachability Info (NLRI) region of the message con-

tains the announced routes with their respective netmask

lengths. We mark these as symbolic. An UPDATE mes-

sage also typically carries multiple path attributes each of

which is encoded as a type, length, and value fields that

can also be marked symbolic. However, one needs to be

careful that the symbolic length matches the actual length

of the value field and that its semantic is consistent with

the attribute type; otherwise the message is invalid and

of no utility. Note that this approach is very effective in

reducing the space of exploration because the produced

messages are always syntactically valid.

In practice, this choice allows DiCE to construct in-

puts that exercise BGP behavior in two dimensions: the

first due to BIRD’s code implementing BGP, the second

as the result of the particular configuration currently in

use. This is because the source code instrumentation en-

compasses the BIRD’s configuration interpreter and so

allows Oasis to record constraints for the interpreted con-

figuration. Therefore, the explored execution paths are

comprehensive of both code and configuration. Finally,

to enable Oasis to perform path exploration of BIRD’s

code, we handle the well-known cases that are difficult

or impossible to handle in symbolic execution. For ex-

ample, we avoid recording constraints that result from

applying hash functions, as they cannot be reversed.

We make a second change to BIRD for taking a check-

point. We implement this procedure by simply using the

fork system call. This way of checkpointing allows

us to create a large number of checkpoints with a small

memory footprint. We are careful to isolate the forked

process from its parent by closing the open sockets.

4 Evaluation

We use a 2.6 GHz 48-core machine with 64 GB of RAM,

running Linux 2.6.30. Using virtual interfaces and multi-

ple BIRD router instances, we install the 3-router topol-

ogy shown in Figure 2. DiCE runs in the Provider’s

router. The DiCE-enabled router loads 319,355 prefixes

from the “rest of the Internet” where we replay a BGP

trace obtained from RouteViews (a full dump plus 15-

min updates trace from route-views.eqix at April 1, 2010,

17:28 UTC). To be able to detect route leaks, we con-

3Which ought to be correct and could anyway be tested with a sym-

bolic execution engine that targets single-machine code.

4
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Figure 2: The experimental topology.

figure a partially correct route filtering. Customer route

filtering happens in the provider and is a best common

practice currently adopted by several large ISPs to de-

fend against BGP prefix hijacking.

4.1 Performance impact

Here we provide a summary of the micro-benchmarks

we run to understand how much DiCE impacts memory

and CPU usage during exploration.

Memory overhead. We perform measurements that

quantify the memory overhead on a BIRD router that

has a full routing table loaded. We then run the ex-

ploration while the routers processing a 15 minute trace

replay of BGP messages. The checkpoint process has

3.45% unique memory pages. The processes forked for

exploring from the checkpoint process consume on aver-

age 36.93% pages more (maximum of 39%).

CPU/performance. We use the number of BGP update

messages the DiCE-enabled router handles per second

as a measure of how much the performance is affected

while running exploration. The BIRD processes are con-

figured to run on separate CPU cores, with the explorer

having to share the single CPU core with its checkpoints

that are used during exploration.

Under full load (running the exploration while load-

ing the routing table), the BIRD process manages 13.9

updates per second. Without exploration, in the same in-

terval of time during the trace replay, it is handling 15.1

updates per second. Thus, the performance impact even

in this most stressful case is still small, namely 8%.

In a different, more realistic scenario, we run the ex-

ploration a few minutes inside the replay of a real-time

trace of 15 min (after the full routing table was loaded).

In this case the difference is negligible, with the BIRD

process managing 0.272 queries per second during ex-

ploration and 0.287 when free to use the full CPU core.

4.2 Detecting route leaks

In a highly publicized router misconfiguration incident,

Pakistan Telecom (an ISP) managed to divert to itself and

drop the vast majority of traffic directed toward YouTube,

the popular video-on-demand website. Consequently,

this important service was unavailable for almost two

hours [2]. In this particular case of BGP misconfigura-

tion called prefix hijacking, there were two compounded

errors that caused the fault. First, Pakistan Telecom an-

nounced a route that it had only intended to blackhole

(i.e., make YouTube unavailable to Pakistani residents).

Second, PCCW, the upstream provider for Pakistan Tele-

com, did not have filters installed to limit the spreading

of this announcement.

To replicate the IP prefix hijacking problem in our

testbed, we misconfigured customer route filtering at the

Provider AS. That is, its policy either fails to filter cus-

tomer routes or has erroneous filters. Then, DiCE lo-

cally exercises all possible execution paths, which also

include the “if” statements in the configured filters. For

each exploratory message, we check whether the an-

nounced route (as determined by Oasis’s manipulation

of the NLRI) is accepted, and in this case we detect a

potential hijack if that route overrides the origin AS of a

route already in the routing table prior to starting explo-

ration4. Certain prefixes are “hijackable” by nature, e.g.,

those used for IP anycast, and would appear as false pos-

itives. DiCE can simply filter these out once it is made

aware of the IP anycast address space.

The benefit from running DiCE for a network operator

is significant, as DiCE clearly states which prefix ranges

can be leaked. In the case of YouTube hijacking, Pak-

istan’s upstream provider would have been able to install

a correct filter.

5 Related work

CrystalBall [21], and MODIST [22] represent the state-

of-the-art in model checking distributed system imple-

mentations. CrystalBall [21] proactively predicts incon-

sistencies that can occur in a running distributed system

due to unknown programming errors, and effectively pre-

vents them. MODIST [22] is capable of model checking

unmodified distributed systems.

Symbolic [8, 13] and concolic execution [11, 7] are

techniques for achieving complete coverage of possi-

ble code paths and are effective in discovering bugs for

single-machine code. In DiCE, we leverage concolic ex-

ecution as the base mechanism for exploring distributed

system states starting from covering possible node ac-

tions and ultimately judge their system-wide impact.

Collaboration among a program’s or a system’s stake-

holders has been used in similar contexts. For example,

Liblit et al. [15] proposed an approach that infers bugs

by gathering information from the program’s users. A

4This assumes that the existing routes are trustworthy.

5
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sampling technique is used to maintain a low instrumen-

tation overhead. Orso et al. [19] suggested an approach

for continuously analyzing deployed software with mini-

mal instrumentation with the goal of improving software

quality. In the context of collaborative security, Locasto

et al. [16] proposed that members of an application com-

munity share the burden of monitoring for software flaws

and attacks, and notify the rest of the community when

such are detected.

Nagaraja et al. [17] focused on operator mistakes in

Internet services and argued for the creation of an on-

line validation environment to be used to check operator

actions before they are made visible. We consider their

approach complementary to DiCE, in that our approach

could be extended to explore system behavior under spe-

cific operator actions before they are introduced in the

running system. In the case of a single ISP’s routers,

Alimi et al. [4] proposed to install an alternative config-

uration with which network operators can test proposed

changes before committing them to the production net-

work. Feamster et al. [12] demonstrated the effective-

ness of static analysis to look for faults in the set of router

configurations, but cannot check live node states.

6 Conclusions

In this paper we argued for leveraging the increases

in computational power and bandwidth to make feder-

ated and heterogeneous distributed systems more reli-

able. We presented a preliminary design of DiCE, a sys-

tem that systematically exercises node behavior with the

goal of ultimately checking the system-wide impact of

each node behavior. We described our experience in in-

tegrating a path exploration engine with an open-source

BGP router written in C. We also outlined the challenges

in extending this kind of online testing to reach across

the network. Finally, we demonstrated our prototype’s

ability to detect BGP route leaks - an important class of

configuration errors that plagues the Internet.
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Philip J. Guo and Dawson Engler
Stanford University

Abstract

It can be painfully hard to take software that runs on
one person’s machine and get it to run on another ma-
chine. Online forums and mailing lists are filled with
discussions of users’ troubles with compiling, installing,
and configuring software and their myriad of dependen-
cies. To eliminate this dependency problem, we cre-
ated a system called CDE that uses system call interposi-
tion to monitor the execution of x86-Linux programs and
package up the Code, Data, and Environment required
to run them on other x86-Linux machines. Creating a
CDE package is completely automatic, and running pro-
grams within a package requires no installation, config-
uration, or root permissions. Hundreds of people in both
academia and industry have used CDE to distribute soft-
ware, demo prototypes, make their scientific experiments
reproducible, run software natively on older Linux distri-
butions, and deploy experiments to compute clusters.

1 Introduction

Most programmers want other people to run their soft-
ware. Unfortunately, the path from having a piece of
software running on the programmer’s own machine to
getting it running on someone else’s machine is fraught
with potential pitfalls. For instance, the programmer
might have forgotten to document a crucial step in the
magic incantation needed during the installation process.
Or forgotten to list a library version dependency, leading
to mysterious run-time errors when the wrong version
gets silently run on the user’s machine. Or listed the right
library version, but one which is either hard to obtain
or conflicts with a library needed by a different program
on the user’s machine. Or the software itself might re-
quire libraries that depend on many other libraries, which
themselves need to be transitively obtained and installed
by the user, leading to an aggravating experience known
as dependency hell. Finally, the user might lack the per-

missions or willingness to risk installing software pack-
ages as root in the first place, a common occurrence on
corporate machines and clusters administered by IT staff.

To alleviate these frustrations, we have created an
open-source tool named CDE that monitors program exe-
cution using ptrace and automatically packages up the
Code, Data, and Environment required to run a set of
x86-Linux programs on other x86-Linux machines [1].

The main benefits of CDE are that creating a package is
completely automatic, and that running programs within
a package requires no installation, configuration, or root
permissions, thereby eliminating dependency hell.

The main limitation of CDE is that it is not guaran-
teed to find all the dependencies required for a complete
package, so it is up to the user to insert additional files if
necessary. Also, packages are only portable across ma-
chines with a compatible architecture and Linux kernel
version. Despite these limitations, CDE has been down-
loaded over 2,000 times, and we have received hundreds
of emails from users who have used it to quickly test and
deploy software without installing any dependencies.

2 CDE system overview
We will use an example to introduce the core features of
CDE. Suppose that Alice is a climate scientist whose ex-
periment involves running a Python weather simulation
script on a Tokyo dataset using this Linux command:

python weather_sim.py tokyo.dat

Alice’s script (weather_sim.py) imports some 3rd-
party Python extension modules, which consist of opti-
mized C++ numerical analysis code compiled into shared
libraries. If Alice wants her colleague Bob to run and
build upon her experiment, then it is not sufficient to just
send her script and tokyo.dat data file to him. Even if
Bob has a compatible version of Python on his machine,
he will not be able to run her script until he compiles,
installs, and configures the extension modules that she
used (and all of their transitive dependencies).
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cde-package/
  cde-root/
    usr/
      lib/

/usr/lib/weather.so

weather.so

cde <command>
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copy

cde-package/
  cde-root/
    usr/
      lib/

/usr/lib/weather.so

weather.so

cde-exec <command>

redirect open()

Bob's computer

Alice's computer

filesystem

filesystem

1.

3.

2.

Figure 1: Example use of CDE: 1.) Alice runs her com-
mand with cde to create a package, 2.) Alice sends
package to Bob’s computer, 3.) Bob runs command with
cde-exec, which redirects file accesses into package.

2.1 Creating a new package with cde
To create a self-contained package with all dependencies
required to run her experiment on another machine, Alice
prepends her command with the cde executable:

cde python weather_sim.py tokyo.dat

cde runs her command normally and uses the Linux
ptrace mechanism to monitor all files it accesses
throughout execution. cde creates a new sub-directory
called cde-package/cde-root/ and copies all of
those accessed files into there, mirroring the original
directory structure. For example, if her script dy-
namically loads an extension module (shared library)
named /usr/lib/weather.so, then cde will copy it
to cde-package/cde-root/usr/lib/weather.so

(see Figure 1). When execution terminates, the
cde-package/ sub-directory (which we call a ‘CDE
package’) contains all of the files and environment vari-
ables required to run Alice’s original command.

2.2 Executing a package with cde-exec
Alice zips up the cde-package/ directory and transfers
it to Bob’s Linux machine. Now Bob can run Alice’s ex-
periment without installing anything on his machine. He
unzips the package, changes into the sub-directory con-
taining the script, and prepends the original command
with the cde-exec executable (also in the package):

cde-exec python weather_sim.py tokyo.dat

cde-exec sets up the environment variables saved
from Alice’s machine and executes the version of
python and its extension modules from within the pack-
age. cde-exec uses ptrace to monitor all system
calls that access files and rewrites their path arguments
to the corresponding paths within the cde-package/

cde-root/ sub-directory. For example, when her script
requests to load the /usr/lib/weather.so extension
library using an open system call, cde-exec rewrites
the path argument of the open call to cde-package/

cde-root/usr/lib/weather.so (see Figure 1). This
path redirection is essential, because /usr/lib/

weather.so probably does not exist on Bob’s machine.
Not only can Bob reproduce Alice’s exact experiment,

but he can also edit her script and dataset and then re-
run to explore variations and alternative hypotheses, as
long as he does not cause the script to import new Python
extension modules that are not in the package.

3 Implementation

CDE uses the Linux ptrace system call to monitor the
target program’s processes, read and write to its memory,
and modify its system call arguments, all without requir-
ing root permission. We implemented CDE by adding
2500 lines of C code to the strace system call moni-
toring tool. The same ideas could be used to implement
CDE for other architectures or operating systems.

3.1 Creating a new package with cde

Primary action: The main job of cde is to use ptrace
to monitor the target program’s system calls and copy all
of its accessed files into a self-contained package. Af-
ter the kernel finishes executing a syscall that takes a file
path string as an argument (the ‘File path access’ cate-
gory in Table 1) and is about to return to the target pro-
gram, cde wakes and observes the return value. If the
return value signifies that the indicated file exists, then
cde copies that file into the package.

Prior to copying a file into the package, cde creates all
necessary sub-directories and symbolic links to exactly
mirror that file’s location. If a file is a symlink, then both
it and its target must be copied into the package.

If the copied file is an ELF binary, then cde searches
its contents for constant strings that are filenames and
then recursively copies those files into the package. This
simple hack works well in practice to partially overcome
CDE’s limitation of only being able to gather dependen-
cies on executed paths, since many binaries dynamically
load libraries named by constant strings.
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Category Linux syscalls cde action cde-exec action

File path access open[at],mknod[at],fstatat64

access,faccessat,readlink[at]

truncate[64],stat[64],creat

lstat[64],oldstat,oldlstat Copy file into package Redirect path into package
chown[32],lchown[32]

fchownat,chmod,fchmodat

utime,utimes,futimesat

Local IPC sockets bind,connect none Redirect path into package

Mutate filesystem link[at],symlink[at] Repeat in package Redirect path into package
rename[at],unlink[at]

mkdir[at],rmdir

Get current dir. getcwd Update current dir. Spoof current dir.

Change directory chdir,fchdir Update current working directory

Spawn child fork,vfork,clone Track child process or thread

Execute program execve Copy bin & linker into pkg Maybe run dynamic linker

Table 1: The 48 Linux system calls intercepted by cde and cde-exec, and actions taken for each category of syscalls.
Syscalls with suffixes in [brackets] include variants with/without the suffix: e.g., open[at] means open and openat.

Mutate filesystem: After each call that mutates the
filesystem, cde repeats the same action on the corre-
sponding copies of files in the package. For example,
if a program renames a file from foo to bar, then cde

also renames the copy of foo in the package to bar.

Updating current working directory: At the comple-
tion of getcwd, chdir, and fchdir, cde updates its
record of the monitored process’s current working direc-
tory, which is necessary for resolving relative paths.

Tracking sub-processes and threads: If the target pro-
gram spawns sub-processes, cde also attaches onto those
children with ptrace (it attaches onto spawned threads
in the same way). cde keeps track of each monitored
process’s current working directory and shared memory
segment address (needed for §3.2). cde remains single-
threaded and responds to events queued by ptrace.

3.2 Executing a package with cde-exec

Primary action: The main job of cde-exec is to use
ptrace to redirect file paths that the target program re-
quests into the package. Before the kernel executes most
syscalls listed in Table 1, cde-exec rewrites their path
argument(s) to refer to the corresponding path within
cde-package/cde-root/. By doing so, cde-exec
creates a chroot-like sandbox that fools the program into
‘believing’ that it is executing on the original machine.

To reliably rewrite syscall arguments, cde-exec redi-
rects the pointer to the argument’s buffer. When a target
process first makes a syscall, cde-exec forces it to make

another syscall to attach a 16KB shared memory segment
(a trick from [16]). Prior to every file path access syscall,
cde-exec computes and writes the redirected path into
shared memory and uses ptrace to mutate the syscall’s
argument, stored in a register, to point to the start of the
shared memory segment in the target’s address space.

Spoofing current working directory: At the comple-
tion of the getcwd syscall, cde-exec mutates (trun-
cates) its return value string to eliminate all absolute path
components up to and including cde-root/.

execve: When the target program executes a
dynamically-linked binary, cde-exec rewrites the
execve syscall arguments to execute the dynamic linker
stored in the package rather than directly executing the
binary. The dynamic linker on one distro might not be
compatible with binaries created on another distro due
to minor differences in ELF binary formats. Therefore,
to maximize portability across machines, cde copies
the dynamic linker into the package, and cde-exec

executes the dynamic linker from the package rather
than having Linux execute the system’s version. Without
this hack, even a trivial “hello world” binary compiled
on one distro (e.g., Ubuntu with Linux 2.6.35) will not
run on an older one (e.g., Knoppix with Linux 2.6.17).

Ignoring files and environment vars: By convention,
Linux directories like /dev, /proc, and /sys contain
pseudo-files that do not make sense to include in a CDE
package. To improve package portability, we have man-
ually created a user-customizable blacklist of a dozen di-
rectories, files, and environment variables for CDE to ig-
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nore. cde will not copy ignored files (or vars) into a
package, and cde-exec will not redirect their paths and
instead access the real versions on the target machine.

4 Limitations

Executing a command within a CDE package will fail if:

• the arguments or input change to make the program
load a new file (e.g., library, config file) that the
original execution did not load. In general, no au-
tomatic tool (static or dynamic) can find all the de-
pendencies required to execute all possible program
paths, since that problem is undecidable. However,
since a CDE package is just an ordinary directory
tree, it is easy for users to directly add more files
into the package if necessary. Also, if the user runs
multiple commands in the same directory, cde will
add additional files into the same cde-package/.

• the Linux kernel or hardware architecture on the tar-
get machine is incompatible with the binaries in the
package. Mainstream distros contain libraries that
are forwards- and backwards-compatible over sev-
eral years. For example, the standard libs on 2010-
era Ubuntu work on distros from as old as 2006
(≥ 2.6.15 kernel), and the libs on 2007-era Fedora
work on 2004-era distros (≥ 2.6.9). Also, our in-
tuition is that packages created today will run fine
on Linux 2.6 distros from several years in the fu-
ture, since kernel developers place high priority on
maintaining backwards compatibility in the kernel-
to-user ABI. Users who desire greater portability or
‘future-proofing’ can embed CDE packages within
virtual machine or processor emulator images.

In addition, CDE is limited by the limitations of
ptrace and of executing binaries by explicitly invok-
ing the dynamic linker. ptrace can cause subtle differ-
ences in the semantics of traced processes, most notably
that a process being monitored by ptrace cannot itself
ptrace another process, which precludes the use of CDE
alongside applications like symbolic debuggers. Also,
there is a known bug on certain Ubuntu distros where the
bash shell non-deterministically crashes when invoked
explicitly with a dynamic linker; a workaround is to have
CDE use the machine’s native bash shell on those distros.

5 Real-world use cases

Since we released the first version of the CDE executable
online on Nov 9, 2010, it has been downloaded at least
2,000 times (as of April 2011) [1]. We have exchanged
hundreds of emails with CDE users and discovered six
salient use cases as a result of our discussions. For our

experiments (see Table 2), we used representative pack-
ages from each use case category (names in bold).

Distributing research software: The creators of two re-
search tools — the arachni web app. security scanner
[5] and the graph-tool math library [6] — used CDE
to create portable binary packages that they uploaded to
their project websites, so that their users do not have to
go through the anguish of compiling them from source.

In addition, we used CDE to create portable binary
packages for two of our Stanford colleagues’ research
tools, which were originally distributed as hard-to-
compile source code tarballs: pads [11] and saturn [8].

Running software on incompatible distros: Even
production-quality software might be hard to install on
Linux distros with older kernel or library versions. For
example, a Cisco engineer wanted to run some new open-
source tools on his work machines, but the IT department
mandated that those machines run an older, more secure
enterprise Linux distro. He could not install the tools
on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade.
Therefore, he installed a modern distro at home, ran CDE
on there to create packages for the tools he wanted to
port (e.g., the meld visual text diff tool), and then ran the
tools from within the packages on his work machines.

Hobbyists applied CDE in a similar way: A game en-
thusiast could only run a classic game (bio-menace)
within a DOS emulator on one of his Linux machines,
so he used CDE to create a package and can now play the
game on his other machines. We also helped a user create
a portable package for the Google Earth 3D map applica-
tion (google-earth), so he can now run it on older dis-
tros whose libraries are incompatible with Google Earth.

Reproducible computational experiments: A funda-
mental tenet of science is that colleagues should be able
to reproduce the results of one’s experiments. Recently,
some science journals and CS conferences are starting to
encourage authors of published papers to put their code
and datasets online, so that others can independently re-
run, verify, and build upon their experiments. However,
it can be hard to set up all of the (often-undocumented)
dependencies required to re-run experiments.

Scientists can run the experiment once on their ma-
chine with CDE to create a package, and colleagues can
run that package on any contemporary Linux machine to
repeat the experiment. A robotics researcher used CDE
to make the experiments for his motion planning paper
(kpiece) [17] fully-reproducible. Similarly, we helped a
social networking researcher create a reproducible pack-
age for his genetic algorithm paper (gadm) [15].

Deploying computations to cluster or cloud: Our col-
league Peter wanted to use a department-administered
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100-CPU cluster to run a parallel image processing job
on topological maps (ztopo). However, since he did not
have root access on those older machines, it was nearly
impossible for him to install all of the dependencies re-
quired to run his computation, especially the image pro-
cessing libraries. Peter used CDE to create a package by
running his job on a small dataset on his desktop, trans-
ferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.

Similarly, we worked with lab-mates to use CDE to de-
ploy the CPU-intensive klee [10] bug finding tool from
the desktop to Amazon’s EC2 cloud computing service
without needing to compile Klee on the cloud machines.

Submitting executable bug reports: Bug reporting is a
tedious manual process. Users submit reports by writing
down the steps for reproduction, exact versions of exe-
cutables and dependent libraries, and maybe attaching an
input that triggers the bug. Developers often have trouble
reproducing bugs based on these hand-written descrip-
tions and end up closing reports as “not reproducible.”

CDE offers an easier solution: The reporter can simply
run the command that triggers the bug under CDE super-
vision to create a CDE package, send that package to the
developer, and the developer can re-run that same com-
mand on their machine to reproduce the bug. Three bug
reporters sent us CDE packages, and we were able to re-
produce all of their bugs: one that causes the Coq proof
assistant to produce incorrect output (coq-bug) [2], one
that segfaults the GCC compiler (gcc-bug) [3], and one
that makes the LLVM compiler allocate an enormous
amount of memory and crash (llvm-bug) [4].

Collaborating on class projects: Rahul, a Stanford
grad student, was using the NLTK natural language pro-
cessing module to build a semantic email search engine
(email-search) for a machine learning class. Despite
much struggle, Rahul’s two teammates were unable to
install NLTK on their machines due to conflicting li-
brary versions and dependency hell, so they only had one
runnable copy. Rahul used CDE to create a package for
their project and was able to run it on his two teammates’
machines, so that all three of them could test and debug
in parallel. Similarly, an undergrad used CDE to collabo-
rate on and demo his virtual reality project (vr-osg).

6 Summary of experimental results

Due to space constraints, we summarize our main exper-
imental results. Full details are in our tech report [12].

Package portability: To demonstrate that CDE packages
can successfully execute on a range of Linux variants, we
tested our benchmark packages on six popular distros,
listed with the versions and release dates of their kernels:

Package name Origin Num libs Slowdown

Distribute research software
arachni [5] 2.6.35 48 (6)
graph-tool [6] 2.6.26 149 (9)
pads [11] 2.6.24� 9 (5) 28%
saturn [8] 2.6.18� 16 (8) 18%

Run production software on incompatible distros
meld 2.6.35 93 (8)
bio-menace 2.6.33 27 (26)
google-earth 2.6.24 � 82 (3) 19%

Create reproducible computational experiments
kpiece [17] 2.6.35 30 (30)
gadm [15] 2.6.18 � 18 (4) 5%

Deploy computations to cluster or cloud
ztopo 2.6.35 59 (35)
klee [10] 2.6.32� 6 (6) 2%

Submit executable bug reports
coq-bug [2] 2.6.32 3 (3)
gcc-bug [3] 2.6.36 13 (2)
llvm-bug [4] 2.6.35 8 (8)

Collaborate on class programming projects
email-search 2.6.32 138 (28)
vr-osg 2.6.35 39 (28)

Table 2: CDE packages by category. The ‘Origin’ col-
umn shows the kernel version where a package was cre-
ated, and a star� means it was created by the first author.
The ‘Num libs’ column shows number of shared libraries
(and number of statically-discoverable libs in parens).

1. CentOS 5.5 (Linux 2.6.18, Sep 2006)

2. Fedora Core 8 (Linux 2.6.23, Oct 2007)

3. openSUSE 11.1 (Linux 2.6.27, Oct 2008)

4. Ubuntu 9.10 (Linux 2.6.31, Sep 2009)

5. Mandriva Free Spring (Linux 2.6.33, Feb 2010)

6. Linux Mint 10 (Linux 2.6.35, Aug 2010)

Out of the 108 configurations we tested (18 CDE pack-
ages1 each run on 6 Linux distros), all executions suc-
ceeded except for one (vr-osg failed on Fedora Core 8
with a known graphics-related error). By ‘succeeded’ we
mean that the programs appeared to run correctly: Batch
programs generated identical outputs across distros, and
we could interact normally with GUI programs.

Necessity of dynamic tracking: We compared CDE
against a static analysis that recursively runs the Linux
ldd and strings utilities on executables files and li-
braries to find all string constants representing dependent

1Two of our benchmarks had both 32-bit and 64-bit versions.
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libraries. Although this technique is simple, it represents
what people actually do in practice, since it automates
the tedious manual process of “chasing down and copy-
ing over dependent libraries” that folk wisdom suggests
as the way to transport programs across machines.

The ‘Num libs’ column in Table 2 shows that in all
but four benchmarks, the static technique found fewer
libraries than CDE (the number of statically-discoverable
libraries shown in parentheses). Thus, it cannot be used
to create a portable package since the program will fail
if even one library is missing. For similar reasons, static
linking when compiling will not work either. This is why
CDE’s static+dynamic dependency tracking is necessary.

Run-time slowdown: We informally evaluated slow-
downs on the five CDE packages we created (those
marked with � in Table 2). Executing those programs
within CDE packages were 2% − 28% slower than exe-
cuting natively. The more system calls a program issues
per second, the more CDE causes it to slow down, since
the kernel must context switch to the CDE process during
every syscall. We have heard that ptrace interposition
can cause slowdowns of 10X or more, but we have not
yet performed a rigorous performance stress test.

7 Related work

We know of no published system that automatically cre-
ates portable software packages in situ from a live run-
ning machine like CDE does. Existing tools for creating
self-contained applications all require the user to man-
ually specify dependencies. For example, Mac OS X
programmers can create self-contained application bun-
dles using Apple’s developer tools. PDS is a prototype
tool for creating self-contained Windows apps, which re-
quires the user to manually specify a dependency list [9].

VMware ThinApp is a commercial tool that automat-
ically creates self-contained portable Windows applica-
tions. However, a user can only create a package by hav-
ing ThinApp monitor the installation of new software [7].
Unlike CDE, ThinApp cannot be used to create packages
from existing software already installed on a live ma-
chine, which is our most common use case.

Virtual machine snapshots achieve CDE’s main goal
of capturing all dependencies required to execute a set of
programs on another machine. However, they require the
user to always be working within a VM from the start of
a project (or else re-install all of their software within a
new VM). Also, VM snapshot disk images are (by defi-
nition) larger than the corresponding CDE packages since
they must also contain the OS kernel and other extrane-
ous applications. CDE is a more lightweight solution be-
cause it enables users to create and run packages natively
on their own machines rather than through a VM.

Finally, system call interposition using ptrace is a
well-known technique that has been used for implement-
ing tools such as secure sandboxes [13], record-replay
systems [14], and user-level filesystems [16].
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We present Vsys, a mechanism for restricting access

to privileged operations, much like the popular sudo

tool on UNIX. Unlike sudo, Vsys allows privileges to

be constrained using general-purpose programming lan-

guages and facilitates composing multiple system ser-

vices into powerful abstractions for isolation. In use for

over three years on PlanetLab, Vsys has enabled over

100 researchers to create private overlay networks, user-

level file systems, virtual switches, and TCP-variants

that function safely and without interference. Vsys has

also been used by applications such as whole-system

monitoring in a VM. We describe the design of Vsys

and discuss our experiences and lessons learned.

1 Introduction

One of the key challenges we have faced when operating

PlanetLab [1, 11] is helping researchers to implement

and evaluate new ideas while maintaining a reasonable

level of isolation between experiments (each of which

runs in a separate slice). PlanetLab users may require

the ability to sniff a subset of network traffic for diagnos-

tic purposes, gain access to certain log data restricted to

administrators, view global system state that is typically

hidden from users, reserve TCP and UDP ports, create

IP-level rules, and so on. We have received these re-

quests frequently and continue to do so today [13]. Our

goal is to grant such privileges to enable research, while

simultaneously preserving isolation and the principle of

least privilege to the extent possible.

Service isolation can be imposed at multiple levels in

any system. A current trend is to equate virtual ma-

chines with service isolation, but different degrees of

isolation can be enforced by the hardware, virtual ma-

chines, operating system, and user-space tools. On a

PlanetLab node, Linux-Vservers [15] run each exper-

iment in a chroot environment that prevents cross-

domain actions between slices, and that provides a “su-

peruser” account with limited privileges. However, since

all slices share a single OS kernel, it is possible to grant

additional OS privileges to a particular slice, for exam-

ple, to let the “superuser” bind privileged ports or add

routes to the kernel’s IP forwarding table. But it is these

sorts of these privileges that, if misused, can unaccept-

ably impact other slices. We would like to limit a partic-

ular user to only bind port 53 to run his DNS service, and

to only change routes on virtual devices that he controls.

The problem is that the abstractions the OS gives us do

not support granting privileges to users while imposing

narrow limits on how they are used.

In this paper we describe Vsys, a framework that al-

lows users to invoke privileged operations via scripts

called extensions that precisely specify how these opera-

tions can be accessed. Vsys is inspired by the UNIX phi-

losophy of creating new system services by combining

simple OS primitives: Vsys enforces security policies

and achieves isolation through a combination of existing

OS primitives. For example, packet filters can block a

subset of IP traffic from a service, virtual devices com-

bined with bridging can be used to filter Ethernet traffic,

grep can filter access to files, IP policy routing can in-

stantiate key-based routes for packets, and so on.

Vsys began with the modest goal of being a sudo

compatible with chroot jails. The sudo [17] tool al-

lows users to run programs with the privileges of another

user. It enables coarse-grained admission control via an

access control list of commands that each user is allowed

to run, along with limited predicates on the arguments.

Vsys is designed with three primary goals that make it

an improvement over sudo: (1) ease of assembling new

extensions from existing OS abstractions and tools, us-

ing arbitrary programming languages; (2) ease of access-

ing extensions from the UNIX command line or within

arbitrary programs; and (3) maintaining a fine-grained

level of control over exactly what extensions users are

able to invoke and how. With Vsys, simple tools can be

used to rapidly develop extensions that multiple services

can access safely. Unlike modifications to the virtual

machine or OS layers of the system, a new Vsys exten-

sion can be developed and deployed on PlanetLab in a

matter of days and enhanced incrementally over time.

This paper makes three contributions. First, we dis-

cuss the design of Vsys, an important feature of which

is an Access Control Policy (ACP). Vsys ACPs insert

policy code between the user, the Vsys extension, and

the OS to ensure that the invocation of a given building-

block command is consistent with the privilege granted

to the user. Second, with the help of four heavily-used

Vsys extensions, we show that existing OS primitives

can be composed into powerful isolation abstractions,

enabling functions such as virtual networking. While

variants of the security mechanisms underlying Vsys

have been explored before, Vsys is novel both in its de-

tails, and in its scope—for instance, in how extensions

crosscut multiple OS subsystems (packet filtering, rout-
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ing, sockets, file systems, etc.). Furthermore, Vsys has

been used on a large scale for several years. Finally,

we describe our experiences with Vsys and draw some

lessons on creating new abstractions and fostering an ac-

tive user community. We hope that these lessons and

experiences will be helpful to designers of systems ser-

vices and frameworks.

2 User View

In this section we describe Vsys from the standpoint of

how extensions are added and invoked. In the next sec-

tion we explain how Vsys works.

 















































Figure 1: Basic use of Vsys

Figure 1 illustrates the basic operation of Vsys. Vsys

extensions are executable scripts placed in a backend di-

rectory. Vsys monitors the backend directory and de-

tects when new extensions are copied in. For each exten-

sion in the backend directory, Vsys also expects a corre-

sponding ACL of the contexts authorized to use the ex-

tension. A context is just a system identifier like a slice

or user ID. Vsys then creates special files (a pair of FIFO

pipes or a UNIX domain socket) in the frontend directo-

ries for contexts listed on the extension’s ACL. Each pair

of FIFOs (for extensions with text input and output) or

UNIX domain socket (for passing arbitrary data types)

in a frontend directory maps to a specific extension in

the backend directory.

Vsys requires that the special files it creates can only

be read and written by contexts authorized to access

the Vsys extension. In the chroot environment used

on PlanetLab, each frontend directory is only visible

within one slice’s filesystem and so access to the FIFOs

or socket is limited to the slice’s users. On a standard

UNIX system, the frontend could be any directory (e.g.,

a subdirectory of the user’s HOME directory), and file

system permissions limit access to a specific user.

In order to use an extension, a user simply opens

the FIFO pipes or connects to the UNIX socket bearing

the name of the extension and writes some arguments

to it (e.g., to use a Vsys extension named sliceip,

the user opens FIFOs called /vsys/sliceip.in and

/vsys/sliceip.out). Vsys reads the arguments,

runs the appropriate executable script on these argu-

ments with sufficient privileges, and returns the output

to the user through the pipe or socket.

3 Vsys Design

Vsys is intended to dispatch requests from non-

privileged users to privileged extensions in a controlled

manner. While there could be many approaches to im-

plementing this functionality, we started with three de-

sign requirements. First, the Vsys framework should

leverage existing UNIX primitives where possible. The

philosophy of reusing OS building blocks when creat-

ing services inspired us to create Vsys; the Vsys design

should also follow this philosophy. Second, users should

be able to invoke Vsys using native operations on UNIX

and on the command line, rather than via a new API or

protocol. Third, one needed to be able to develop Vsys

extensions using native code in any programming lan-

guage. Our goal was to bundle Vsys as close to the OS

as possible, not tying it with proprietary libraries, and

to encourage users and administrators to contribute ex-

tensions by letting them program in their preferred pro-

gramming environment.

These requirements led us to model our interface af-

ter the everything-is-a-file idiom as in Plan9 [12]. Users

see Vsys extensions as special files in a /vsys directory,

and the Vsys daemon dispatches events back and forth

between these special files and processes running exten-

sions. The files that users interact with can be FIFO

pipes or UNIX domain sockets. While the former are

convenient to use, the latter support sending and receiv-

ing objects such as file and socket descriptors.

Vsys extensions are associated with access control

policies (ACPs). An ACP is a program that defines a fil-

ter on the arguments passed to an operation, admitting a

caller into the guarded operation only if the combination

of the arguments and the current calling context is al-

lowed by its policy. Each privileged operation wrapped

by a Vsys extension is associated with two ACPs: an in-

vocation ACP and a syscall ACP. The invocation ACP is

run before the Vsys extension is executed and filters the

arguments passed to the extension. The syscall ACP is

triggered every time the extension makes a system call.

Figure 2 provides an overview of how Vsys works.

Referring to the circled numbers:

1. A client process writes arguments into the input

FIFO or UNIX domain socket corresponding to a

particular Vsys extension. Vsys leverages UNIX file

permissions and chroot to limit access to the FIFO

or socket to a particular context (e.g., to a UID or a

PlanetLab slice).

2. The Vsys daemon reads the arguments from the

input FIFO or socket and looks up the corresponding
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Figure 2: Vsys control flow

context. It passes the context ID and the arguments to

the extension’s invocation ACP. The invocation ACP

runs and returns either success or failure.

3. If the invocation ACP returns success, the Vsys

daemon executes the appropriate extension, passing in

the original arguments and the calling context.

4. Vsys uses UNIX’s ptrace facility to intercept

system calls made by the extension. For each system

call, Vsys executes the corresponding syscall ACP to

allow or deny the call. This enables Vsys to limit the

extension to touching specific resources (e.g., only

opening certain ports).

5. Vsys writes output from the extension to the output

FIFO or UNIX domain socket, from which it can be

read by the client process.

Just like Vsys extensions themselves, ACPs are ex-

ecutables written in arbitrary programming languages.

Sticking to our belief in re-using existing tools, we did

not invent a new language to implement ACPs. In most

cases, policies can be encoded with the help of regular

expressions. Alternatively, lexing and parsing libraries

such as GNU lex and yacc may also be used.

The design of Vsys relies on our assumed threat

model: that extension developers are trusted, even

though end users are not. On PlanetLab, all Vsys ex-

tensions are vetted by an administrator before they are

deployed. We believe that the Vsys design provides a

reasonable amount of security against the threat of ma-

licious users. The Vsys daemon is simple and does little

more than read and write FIFOs and execute processes.

It is written in Ocaml [21], a type-safe functional lan-

guage that adds robustness to this simplicity. The bound-

ary between end users and Vsys extensions is stringent

and cannot be circumvented as Vsys extensions run in a

separate process address space. Extensions themselves

are controlled using ptrace, which is a weak security

mechanism [5]. However, security at that layer focuses

on narrowing the interface to system calls that may be

called with tainted data—i.e., inputs from an end user. It

does not protect against malicious extension developers.

Finally, we expect Vsys extensions to follow good cod-

ing practices by checking user-provided data and com-

posing provably correct inputs to sensitive operations, as

opposed to passing such tainted data directly or a trans-

formed version of it.

4 Vsys Extension Library

An active user community has contributed a number of

powerful extensions to Vsys over the years. This section

presents several extensions that have been deployed and

used on PlanetLab.

4.1 sliceip

sliceip enables users to create service-specific route

tables. It is invoked with the same syntax as the ip com-

mand that creates and manages routes on Linux.

sliceip implements isolation through IP policy

routing, a mechanism that extends the definition of the

hash key used in routing to include fields other than the

destination IP address. sliceip uses a packet tag,

which associates packets with the sending or receiving

user, as part of this route key. Thus, even when two users

define separate routes to a single destination address, the

tag determines whether a packet should take the route

defined by the first user, the second user, or whether it

should take the default route. There are many ways to

set this packet tag to associate packets with users. The

easiest way is to use the intermediate step of a network

interface. The pl tuntap extension discussed below

lets users create and manage isolated virtual interfaces.

Since local packets hold a record of the interface that

emitted them, the name or ID of this interface can be

used as the packet tag to identify the user.

Combined with pl tuntap, sliceip enables

users to create virtual overlay networks—one problem

that the Linux community tackled by implementing the

netns module for the Linux kernel. In contrast to

netns which took over four years to develop and is still

under active development, the deployment timeline for

sliceip was of the order of months.

4.2 fusemount

FUSE [10] is a Linux-based framework for implement-

ing and managing filesystems in userspace. A new

filesystem can be developed by implementing standard

filesystem operations such as directory and file lookups,
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and exporting these operations via the FUSE userspace

library. An in-kernel component implemented as a ker-

nel module and the FUSE library communicate via a file

descriptor obtained by opening a special character de-

vice (/dev/fuse). The obtained file descriptor is sub-

sequently passed to the mount system call, to match up

the descriptor with the mounted filesystem.

FUSE facilitated the development and deployment of

the WheelFS [16] wide-area distributed filesystem on

PlanetLab. WheelFS is implemented as a FUSE mod-

ule that can be instantiated by PlanetLab users via Vsys.

The authors of this work have made it possible for Plan-

etLab users to create their own shared filesystem as well

as share it with other users [20].

Unlike sliceip, the fusemount extension is ac-

cessed via a UNIX domain socket. The caller (i.e., the

user creating the filesystem) first obtains a file descrip-

tor and uses it to populate a virtual filesystem via FUSE.

Since at this point the filesystem has not been mounted,

the operation of obtaining and using the file descriptor

is safe. Next, the user connects to fusemount by

opening the corresponding UNIX domain socket, and

passes the aforementioned file descriptor over this con-

nection. fusemount then performs the mount opera-

tion via the received file descriptor and passes the file

descriptor back to the caller. The ensures the restrictions

of the mount operation, such as by making sure that the

mount point is owned by the caller.

4.3 socketops

socketops is a collection of extensions that lets

users create privileged sockets for operating large

TCP or UDP buffers, viewing low-level packet head-

ers, etc. Rather than granting coarse-grained admin-

istrative access to the network as facilitated by the

CAP NET ADMIN capability on Linux, Vsys allows

users to access these operations selectively. Similar to

fusemount, all of the above operations are accessed

via UNIX domain sockets. Callers open the domain

socket corresponding to the desired extension and pass

parameters, such as a buffer size for bmsocket. The Vsys

extension then returns a socket descriptor with the re-

quested properties, and can be used by the caller inde-

pendent of Vsys.

4.4 vtuntap

vtuntap lets users create and manage virtual devices

without giving them administrative access to the net-

work. This extension is a wrapper around tun/tap, a

popular virtual point-to-point network device on Linux.

On Linux, the tun/tap device is used via a file de-

scriptor obtained by opening a special character device

(/dev/tun). The file opening operation causes the

tun/tap kernel module to create a new network interface.

The device can then be configured using tools such as if-

config. Once configured, the kernel serializes all packets

sent to the device as a raw stream of packet data to the

aforementioned file descriptor, and receives data written

to the file descriptor as packets on the device.

vtuntap arbitrates both steps in this operation via

two extensions. The pl tuntap extension uses the

UNIX socket interface to create the tun/tap file descrip-

tor and send it to the caller. In addition, the vif up

extension lets users configure devices with parameters

such as the MTU, transmit queue length and the IP ad-

dress. vif up is a wrapper around the ifconfig

command and takes the same set of parameters. Through

an ACP, Vsys verifies that the user is restricted to a set of

allowed IP addresses and other authorized parameters.





  



 

























Figure 3: The vtuntap extension

Figure 3 shows how a user can combine vtuntap

with sliceip to create an overlay topology. The user

first calls vtuntap to create a new network interface,

tag it an ID field unique to the user, and restrict the traf-

fic to that interface. This configures the overlay’s data

plane. Then sliceip can add and remove routes on

the control plane of the overlay.

5 Experiences and Lessons

This section articulates some of our experiences building

Vsys and the conclusions to which they have led us.

Creating new OS abstractions is hard. The goal of

the VINI project was to build a new testbed, using Plan-

etLab software, that would combine isolated virtual net-

work topologies and PlanetLab slices [2]. At the start

of the project, we considered two alternatives. The first

was building virtual topologies using existing Linux net-

working primitives (e.g., IP policy routing) and user-

space tools. We initially developed Vsys to explore this

space. The second alternative was to leverage Linux net-

work namespaces (netns), a new abstraction for the

Linux kernel intended specifically for isolating the net-

work subsystem. Over a summer we developed an initial

prototype using netns that satisfied the requirements of
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VINI and deployed it on the public VINI testbed [3].

Our subsequent experiences with netns were less

positive. On the VINI testbed, incremental improvement

of our netns-based prototype as well as bug fixes to

netns continued for about two years. By this point

the Vsys-based approach for building virtual topologies,

which we had deployed on PlanetLab, was mature and

had been used extensively by researchers. Most of the

issues we encountered on VINI involved interactions be-

tween netns and other modules. For example, Planet-

Lab and VINI use Linux-Vserver to assign IP addresses

to network slices, but netns would hide network de-

vices from Vservers. The tools associated with netns

unexpectedly also added filesystem and namespace iso-

lation to processes when only network isolation was re-

quested. Upon modifying the tools, we realized that

there were dependencies between these isolations that

required further kernel modifications. Such problems

were hard to diagnose because of the lack of debugging

tools for the new abstractions.

The lesson is that the continued predominance of old

abstractions (e.g., pipes, file descriptors, and sockets)

is no coincidence. Since fundamental OS abstractions

are global and can affect all modules and processes in

the system, changes cause side effects that are very hard

to predict, especially when these side effects cut across

modules. Had we foreseen our problems with netns,

we would probably have focused our efforts on the Vsys

approach from the start.

Flexibility drives innovation in development.

Though we invite the PlanetLab user community to

contribute code, we receive few contributions. Vsys

extensions have been the exception to this rule: all but

one Vsys extension were submitted by developers other

than the authors of the Vsys framework. Vsys is a

success story in our efforts to engage PlanetLab users in

helping to develop the platform. This success is all the

more surprising given that such user contributions are

unusual for security mechanisms.

We attribute this to the use of standard abstractions

and the ability to use the programming language of one’s

choice. In Vsys, an extension is an executable script to

which inputs are passed explicitly as arguments and via

standard input. This explicit and simple data flow adds

developer confidence to the reliability of a script and en-

ables him or her to develop scripts on a standard installa-

tion of Linux even if it does not run the PlanetLab envi-

ronment. The ability to use any programming language

also helps contributors reuse their existing code, regard-

less of the language it is written in.

The lesson is that even security mechanisms can at-

tract external developers if you provide a flexible and

easy-to-learn development environment. In our experi-

ence, skilled developers also have very strong tastes for

using specific programming tools and standard environ-

ments, which it helps to support.

Reusing standard abstractions simplifies interfaces

between components. Despite having been developed

independently by over a dozen individuals, many of

PlanetLab’s Vsys scripts depend on one another. For

instance, the fd tuntap and reserve eth scripts

allocate network endpoints for users, and vifconfig

configures the parameters of these devices and sets

up routes and network address translations. Similarly,

sliceip sets up tunnels and makeswitch connects

the interfaces to virtual OpenFlow switches. The les-

son is that the use of standard primitives—files, file de-

scriptors, pipes, directories, network interfaces, packet

filtering rules, network routes, and sockets—simplifies

interfaces and facilitates program reuse.

6 Related Work

There is a great deal of work related to Vsys; we will

focus on UNIX-centric mechanisms based on processes

and other standard OS primitives. Vsys is similar to ex-

isting sandboxing tools [17, 6, 7, 5, 19, 4] but is novel in

both details and scope. Furthermore, unlike those sys-

tems, Vsys has been deployed and used at scale for sev-

eral years. In the process it has attracted numerous con-

tributions from an active user community, validating our

design goal of flexibility through the use of grassroots

abstractions.

Vsys is similar to the interposition agents introduced

by Jones [9] to insert policy between privileged opera-

tions and untrusted user code. Jones implemented a li-

brary of object-oriented abstractions that could be used

to intercept system calls and modify their behavior, such

as by tracing them or filtering their arguments. Vsys di-

vides policy code between extensions and ACPs. Thus

rather than one, there are two interposition sites, the first

between calling clients and the underlying OS (i.e. the

extensions themselves), and the second between the ex-

tensions and the underlying OS (i.e. the syscall ACPs).

SLIC [6], Janus [7] and Ostia [5] are sandboxing

frameworks that use system call filtering and delega-

tion to grant untrusted processes access to system re-

sources. In Vsys, isolation is implemented in the form

of Vsys extensions, which compose multiple system ab-

stractions such as file descriptors, sockets and packet fil-

tering rules. Like Janus, Vsys uses system call filtering

with the help of ptrace to reinforce the limitations that

the extension developer places on clients. Ostia uses sys-

tem call delegation to protect against time-of-check-to-

time-of-use bugs. The delegation mechanism executes

the system call on the client’s behalf immediately after

authenticating it, eliminating the window of opportunity

for attackers. The Vsys design assumes that extension

developers are not malicious and so such mechanisms
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are unnecessary; the goal of system call filtering in Vsys

is to narrow the interface to extensions, as a backup to in-

complete checks by script developers. Jain and Sekar’s

framework [8] also uses system calls for containment.

Finally, Systrace [14] enables administrators to define

system call access policies in much the same way as

UNIX permissions define file access policies. In this

way, fine-grained control can be imposed on processes,

and the privileges of programs can be elevated without

the use of potentially dangerous suid binaries.

The Proper (“PRivileged OPERations”) daemon was

the precursor to Vsys. It let PlanetLab users run priv-

ileged operations by passing file descriptors between

privileged and non-privileged contexts. Users invoked

primitive operations—socket creation, file opening and

closing, execution, etc.—proxied by the Proper daemon.

Vsys inherits Proper’s use of file-descriptor passing from

privileged to non-privileged contexts.

A more advanced form of sudo is sus [18], which

extends the access control list to include predicates on

objects such as files and users. Calife [4] is another vari-

ant of sudo with usability enhancements and privileged

command logging. SSU [19] handles the remote execu-

tion of privileged operations over ssh sessions.

In contrast to these tools and their variants, the goal

of Vsys goes beyond defining ACLs for privileged com-

mands. Vsys is meant to facilitate the composition of

existing tools to build isolated operations. The relation-

ship between sudo scripts and Vsys extensions can be

compared to that between assembly language and high-

level programming languages. The former is a low-level

mechanism and the latter provides convenient abstrac-

tions such as ACPs, context identifiers and file descriptor

transfers making use of the mechanism.

Perhaps the best known OS mechanism for privilege

allocation is UNIX file permissions and setuid bits.

Vsys sets permissions on pipes and sockets so that they

can only be opened by users authorized to access the

corresponding extensions. Vsys is also able to penetrate

chroot jails and filesystem containers, letting users in-

voke functionality that they do not have direct access to

in the filesystem.

7 Conclusion

It has been demonstrated many times over that the rich

library of abstractions available on OSes can go a long

way in solving problems for which dedicated OS exten-

sions were developed. Our experiences with Vsys have

reinforced this belief by showing that simple composi-

tions of existing UNIX tools can be used to implement

powerful isolation. The sliceip and pl tuntap

extensions enable network isolation comparable to that

found in dedicated approaches such as VINI and Linux

network namespaces. The fuse extension lets users

create userspace filesystems in a collaborative manner,

letting other users on the system mount and use deployed

filesystems. Our design choice of grassroots abstractions

and an unconstrained development environment has also

been validated by the continuous contributions of Vsys

extensions by an active user community.
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1 Introduction
Network server farms host a wide range of important ap-
plications, such as e-commerce, content distribution, and
cloud services. Because server farms serve customers
spread across the Internet, the key to effective server farm
management is the ability to detect and resolve problems
between a farm and its clients. Operators typically moni-
tor performance using rule-based scripts to automatically
flag “events of interest” in an array of active and passive
measurement feeds. While effective, these rule-based ap-
proaches are usually limited to events with known prop-
erties. Equally important to operators is finding the “un-
known unknowns” — novel events of interest with prop-
erties that have not been observed before. Effective visu-
alization greatly aids in the discovery of such events, as
operators with domain expertise can quickly notice unex-
pected performance patterns when represented visually.
This paper presents BirdsEye, a tool that visualizes per-
formance at Internet scale.

Designing such a tool is non-trivial because operators
have to diagnose performance problems that may man-
ifest themselves anywhere on the Internet. Visualizing
all the possible ways these problems may manifest them-
selves poses three challenges: First, the vastness of the
Internet and the sheer volume of raw performance data
make it impossible for a human operator to comprehend
every piece of information about every part of the In-
ternet. An effective visualization needs to be sparse in
representation, yet discriminating of good and poor per-
formance. Second, problems can manifest themselves
at multiple scales – e.g., a degraded peering link might
impact entire swaths of the IP address space while a mis-
directed client might only affect a single ISP. Thus, there
is not a single “level” of monitoring that can capture all
problems that operators care about. Finally, performance
problems not only correlate across space, but also across
time – e.g., a problem may occur periodically during a
certain time of the day. Thus, an effective visualization
must present both the spatial view of performance and

show how it changes over time.
To meet these challenges, we first observe that a tree is

a natural way to visualize the Internet performance from
the perspective of a server farm. That is, the IP address
hierarchy can be interpreted as a tree with each node cor-
responding to an IP prefix, and its children corresponding
to sub-prefixes. If we color a node (e.g., progressively
from green to red) based on the likelihood that an IP ad-
dress in that node’s prefix is experiencing a performance
problem, we will likely be able to differentiate “good”
portions of the address space vs. “bad” portions. This is
because IP addresses in the same prefix are more likely
to be geographically close, under the same administra-
tive control, and/or share the same routing paths. Thus,
their performance is likely to be correlated. The focus of
this paper is how to visualize this tree effectively.

A straight-forward approach would be to visualize the
entire tree up to a predetermined aggregation-level, such
as BGP prefixes. But this approach either would not
sparse enough for human comprehension, or would not
represent problems at granularities other than the pre-
defined one. Instead, BirdsEye builds adaptive deci-
sion trees over the IP address space using recent perfor-
mance measurements. These decision trees group IP ad-
dresses with similar performance characteristics and sep-
arate those with significantly different performance char-
acteristics. Moreover, these trees are learned online, and
adapt to changes in the underlying network. Therefore,
changes in performance are reflected in the decision tree
over time. By visualizing these adaptive decision trees,
BirdsEye shows the performance to the entire Internet,
but only highlights the parts that have bad performance
at any given point in time.

We present an evaluation of our tool using more then
50 million Round Trip Time (RTT) measurements col-
lected from a distributed server farm in a tier-1 ISP.
While RTTs are not the only performance measurements
we can visualize, they are one important metric of inter-
est tracked by many operators. Through this case study,
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we discover several RTT anomalies, such as diurnal pat-
terns of poor performance in particular access ISPs and
an ISP that was likely misdirected by the server farm.
This was unknown to operators, suggesting that Birds-
Eye is indeed useful in finding novel performance prob-
lems. We envision that BirdsEye will supplement exist-
ing rule based systems — once an operator has verified
that a hitherto unknown pattern deserves more attention,
they can create new rule-based scripts to flag the patterns.

2 Design Overview
2.1 Design Requirements
The challenges described in Sec. 1 dictate four require-
ments for visualizing the Internet tree:

Sparse Network-wide Representation. The visual-
ization of the tree needs to encompass the entire Internet
in order to able to pinpoint any region with performance
problems. However, in order to be usable by human oper-
ators, the tree also needs to be sparse, highlighting only
the regions needed to differentiate performance experi-
enced by clients. We ensure a sparse representation by
enforcing a limit on the maximum number of leaves the
Internet tree can have.

Multi-Level Drill-Down. While being sparse, the tree
should not overly focus on a single level of the address
space such as /24s or /8s since problems may manifest
themselves at multiple levels in the hierarchy. For exam-
ple, our case studies show that there are scenarios where
large prefix ranges (e.g., /10 blocks) can be combined
because they all experience the same performance. How-
ever, there are other scenarios where small ranges (e.g.,
belonging to management systems) must be identified in-
dividually to ensure that their performance is monitored.
Since the depth of each branch in the tree represents how
far operators can visually drill-down into a given prefix,
our tool automatically infers the depth needed to differ-
entiate performance among IPs in each prefix.

Capture Temporal Dynamics. The tree also needs
to reflect changes in the performance of clients across
the Internet. For example, by looking at a time series
of trees, an operator should be able to quickly see pre-
fixes that deviate from normal performance, e.g., due to
a degraded peering link. We address this requirement by
computing an adaptive tree. That is, it can modify its
structure and performance indicators over time as more
measurements are received.

Real-time Rendering. Finally, the tree needs to
be constructed efficiently over large volumes of perfor-
mance measurements, and updated periodically (e.g. ev-
ery 5 minutes) to allow operators view the performance
measurements in a timely fashion. We address this re-
quirement by ensuring that the tree can be constructed in
an online fashion over a stream of performance data.

0-20ms 

> 200ms  0-20ms 

0-20ms 

Figure 1: An example IPTree with 4 leaves.

2.2 Tool Overview
BirdsEye has two main components: (1) the tree-
constructor, which generates Internet trees that meet the
aforementioned design requirements, and (2) the visu-
alizer which generates visualizations of the tree, in a
manner that highlights anomalies and changes in perfor-
mance. The tree-constructor takes as input a stream of
performance data (e.g., RTT measurements). Each time
interval, it sends an updated tree to the visualizer. The
visualizer then generates and displays a graphic for the
updated tree, using each node’s performance indicators
to colour it. We describe the construction of the tree in
detail in Section 3, and visualization in Section 4. In Sec-
tion 5, we show, using real-world examples, that the time
series of Internet trees visually highlights both regular
and irregular performance patterns.

3 Generating Internet Trees
In this section, we describe our algorithm for gener-
ating accurate Internet trees, focusing on latency mea-
surements as a concrete example of performance data.
Since the Internet tree needs to differentiate between
client IP addresses based on their performance, it effec-
tively builds a decision tree over the IP address hierarchy.
Automatically inferring such an Internet tree from per-
formance data is thus a decision-tree learning problem,
quite different from hierarchical heavy-hitter problems
(see Sec. 6). Note, however, that this decision tree is
quite different from decision trees typically built in di-
agnosis applications – our tree is based purely on the
structure of the IP address hierarchy. This, along with
our requirements, make it infeasible to apply standard
decision-tree learning algorithms. Instead, we extend the
algorithmic framework proposed in [8] for latency pre-
diction at server farms, since this framework incorpo-
rates our design requirements (i.e., learning over stream-
ing data, sparse representation, fundamentally adaptive
tree, noise tolerance) with theoretical guarantees.

Modeling Design Requirements. We first formally
model the design requirements of the Internet tree into
its definition (termed IPTree to avoid confusion): An IP-
Tree TP over the IP address hierarchy is a tree whose
nodes are prefixes P ∈ P , and whose leaves are each
associated with a label for prediction (e.g., a label may
be “0-20ms”). An IPtree is thus a decision tree for IP ad-

2
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dresses I: an IP address i gets the label associated with
its longest matching prefix in P . We define the size of an
IPtree to be the number of leaves needed when it is rep-
resented as a binary tree. We define an adaptive k-IPtree
to be an IPtree that can (a) contain at most k leaves, (b)
grow nodes over time, and (c) change the labels of its
leaf nodes, and (d) reconfigure itself occasionally. Fig. 1
shows an example IPTree with 4 leaves; each leaf is la-
beled with the latency range associated with its subtree.
Our case studies in Sec. 5 show how all of these opera-
tions are useful to maintain an accurate Internet tree.

We need to learn an IPtree with high predictive ac-
curacy, as the accuracy reflects how well it models the
data. However, standard decision tree algorithms do not
meet many of our design requirements; e.g. most learn-
ing algorithms assume that data originates from a fixed
distribution; however, we cannot make such an assump-
tion as our tree needs to be able adapt its predictions
quickly when there are changes in the input data stream.
Most decision tree learning algorithms also do not oper-
ate on a data stream – they require multiple passes over
the data. The properties required of our IPtree learning
algorithm from Section 2 are instead naturally captured
in the mistake-bound model of learning [5, 6, 8] and so
we build on this model for BirdsEye. For visualization
purposes, it is sufficient for the tree to predict the latency
within an appropriate range, so we split latency into a
number of pre-defined categories and require the tree to
predict the right category. 1

Algorithm Sketch. In the learning model of [8], the
algorithm is given an IP address to predict on, makes
a prediction, and then is given the correct label to up-
date its internal k-IPtree. At a high-level, the algorithm
involves all parent prefixes of an IP i in current IPtree
in both steps, i.e., making a prediction for i, as well as
in updating itself (i.e., learning). The key aspect of the
algorithm is to decompose the main prediction problem
into 3 subproblems, which can be treated independently:
(a) deciding the prediction of each individual parent pre-
fix, (b) combining the parent prefix predictions by de-
ciding their relative importance, and (c) maintaining the
tree structure so that the appropriate subtrees are grown
and the unwanted subtrees are discarded. The algorithm
casts these subproblems as instances of experts’ prob-
lems [4, 6], a well-explored area in online learning.

We make 2 major changes to extend this binary classi-
fication algorithm to operate on a continuous (but catego-
rized) range of latency values. First, each parent prefix
now predicts from m categories instead of 2 using the
weighted majority algorithm with shifting targets [6] (in-

1In this paper, we restrict our problem to predicting latency from a
set of pre-defined categories. It is possible also to infer the categories
automatically by making multiple passes on the data, but we do not
consider this extension in this paper.

stead of shifting experts’ algorithm in [8]) – this is an-
other experts’ algorithm that allows nodes to shift their
predictions between categories over time. Second, we
penalize incorrect predictions as a function of how far
away they are from their respective true latency values;
this way, subtrees with latency categories that are farther
apart are grown preferentially, all else being equal.

4 Visualization
Our visualization makes it easy for operators to detect
performance changes and determine where in the Inter-
net they occurred. Figure 2 shows an example of an
IPtree displayed in BirdsEye. Each dot is a tree node,
which represents a specific IP prefix. There are four rel-
evant properties of each node:
• Node size is proportional to the log of the number of

RTT measurements that it represents. For example,
A has 14,000 measurements whereas B has 112.

• Node color corresponds to its predicted RTT; green
represents low RTT while red represents high RTT.
For example, A has a predicted RTT of 0-20ms
whereas B has a predicted RTT of 100-200ms.

• Distance from center corresponds to prefix length;
shorter prefixes are closer to the center of the circle,
while longer prefixes are closer to the edge. For
example A is a /6 whereas B is a /24.

• Angular location is chosen with the IP interpreted
as an integer i, i.e, 360i

232 . For example, A is a prefix
of 128.0.0.0 whereas B is a prefix of 142.0.0.0.

The first two properties make it easy to detect changes
by giving obvious ques to the size and severity of anoma-
lies. The second two properties make it easy to determine
where changes occur by ensuring that the same IP prefix
will always appear in the same place in the visualization
and that related prefixes are close to each other.

!"

#"

$%$%$%$"

&'%$%$%$"

()*%$%$%$"

(+)%$%$%$"
(+
)%$
%$%
$,
*"

(+
)%$
%$%
$,
(&
"

(+
)%$
%$%
$,
)'
"

(+
)%$
%$%
$,
-)
"

Figure 2: Example of an IPtree displayed in BirdsEye.
Each dot is a tree node, which represents a specific IP
prefix. Sec. 4 describes how nodes are laid out.
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Figure 3: (a) CDF of Error and (b) Misclassified cate-
gories as a function of tree size k.

Finally, we must select the parameter k of the IP-
tree, which determines the number of nodes. Displaying
more nodes gives operators more detailed information
about network state but may overwhelm them. Display-
ing fewer nodes presents a more comprehensible picture,
but potentially loses important information. Thankfully,
the algorithm in Sec. 3 gives us a mechanism to choose
the smallest k that doesn’t lose much information: We
simply choose the smallest k such that the prediction ac-
curacy of the IPtree does not increase significantly with
larger k, or drop substantially over time. Sec. 5.1 de-
scribes the k selected based on empirical RTT data.

5 Experiments
To demonstrate BirdsEye’s utility, we evaluate the accu-
racy of its IPtree and present simulations and case studies
on RTT measurements collected from one node of a large
distributed server farm. The node is located near a ma-
jor metropolitan area in the north-eastern United States.
We collected RTT data based on TCP handshake delays
using a network monitor on one of the nodes from April
1 to April 20, 2010. 2-3 million measurements are col-
lected each day across all servers at that node.

We implemented BirdsEye with about 3000 lines of
C++. Our current unoptimized implementation takes less
than 1 minute to generate the IPtree and corresponding
visualization for each node in the server farm. Thus,
when integrated with an ongoing feed of RTT measure-
ments, BirdsEye can generate near real-time visualiza-
tions of network-wide RTT performance.

As discussed in Sec. 3, we split the latencies into cat-
egories: <20ms, [20ms-40ms), [40ms-60ms), [60ms-
80ms), [80ms-100ms), [100ms-200ms), and ≥200ms.
The categories reflect user perceived performance differ-
ences — e.g., an RTT increase from 10ms to 40ms is
more noticeable than one from 110ms to 140ms. Nodes
change from green to yellow to red as RTT increases.

5.1 Accuracy Evaluation
We now describe our algorithm’s accuracy in predicting
RTT categories. We note that our goal is not as much
to demonstrate a highly-accurate RTT estimation tech-
nique, but rather, to show that the tree computed by our
algorithm is accurate enough to use for inferring perfor-
mance via the visualization.

Fig. 3(a) shows the error in estimating the latency cat-
egory (this is computed as the difference between the ac-
tual RTT and the category) for k = 20, 000, over the
entire data set. We note that 83% of RTTs are esti-
mated within 5ms of their category, and 90% are esti-
mated within 20ms, (i.e., to a neighbouring category, at
most). Thus, the IPtree’s prediction of the latency cate-
gory is accurate enough for visualizing performance the
vast majority of the time.

In order to choose an appropriate k for the visualiza-
tion, we now examine the algorithm’s accuracy over time
for different k. Fig. 3(b) shows the fraction of misclas-
sified categories over time for k ranging from 1000 to
200,000. Using a tree with k = 1000 or k = 2000 al-
ways produces notably more error than using k = 5000
leaves. Increasing k beyond 5000 reduces the error by
only by 1% compared to k = 200, 000. Since visualiza-
tion is most effective with smaller k, we use k = 5000
for the visualization without significant loss in accuracy.

5.2 Injected Anomalies
Next, we use injected anomalies to illustrate Birdseye’s
ability to visually highlight anomalies. We consider two
different anomaly scenarios: one with local performance
impact, and another with network-wide impact.

We first consider a class of anomalies that is difficult
to detect with traditional methods. Consider a small pre-
fix (e.g., a /24) that is not advertised by itself in BGP
(because it is always a part of a larger advertised pre-
fix), and thus would not likely be discovered by examin-
ing only advertised BGP prefixes. How well does Bird-
sEye handle such a scenario? We select a /24 prefix of
a highly active /13 belonging to a major tier-1 ISP, and
add randomly generated IP addresses in this /24 with
high RTTs (e.g., 100-200ms) into the stream, such that
the injected data is no more than 1% of the parent /13’s
data. Fig. 4(b) shows BirdsEye IPtree for the hour after
this injected anomaly – we see a new red spike (high-
lighted) corresponding to the anomalous /24, which is
not present earlier, i.e., Fig. 4(a). Note that finding such
an anomaly even if all /24 prefixes are tracked is not triv-
ial: Figs. 4(c) & (d) show the same anomaly inserted into
a strawman tree that consists only of /24 prefixes (but is
otherwise grown identically as our tree); the anomaly is
lost in Fig. 4(d).

We now illustrate how BirdsEye captures a large-scale
performance event. We collect the set of all prefixes ad-
vertised by a major tier-1 ISP to the server farm node,
and add a delay to each IP address in that set during a
time interval. This simulates a scenario where a ISP-
wide disruption cause traffic flowing to different destina-
tions through that ISP to be rerouted over much longer
paths (e.g., cuts in critical bottleneck links as happened
in the Mediterranean Sea in 2008) . Fig. 5(a) & (b) shows

4
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(a) Birdseye: Before anomaly (b) Birdseye: After anomaly (c) Strawman: Before (d) Strawman: After
Figure 4: Injected anomaly: high latency in a /24 prefix block. (a)-(b) show BirdsEye before & after the anomaly,
which clearly reveals the /24 block. (c)-(d) show a strawman tree of /24 prefixes, but here the anomaly is lost.

(a) Birdseye: Before (b) Birdseye: After (c) Strawman: Before (d) Strawman: After
Figure 5: Injected ISP-wide performance event: (a)-(b) show BirdsEye before & after the anomaly, which dominates
the tree. (c)-(d) show a strawman tree of /24 prefixes, where the anomaly is somewhat less visible.

how this anomaly creates a big visual impact – nearly the
entire tree changes in color between the two trees. The
strawman tree also changes its color between Fig. 5(c)
& (d), but it is less noticeable. Thus, Birdseye is able to
visually highlight the impact of a large anomaly as well.

5.3 Real Case Studies
We now present examples of real RTT anomalies discov-
ered using BirdsEye. To illustrate these, we use snap-
shots of the BirdsEye IPtree at different hours of the day
as well as the high-RTT subtrees in Fig. 6.

Case Study 1: Consistently Poor Performance. Our
first example focuses on parts of the IPtree that always
have high RTT (i.e., always appear red). Each snapshot
shows 3 consistent long spikes of high RTT in the IPtree
(highlighted in Fig 6(a)). On examining these prefixes,
we found that they correspond to the management nodes
of the distributed server farm located on the West Coast,
so their high RTT is not particularly of concern to the
server farm’s operation. We validated that the IPs do in-
deed have high RTT by examining the data — 73− 81%
of the RTTs exceed 90ms, thus justifying their presence.

In addition, there are permanent red areas in all snap-
shots that are larger prefixes which range from /12 to /18
blocks (highlighted in Fig 6(e)). Recall that larger pre-
fixes are closer to the IPtree’s center. Inspection reveals
that those prefixes belong to a cellular carrier,2 and shows
that 56 − 72% of the corresponding RTTs in these pre-
fix blocks are over 80ms. While high RTTs on wireless
carriers are expected, this highlights that those wireless
users may have issues accessing latency-sensitive con-
tent stored on the server farm.

2This carrier is not affiliated with the authors.

Case Study 2: Occasionally Poor Performance. Our
second example explores a part of the IPtree that also
regularly appears, but experiences high RTTs only oc-
casionally, highlighted in Fig. 6(g). Note that this region
shifts from green in the early hours (e.g., Fig. 6(a)) to yel-
low/red during the busier hours. This is also especially
visible from the high-RTT subtrees – these prefixes do
not appear in Fig. 6(e), but appear in Fig. 6(g). Closer
investigation revealed that most of these prefixes were
access ISPs that seem to show signs of congestion during
the evening hours, even while there are other ISPs do not
(i.e., stay green). Detailed analysis of the measurement
data showed that in these access networks, around 40%
of the RTTs increased by over 40ms! Finding the set of
all these ISPs using traditional tools, which plot perfor-
mance per ISP, would have been extremely tedious.

Case Study 3: Anomalous IP block. Our last exam-
ple shows how BirdsEye may aid in finding an anomaly
that may otherwise be lost in noise. We focus on the pre-
fixes highlighted in Fig. 6(c). Note that this spike is not
present in the other 3 hours. When we manually exam-
ined the prefixes, we discovered that these prefixes be-
long to a small ISP in the western US, and the IPs appear
for 2-3 hours on 3 different days in our data set. They
account for less than 0.02 − 0.05% of the RTTs in those
hours, however, 95% of them exceed 80ms, and about
41% exceed 200ms. Even though the IP block comprises
a tiny volume of data, BirdsEye differentiates it from
a parent prefix with over 100 times more data, 95% of
whose RTTs are under 80ms. The geographical location
of the IP block suggests that these clients were misdi-
rected at the time, as the server farm has nodes that are
geographically closer to this ISP. Before BirdsEye, our

5
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(a) Day 8: 1am (b) Day 8: 12 noon (c) Day 8: 5pm (d) Day 8: 11pm

(e) High RTT Subtree: 1am (f) High RTT: 12 noon (g) High RTT: 5pm (h) High RTT: 11pm
Figure 6: Real Case Studies. Figs. (a)-(d) show an IPtree time series through Day 8, and (e)-(h) show the corresponding
high-RTT subtrees. Figs. (a) & (e) highlight regions with consistently high RTTs, (g) highlights a region with diurnal
pattern and (b)-(d) highlight a one-time misdirected client at the server farm.

operators did not know that this ISP had been directed to
this particular node, nor of its extremely high RTT.

6 Related Work
Visualization has been acknowledged as an important
way to understand Internet characteristics [2] but an ef-
fective visualization requires a compact representation of
the data. We focus here on work related to our represen-
tation, the Internet tree. Algorithms for building hier-
archical heavy-hitter clusters [3, 9] also summarize traf-
fic characteristics into a small number of prefix clusters;
however, our problem differs from these as their goal is
typically to identify prefixes with substantial traffic, not
differentiate performance characteristics. More closely
related are approaches that build optimal aggregates [1,7]
over the address space to classify traffic with different
characteristics; we build on [8] as it is designed for au-
tomatically adapting over changing data streams. Our
problem also differs from the classic latency estimation
problem in networking research: our goal is not to esti-
mate end-to-end latency between arbitrary hosts, but to
differentiate latency performance by prefix.

7 Conclusion
We presented BirdsEye, a visualization tool that enables
operators to track network-wide performance between a
server farm and its customers. It builds adaptive decision
trees over the IP address space using recent performance
measurements, which group IP addresses with similar
performance characteristics and separate those with sig-
nificantly different performance characteristics. By visu-
alizing these decision trees, BirdsEye shows the perfor-
mance to the entire Internet, but only highlights the parts

that have bad performance at any given point in time. As
a case study, we used BirdsEye to visualize RTT mea-
surements for a commercial server farm, and discovered
several RTT patterns that operators were unaware of but
were keenly interested to know, such as diurnal patterns
of poor performance in particular access ISPs and an ISP
likely misdirected by the server farm. Our approach is
likely to be useful in any application where differences
in behaviour depend upon the IP address structure.
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Abstract

In order to avoid critical SLA violations, service
providers use monitoring technology to automate the
identification of relevant events in the performance of
managed components and forward them as incident tick-
ets to be resolved by system administrators (SAs) be-
fore a critical failure occurs. For optimal cost and per-
formance, monitoring policies must be finely tuned to
the behavior of the managed components, such that SAs
are not engaged for investigation of false alerts. Exist-
ing approaches to tuning monitoring policy rely heavily
on high skilled SA work, with high costs and long com-
pletion times. Polygraph is a novel architecture for au-
tomated tuning of monitoring policies towards reducing
false alerts. Polygragh integrates multiple types of ser-
vice management data into an active-learning approach
to automated generation of new monitoring policies. SAs
can only be involved in the verification of policies with
low projected scores. Experiments with a trace of 60K
monitoring events from a large IT service delivery in-
frastructure compare methods for threshold adjustment
in alert policy predicates with respect to potential for
false alert reduction. Select methods reduce false alerts
by up to 50% compared to baseline methods.

1 Introduction
Proactive prevention and timely response to failures with
minimal operational costs is a major target for service
providers in large-scale IT infrastructures. In order to
achieve this target, service providers use monitoring in-
frastructures such as IBM Tivoli 7 [5] and HP Service-
Center 7 [4], to monitor the performance of the managed
components and identify critical events. Such events are
forwarded to incident management systems, and actions

∗Partially supported by US National Foundation grant IIS-0905215
and the Blue Waters sustained-petascale computing project under NSF
grant OCI 07-25070 and the state of Illinois.

are taken before Service Level Agreement (SLA) viola-
tions occur. The monitoring agents deployed on man-
aged components use pre-defined policies to generate
events based on Key Performance Indicators (KPIs) and
component execution contexts. Other nodes in the mon-
itoring infrastructure perform event aggregation and in-
cident ticket generation based on policies that aggregate
in time and space (i.e., across multiple systems). Even-
tually, SAs analyze the auto-generated incident tickets,
called alerts, to prevent or solve failures.

The effectiveness of the monitoring policies in captur-
ing critical events with limited false positives and neg-
atives has impact on the service management costs, in-
cluding the cost of SA time spent with incident man-
agement, and the cost of SLA penalties. Previous work
[2] and our observation of large-scale delivery infrastruc-
tures confirm the difficulty of configuring the monitoring
policies for an effective cost balance because of the com-
plexity of the monitored systems and applications.

This paper addresses the problem of effective config-
uration of the monitoring policies with an automated ap-
proach to dynamically modeling system behavior, gener-
ating monitoring policies and deploying them. The nov-
elty draws from the integration of diverse service man-
agement content (e.g., incident tickets, system vitals)
and operational domains (e.g., customers, clusters) and
from the use of machine learning to model system be-
havior and to assess policy effectiveness. As a result, our
system, called Polygraph, can automatically reduce the
number of false-positive alerts, called false alerts, with
limited or no impact on the identification of true alerts.
Thus, Polygraph reduces SA work with both alert han-
dling and policy tuning.

Polygraph builds on two novel principles. First princi-
ple is to learn from SAs, namely, learn from the resolu-
tions of historical incident tickets handled by SAs about
alert instances that can be safely ignored. This principle
enables effective assessment of policies without elabo-
rate, resource consuming system analysis. The second
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Figure 1: Polygraph system architecture and environ-
ment.

principle is to leverage component similarity in large
scale environments in order to expand the input size
for Polygraph learning tasks, and thus improve accuracy.
Similarity is also used for policy deployment such that
false alerts are reduced even for servers that have not ex-
perienced similar events yet, but are likely to experience
them in the future. Towards this end, Polygraph uses
temporal correlation of system vitals, configuration de-
tails, and change operation details.

Figure 1 illustrates the integration of Polygraph within
a typical service management infrastructure and its main
components. Polygraph has a close interaction with the
monitoring infrastructure and leverages data from con-
figuration management databases, repositories of histor-
ical system vitals, incident and change management sys-
tems, repositories of SLA and maintenance data.

The Polygraph prototype described and evaluated in
this paper is focused on the analysis of alerts and gener-
ation of new policy. The implementation uses the IBM
Tivoli policy specification language. However, our pro-
posal does not depend on a specific monitoring technol-
ogy, and can be extended to any IT service delivery en-
vironment. The evaluation compares several approaches
for generation of new monitoring policies., and it is based
on over 60K monitoring events, and related incident tick-
ets and system vitals from a large IT service provider.

Overall, this work makes several contributions:
(1) Design system architecture for continual refinement
and assessment of policies based on integrated exploita-
tion of diverse service management data, (2) Propose
techniques for identification of false alerts by mining his-
torical incident resolutions, (3) Propose techniques for
generation and assessment of new monitoring policies
that can significantly reduce the volume of false alerts.

In this paper, true alert identifies an alert instance for
which SA intervention is required to solve a critical sit-
uation, and false alert identifies an alert instance that is
cleared without any fix performed by SA, yet involves

the SA for system status checks.
Next section discusses related work, Section 3 de-

scribes Polygraph architecture and implementation de-
tails, Section 4 presents the evaluation of Polygraph pro-
totype. Finally, Section 5 summarizes our results. Refer
to [7] for more extensive evaluation results and related
work.

2 Related Work
There are several well-known commercial and
community-supported platforms for monitoring data-
center and IT infrastructure components, including IBM
Tivoli Monitoring [6], and HP OpenView [4]. Most
of these products support alert-suppression based on
statically specified policies. Our proposal uses policies
dynamically generated by mining alert streams and other
service management data.

Previous work in the area of incident prevention and
resolution in large scale IT infrastructures used incident
classification techniques based on performance metrics
[1]. Polygraph uses a similar approach of learning from
historical service management data in order to discover
alert patterns and generate new policies.

In the area of dynamic generation of alert policy, the
closest to our work is the approach in [2] for automated
and adaptive threshold setting based on application Ser-
vice Level Objectives (SLOs). This approach is hard to
apply in large IT infrastructure due to the complexity of
the method and the difficulty to acquire component de-
pendency graphs.

A large body of work relates to false-alert reduction
in intrusion detection systems (IDS). The use of data
mining methods applied to historical data [9], and multi-
stage analysis architectures render our work similar to
some IDS solutions [8]. However, the binary IDS alert
model (real vs. false attack) is different from the model
of performance monitoring alerts, which includes quanti-
fied resource usage levels. Thus, this work cannot lever-
age the IDS methods.

Previous work [3] underlines the difficulty in classi-
fying rare events because traditional learning classifiers
are often biased for the most common events. The au-
thors argue that if the events are rare and not too costly,
the learning algorithms can do little to improve. When
events have high costs (e.g., SLA penalties), a larger
number of false alarms must be tolerated. This matches
a best practice in IT Service Delivery for management of
high-risk SLOs.

3 Polygraph Framework
For a competitive IT service delivery infrastructure, the
monitoring infrastructure must minimize the number of
false alerts in order to keep operational costs low and
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must maximize the number of true alerts in order to pre-
vent SLA failures. This goal can be achieved with de-
tailed analysis and fine-tuning of alert policies. However,
even with state-of-the-art tooling, this approach requires
substantial SA effort and skills, prohibiting large-scale
adoption.

Polygraph, the framework proposed in this paper,
specifically addresses these limitations through the au-
tomation of monitoring policy evaluation and fine-
tuning. The goal of Polygraph is to identify false alerts
and design new monitoring policies that lower the occur-
rences of false alerts with negligible impact of true alerts.

The Polygraph method for false-alert reduction com-
prises: (1) learning the pattern of true and false alerts,
(2) generation of new policy based on the alert patterns,
(3) assessment of new policy impact. Figure 1 illustrates
the component architecture that implements this method
by integration with the overall service delivery infras-
tructure. Polygraph comprises of four functional compo-
nents (see Figure 1): False Alert Detector performs the
analysis of current alert specification effectiveness and
false-alert detection. The module distinguishes false and
true alerts by learning from SA’s assessment of past inci-
dent resolutions. Alerts are associated with details about
related policy and KPI thresholds, which are used in next
stages.

Monitoring Policy Generator performs the genera-
tion of monitoring policies based on observed false-alert
patterns. Data from similar servers is integrated in order
to improve result quality.

Monitoring Policy Evaluator performs the evalua-
tion of newly generated monitoring policies with focus
on SLA impact (minimize missed true alerts) and work
reduction (maximize eliminated false alerts). Evaluation
is based on simulation against historical system vitals
and monitoring events. Policies with acceptable balance
of SLA impact and reduction move to deployment while
others can be passed to SAs for further evaluation.

Monitoring Policy Deployment performs the deploy-
ment of new monitoring policies by close interaction
with the monitoring infrastructure. Urgency of deploy-
ment is assessed base on server profiles, and used for
scheduling policy deployment.

The reminder of this section is focused on select ele-
ments of Polygraph implementation.

3.1 Policy Model
In general, an alert policy is defined by a user-specified
predicate over component KPIs or context parameters.
The policy may also include threshold conditions on the
event reoccurrence in order to delay alert generation.
Polygraph prototype works with three types of policy:
[BASIC] IF A; [AND] IF A AND B; and [OR] IF A OR
B. Here, A and B are predicate units consisting of one

KPI reference and related threshold value. Our methods
apply to more complex predicate expressions by conver-
sion to conjunctive normal form.

In the Polygraph prototype, we consider only
threshold-based alert policies, which have predicates
that refer only to KPIs and threshold values. The ana-
lyzed alert traces show that most false-alerts result from
threshold-based policies. Sample policies for each type:

• IF (System.V irtualMemoryUtilization > 90)

• IF (NTPhysical Disk.Disk T ime > 80) AND
(NT Physical Disk.Disk T ime <= 90)

• IF (SMP CPU.CPU Status = ‘off-line’) OR
(SMP CPU.Avg CPU Busy 15 > 95)

3.2 Learning Alert Patterns
Alerts are identified by analysis of incident ticket de-
tails. The alerts-related tickets are automatically gen-
erated, and are characterized by a text pattern that may
include details about the policy, monitoring event (KPIs
and values). Polygraph includes methods for detection of
text patterns for alert identification. For each alert, it ex-
tracts KPI values, alert policy references, and managed
component references. Further, text analysis of incident
resolution description helps classify an alert as true alert
or false alert.

Given a scope defined by a target alert policy P and a
server or group of servers H , Polygraph scans the related
historical content to identify alerts and constructs the true
set, comprising the identified true alerts, and false set,
comprising the false alerts. A sample approach to capture
alert pattern is based on the KPI value patterns, i.e., the
ranges of KPI values for each of the true and false sets.
Polygraph includes also methods for discovery of time
patterns, discussed next.

3.3 Policy Generation with Value Patterns
An alert value pattern is described by the true value
range, the range of KPI values that corresponds to alerts
in the true set. Without loss of generality, we assume
a monotonic behavior for KPI values; if a value corre-
sponds to a true alert, than all alerts for higher KPI values
are true alerts.

Proposition 1 For a given alert policy P consisting of
one KPI parameter p and its corresponding threshold θ,
let T be the true set of P , and t = min(T ). If t > θ, P
modified to include the threshold t will not generate any
false negatives for the given dataset.

Proposition 1 describes how to tune the threshold
value for a BASIC alert policy. If the smallest KPI value
t for true alerts is bigger than the original threshold, then
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the new threshold value is set to t and no true alerts are
missed. False alerts related to KPI values between the
old and new threshold are eliminated while those for KPI
values above the new threshold remain. As an example,
given a policy governing CPU threshold, if all true alerts
happen for thresholds greater than or equal to 95%, we
can safely raise the original threshold of 90% to 95%. If
a false alert occurs for CPU load of 98%, it is not elimi-
nated by the new threshold setting.

3.4 Policy Generation with Time Patterns
To further improve the false alert reduction, Polygraph
takes into account the time patterns. Periodic patterns
of jobs, like daily, weekly, or even monthly, can signif-
icantly affect resource consumption and trigger alerts,
false or true. The method comprises the finding of pe-
riodic patterns based on learning set and extrapolation of
these patterns in the analysis to remaining historical con-
tent. In order to limit the risk of missing true alerts by
extrapolation, we focus on the periodicity of true alerts,
rather than on false alerts.

Given a scope of policy and server(s), periodicity anal-
ysis starts with the related true set of the policy and pro-
duces a set of periodic time intervals, called true time
ranges, during which all of the occurring alerts are con-
sidered true alerts. Alerts that occur outside the true time
ranges are considered false alerts. Periodicity analysis
requires specification of a threshold for the width of a
true range to mine a set of these true ranges for each
alert policy. For example, suppose host H has three true
events at 3pm, 4pm, and 8pm. Given a true time range
threshold of 1 hour, the analysis results in two true time
ranges (2pm-5pm) and (7pm-9pm). Smaller thresholds
lead to more false alert detection, but increase the risk of
missing true alerts.

3.5 Server-Based Policy Tuning
The typical approach to defining alert policy in service
delivery infrastructures is to use the same best-practices
policies for all servers with similar installed software
and workloads. While this approach yields acceptable
alert accuracy during early server lifetime, it will no
longer efficient later in server lifetime, across capacity
changes (e.g., memory or hard disk upgrades), dynamic
re-clustering for workload balancing, and other events.
For example, for a server with increase of hard disk ca-
pacity from 100GB to 10TB, an alert threshold of 90%
utilization will generate alerts when 1TB of disk space is
still available.

To address these limitations, Polygraph takes the ap-
proach of tuning alert policy thresholds for each server
and our experiments show significant benefits. Poly-
graph does not exclude the tuning of alerts for groups of
servers with similar configurations and workloads, which

we plan to integrate in the future.

3.6 New Policy Evaluation
In the evaluation phase, Polygraph scans the set of alerts
for the current scope (i.e., union of true and false sets)
and compares the KPI values against the new policy
threshold. The new counters for new true and false alerts
are compared with the old counters in order to assess
the risk (true alert misses) and benefit (false alert reduc-
tion). Installation-specific thresholds on the impact met-
rics are used to determine if the new policy (1) is highly
beneficial with very low impact and should be automat-
ically deployment,(2) has borderline benefits and risks
and should be forwarded for SA analysis, or (3) has lim-
ited benefits and higher risks, and should be discarded.

4 Evaluation
Our empirical results are based on large and detailed
datasets collected from globally distributed production
environments serving real clients. We collected 30-day
datasets with around 60K events. We divide the datasets
of system performance metrics, alerts, and events into
six parts (5 days for each) based on their occurred time:
older data are to be used for learning purpose, and recent
data are for test purpose. To show the effects of training
data size on our alert threshold adjustment schemes, we
use the first five datasets to make five differently sized
training data (datasets of 5, 10, 15, 20, and 25 days) and
the last part as test data. By default, the true time range
threshold is 1 hour.

The experiments in this section compare various meth-
ods for new policy generation with respect the effect of
the automatically generated policies to eliminate false
alerts. Namely, the experiments present the ratio of false
alerts for which the generated policies do not trigger
alerts. We refer to the not-triggered false alerts as ‘de-
tected false alerts’. The larger the shares of detected
false alert, the larger the reduction enabled by Polygraph
framework.

4.1 Data Characteristics
In the target service delivery environment, alert policy
specification comprises several fields including the target
server and predicate descriptions. The threshold values
have never been changed since initial deployed (which is
typical in most environments).

System KPI values are collected at one-minute inter-
vals and are aggregated over different time windows such
as 15 minute, 1 hour, 1 day, and further.

We use two widely deployed alert policies, say P1 and
P2, in our experiments to show the effectiveness of the
Polygraph framework. Table 1 shows their characteris-
tics, including total alert count, share of total alert trace,
and distribution across true and false alerts; actual policy
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Table 1: Characteristics of select alert policies
Alert Policy Count Ratio(%) True Alerts False Alerts

P1 23355 40.48 1026 (4.39%) 22329 (95.61%)
P2 3344 5.80 1526 (45.63%) 1884 (56.34%)
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Figure 2: Host-based false alert detection with varying
learning set size

expressions are not disclosed for privacy issues. P1 has a
large volume of alerts, of which 95% are false alerts. P1

is a good example of how Polygraph can automatically
and effectively tune an alert policy threshold. P2 illus-
trates the case when Polygraph needs expert SA reviews
to prevent abuse of automation.

4.2 Basic Threshold Adjustment
The basic threshold adjustment method comprises of
policy generation using value patterns and including all
servers, i.e., the entire data set is used for assessment of
the true set. Both P1 and P2 alert policies do not have
any gain when applying this method, even if the current
policy thresholds are not optimal. This is because servers
with same alert policy are not similar with respect to re-
lated datasets, as shown by experiments below.

4.3 Host-Based Adjustment
This experiment compares the basic threshold adjust-
ment (i.e., analysis across all servers) with host-based ad-
justment (i.e., server-based analysis) including only the
servers whose training data includes true alerts. Figure 2
illustrates false alert detection rates of P1 and P2 as the
training set increases. Note that the difference between
the plots for each policy indicates the false alert detection
rate for servers whose training data do not have any true
events. In general, we observe that more false alerts are
detected as training set gets smaller. P1 shows a high rate
of false alert detection where as P2 shows a low detec-
tion rate. For P2, we see that at least 10 days of training
data is needed for reliable performance. The spike of P2

is due to the large number of servers with no true events
in the training set.

40

50

60

70

80

90

100

5 10 15 20 25

Ra
te

 (%
)

Train Data Size (Day)

P1 Total Detected False Events
P1 Detected False Events from Hosts with True Sets
P2 Total Detected False Events
P2 Detected False Events from Hosts with True Sets

Figure 3: Host and time-based false alert detection with
varying learning set size
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Figure 4: Host and time-based false alert detection with
varying true time threshold

4.4 Host and Time-Based Adjustment
This experiment compares the basic adjustment method
with a method using the time-based pattern for false alert
detection and selection of the servers that experience
true alerts. Figure 3 shows false alert detection rates
of P1 and P2 for the two methods when increasing the
training set. In general, the host-and-time-based schema
shows higher false alert detection than the time-based
schema (see Figure 2). Similarly, the host-and-time-
based scheme shows higher false alert detection rates
than the host-based scheme. Based on the experiments
described above, P1 can be safely tuned by Polygraph
with no human interaction, but P2 needs to be shown to
the system administrator before deployment.

4.5 Impact of True Time Range Threshold
This experiment evaluates the impact of the true time
range threshold on the rate of false-alert detection when
applied to host-and-time-based scheme. The experiment
uses the 10-day training dataset and varies the threshold
value from 30 to 180 minutes.

The results are illustrated in Figure 4. As the threshold
value increases and true time ranges of P1 and P2 get
larger, the rate of false-alert detection decreases.

4.6 Discussion
Based on our experiments, we identify extensions that
can improve the effectiveness of Polygraph in reducing
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false-alerts by automated tuning of alert policies.

Leverage operational data for tuning alert policy.
The analysis of monitoring event data demonstrates the
need to leverage operational data in the tuning of alert
policy. For instance, Polygraph integrates operational
data that describes when the scheduled maintenance ac-
tivities are expected to generate significant workload on
the managed servers, such as anti-virus scans and back-
ups. Our analysis shows that 20.3% of a customer’s
alerts are due to virus scan that caused higher CPU usage
than the normal state. In order to eliminate these false
alerts, one has to exploit operational data and include in
the new policies predicates related to the execution con-
text. Another relevant type of operational data includes
SLA specifications and attainment statistics. One can ex-
ploit SLA information to delay generation of alerts when
workload varies significantly but yet the SLAs are un-
likely to be missed.

Emphasize more recent history. When long event
history is available, such as in typical production envi-
ronments, false-alert detection is likely to exhibit poor
quality if all data samples receive equal weight in the
analysis. This is because the detector misses to recognize
the most recent trends in the occurrence of false alerts. In
order to improve decision quality, a weighted scheme can
be employed to emphasize recent input. Weights should
be carefully chosen such that the discard of old content
does not cause the missing of true alerts.

Scalable policy deployment. Polygraph can generate
new policies for a server profile that matches a very large
number of servers. In order to avoid the disruption of the
monitoring infrastructure, the policy deployment should
be staged. The staging order and timeline is based on the
assessment of server-specific risks/costs due to delaying
the policy deployment.

Impact of change operations. The behavior of a man-
aged system changes over time due to infrastructure
changes for the server itself (e.g., hardware, software)
or the environment in which the server is running (e.g.,
workload). As a result, monitoring policy becomes out-
dated. Integration of service management data that de-
scribes change operations, such as new patch/software
installation, memory expansion, and subnet change,
should be used to trigger analysis for policy tuning and
determine the relevant historical content to consider.

Leverage server similarity. Our experiments reveal
the potential benefit of grouping similar servers in alert
policy tuning. This is helpful in cases when the train-
ing dataset collected on an individual server does not
have sufficient data points for rare events; grouping sim-
ilar servers provides a better training dataset, hence bet-
ter policy tuning. A sample similarity criterion includes

the servers in the same web-application cluster, which
all have the same server configuration and the same
workload characteristics. For more general cases, Poly-
graph must use a server similarity measure that integrates
server resource profiles and workload characteristics.

5 Conclusion
This paper introduces Polygraph, a framework for auto-
mated reduction of false alerts in large scale IT infras-
tructures based on an active-learning approach. Poly-
graph mines historical incident ticket content to learn
from SAs about which alerts are false and to correlate
this information with other service management content,
such as system vitals and server similarities, to modify
threshold-based alert policies and eliminate false alerts.
In experiments with real-life traces from a large and di-
verse service delivery environment, Polygraph performs
very well in reducing false alerts while not missing true
alerts. Polygraph achieves this by combining host and
time-based tuning of alert policies.

In future work, we plan to extend the Polygraph model
for automated generation of new policy by including
conditions on execution context and methods for auto-
matic identification of durations when maintenance pro-
cesses generate temporary spikes in resource consump-
tion. Furthermore, for improved quality of false-alert re-
duction, we plan the development of methods that em-
phasize recent history.
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Abstract
Modern deduplication has become quite effective at
eliminating duplicates in data, thus multiplying the ef-
fective capacity of disk-based backup systems, and en-
abling them as realistic tape replacements. Despite these
improvements, single-node raw capacity is still mostly
limited to tens or a few hundreds of terabytes, forcing
users to resort to complex and costly multi-node sys-
tems, which usually only allow them to scale to single-
digit petabytes. As the opportunities for deduplication ef-
ficiency optimizations become scarce, we are challenged
with the task of designing deduplication systems that
will effectively address the capacity, throughput, man-
agement and energy requirements of the petascale age.

In this paper we present our high-performance dedu-
plication prototype, designed from the ground up to op-
timize overall single-node performance, by making the
best possible use of a node’s resources, and achieve three
important goals: scale to large capacity, provide good
deduplication efficiency, and near-raw-disk throughput.
Instead of trying to improve duplicate detection algo-
rithms, we focus on system design aspects and introduce
novel mechanisms—that we combine with careful imple-
mentations of known system engineering techniques. In
particular, we improve single-node scalability by intro-
ducing progressive sampled indexing and grouped mark-
and-sweep, and also optimize throughput by utilizing
an event-driven, multi-threaded client-server interaction
model. Our prototype implementation is able to scale to
billions of stored objects, with high throughput, and very
little or no degradation of deduplication efficiency.

1 Introduction

For many years, tape-based backup solutions have dom-
inated the backup landscape. Most of their users have
been eager to replace them with disk-based solutions that
are faster, easier to use (search, restore, etc.) and less

fragile. In the past few years, disk-based backup systems
have gained significant momentum, and today most en-
terprises are rapidly adopting such solutions, especially
when the data volume is moderate.

One of the most important factors enabling the re-
cent success of disk-based backup is data deduplica-
tion (“dedupe”)—a form of compression that detects and
eliminates duplicates in data, therefore storing only a sin-
gle copy of each data unit. By using dedupe in a disk-
based backup system one can multiply the effective ca-
pacity by 10-50 times, rendering the system a realistic
tape replacement, whose cost is on par with tape-based
systems, while also 1) making backup data always avail-
able online (for indexing, data mining, etc.), 2) enabling
effective remote backups by minimizing network traffic,
and 3) reducing client side I/O overhead by eliminating
the need to read unchanged, previously backed-up files.

The explosive increase in the amount of data corpora-
tions are required to store, however, puts great pressure
on the storage and backup systems, creating immediate
demand for new ways to address the capacity, perfor-
mance and cost challenges, and generally increase their
overall effectiveness.

The effectiveness of a deduplication system is deter-
mined by the extent to which it can achieve three mu-
tually competing goals: deduplication efficiency, scala-
bility, and throughput. Deduplication efficiency refers to
how well the system can detect and share duplicate data
units—which is its primary compression goal. Scalabil-
ity refers to the ability to support large amounts of raw
storage with consistent performance. Throughput refers
to the rate at which data can be transferred in and out of
the system, and constitutes the main performance metric.

All three metrics are important. Good dedupe effi-
ciency reduces the storage cost. Good scalability reduces
the overall cost by reducing the total number of nodes
since each node can handle more data. High throughput
is particularly important because it can enable fast back-
ups, minimizing the length of a backup window. Among

1
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the three goals, it is easy to optimize any two of them,
but not all. To get good deduplication efficiency, it is nec-
essary to perform data indexing for duplicate detection.
The indexing metadata size grows linearly with the ca-
pacity of the system. Keeping this metadata in memory,
would yield good throughput. But the amount of avail-
able RAM would set a hard limit to the scalability of the
system. Moving indexing metadata to disk would remove
the scalability limit, but significantly hurt performance.
Finally, we can optimize for both throughput and scala-
bility, as in regular file servers, but then we lose dedupli-
cation. Achieving all three goals is a non-trivial task.

Another less obvious but equally important problem is
duplicate reference management: duplicate data sharing
introduces the need to determine who is using a particu-
lar data unit, and when it can be reclaimed. The computa-
tional and space complexity of these reference manage-
ment mechanisms grows with the amount of supported
capacity. Our field experience, from a large number of
deduplication product deployments, has shown that the
cost of reference management (upon addition and dele-
tion of data) has become one of the biggest real-world
bottlenecks, involving operations that take many hours
per day, and force a hard limit to scalability.

A lot of the research in the area has focused on opti-
mizing deduplication efficiency and index management,
without being able to sufficiently boost single-node ca-
pacity: with the current state-of-the-art a single node is
limited to a few tens, or hundreds, of terabytes—which is
far from sufficient for the petascale. Consequently, scal-
ability has been addressed mostly through the deploy-
ment of complex, multi-node systems, that aggregate the
limited capacity of each node in order to provide a few
petabytes of storage at very high (acquisition, manage-
ment, energy, etc.) cost. Surprisingly, the problem of ref-
erence management performance is largely ignored.

As the rate at which data are generated is rapidly in-
creasing, the pressure for high-performance, scalable and
cost-effective deduplication systems becomes more evi-
dent. We advocate that single-node performance is of key
importance to next-generation deduplication systems: by
making the most of a single node’s resources, it is pos-
sible to build a high-performance deduplication system
that will be able to scale to billions of objects. Based
on our field experience, we know that such a system
would be valuable to a very large number of users (e.g.,
small/medium businesses) where simplicity is also a top
priority. Additionally, we believe that improving single-
node performance is essential for multi-node systems as
well, since a lot of our techniques can be used to provide
more efficient building blocks for these systems, or even
collapse them into a single node.

This paper presents a complete, single-node dedupli-
cation system that covers indexing, reference manage-

ment, and end-to-end throughput optimization. We con-
tribute new mechanisms to address dedupe challenges
and combine them with well-known engineering tech-
niques in order to design and evaluate the system consid-
ering all three dedupe goals. Progressive sampled index-
ing removes scalability limitations imposed by indexing,
while serving most lookup requests in O(1) time com-
plexity from memory. Our index uses sampling to per-
form fine-grained indexing, and greatly improves scala-
bility by requiring significantly less memory resources.
We address the problem of reference management by in-
troducing grouped mark-and-sweep, a mechanism that
minimizes disk accesses and achieves near-optimal scal-
ability. Finally, we present a modular, event-driven, client
pipeline design that allows the client to make the most
of its resources and process backup data at a rate that
can fully utilize the dedupe server. As a result, our proto-
type can achieve high backup (1 GB/sec for unique data
and 6 GB/sec for duplicate data) and restore throughput
(1 GB/sec for single stream and 430 MB/sec for multi-
ple streams) and good deduplication efficiency (97%), at
high capacities (123 billion objects, 500 TB of data per
25 GB of system memory).

The rest of the paper is organized as follows: Section 2
gives a detailed description of the major challenges we
had to address. In Section 3 we describe how we address
them through our prototype’s novel mechanisms, and in
Section 4 we present our evaluation results.

2 Challenges

2.1 Indexing
Most deduplication systems operate at the sub-file level:
a file or a data stream is divided into a sequence of fixed
or variable sized segments. For each segment, a crypto-
graphic hash (MD5, SHA-1/2, etc.) is calculated as its
fingerprint (FP), and it is used to uniquely identify that
particular segment. A fingerprint index is used as a cat-
alog of FPs stored in the system, allowing the detection
of duplicates: during backup, if a tuple of the form <
FP, location on disk > exists in the index for a particular
FP, then a reference to the existing copy of the segment
is created. Otherwise, the segment is considered new, a
copy is stored on the server and the index is updated ac-
cordingly. In many systems, the FP index is also crucial
for the restore process, as index entries are used to locate
the exact storage location of the segments the backup
consists of.

The index needs to have three important properties:
1) scale to high capacities, 2) achieve good index-
ing throughput, and 3) provide high duplicate detection
rate—i.e., high deduplication efficiency. Table 1 demon-
strates how these goals become very challenging for a
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Item Scale Remarks
Physical capacity C C = 1,000 TB
Segment size S S = 4 KB
Number of segments N N = 250*109 segs N =C/S
Segment FP size E E = 22 B
Segment index size I I = 5,500 GB I = N ∗E
Disk speed Z 400 MB/sec
Block lookup speed goal 100 Kops/sec Z/S

Table 1: An example system configuration, illustrating some of the
challenges involved.

Petascale system. If the system capacity is 1 PB, and the
segment size is 4 KB (for fine-granularity duplicate de-
tection), indexing capacity will need to be at least 5,500
GB to support all 250 billion objects in the system. Such
an index is impossible to maintain in memory Storing it
on disk, however, would greatly reduce query through-
put. To achieve a rate of 400 MB/sec, would require the
index—and the whole dedupe system for that matter—
to provide a query service throughput of at least 100
Kops/sec. Trying to scale to 1 PB by storing the index
on disk would make it impossible to achieve this level
of performance1. Making the segment size larger (e.g.,
128 KB) would make deduplication far more coarse and
severely reduce its efficiency, while still requiring no less
than 172 GB of RAM for indexing.

It becomes obvious that efficient, scalable indexing is
a hard problem. On top of all other indexing challenges,
one must point out that segment FPs are cryptographic
hashes, randomly distributed in the index. Adjacent in-
dex entries share no locality and any kind of simple read-
ahead scheme could not amortize the cost of storing in-
dex entries on disk.

2.2 Reference Management
Contrary to a traditional backup system, a dedupe system
shares data among files by default. Reference manage-
ment is necessary to keep track of segment usage and re-
claim freed space. In addition to scalability and speed, re-
liability is another challenge for reference management.
If a segment gets freed while it is still referenced by files,
data loss occurs and files cannot be restored. On the other
hand, if a segment is referenced when it is actually no
longer in use, it causes storage leakage.

Previous work [12, 19] mainly focused on indexing
and largely ignored reference management. Some recent
work [4, 18] started to acknowledge the difficulty of
the problem. But, for simplicity, only simple reference
counting was investigated without considering reliability
and recoverability. Reference counting, however, suffers
from low reliability, since it is vulnerable to lost or re-
peated updates: when errors occur some segments may

1Our measurements show that even high-end SSDs cannot achieve
more than 60 Kops/sec

be updated and some may not. Complicated transaction
rollback logic is required to make reference counts con-
sistent. Moreover, if a segment becomes corrupted, it is
important to know which files are using it so as to re-
cover the lost segment by backing up the file again. Un-
fortunately, reference counting cannot provide such in-
formation. Finally, there is almost no way to verify if the
reference count is correct or not in a large dynamic sys-
tem. Our field feedback indicates that power outages and
data corruption are really not that rare. In real deploy-
ments, where data integrity and recoverability directly
affect product reputation, simple reference counting is
unsatisfactory.

Maintaining a reference list is a better solution: it is
immune to repeated updates and it can identify the files
that use a particular segment. However, some kind of log-
ging is still necessary to ensure correctness in the case of
lost operations. More importantly, variable length refer-
ence lists need to be stored on disk for each segment.
Every time a reference list is updated, the whole list (and
possibly its adjacent reference lists—due to the lists’
variable length) must be rewritten. This greatly hurts the
speed of reference management.

Another potential solution is mark-and-sweep. Dur-
ing the mark phase, all files are traversed so as to mark
the used segments. In the sweep phase all segments are
swept and unmarked segments are reclaimed. This ap-
proach is very resilient to errors: at any time the pro-
cess can simply be restarted with no negative side ef-
fects. Scalability, however, is an issue. Going back to the
example of Table 1, we would need to deal with N = 250
billion segments. If a segment FP is E = 22 bytes, that
would be I = N * E = 5,500 GB of data. If we account
for an average deduplication factor of 10 (i.e., each seg-
ment is referenced by 10 different files), the total size
of files that need to be read during the mark phase will
be 55,000 GB. This alone will take almost 4 hours on a
400 MB/sec disk array. Furthermore, marking the in-use
bits for 250 billion entries is no easy task. There is no
way to put the bit map in memory. Once on disk, the bit
map needs to be accessed randomly multiple times. This
also takes significant amount of time. One might want
to mitigate the poor performance of mark-and-sweep by
doing it less frequently. But in practice this is not a vi-
able option: customers always want to keep the utiliza-
tion of the system close to its capacity so that a longer
history can be stored. With daily backups taking place,
systems rarely have the luxury to postpone deletion op-
erations for a long time. In our field deployment, deletion
is done twice a day. More than 4 hours in each run is too
much. In a large production-oriented dedupe system ref-
erence management needs to be very reliable and have
good recoverability. It should tolerate errors and always
ensure correctness. Although mark-and-sweep provides

3



274 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

Group 2
Backup

File Manager

Client

Server

Segment Manager

Backup
Group 1

Backup 2 Backup 3

File 1 File 2 File 3 File 4 File 5 File 6 File 7

Backup 4Backup 1

Container 2 Container 3 Container 4

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Index

Container 1

Figure 1: Client and deduplication server components. The server com-
ponents may be hosted on the same or different nodes.

these properties, its performance is proportional to the
capacity of the system, thus limiting its scalability.

2.3 Client-Server Interaction
Even if we solve the indexing and reference management
problems, high end-to-end throughput is not guaranteed.
An optimized client-server interface is necessary to reap
the benefits of deduplication. The typical dedupe client
performs the following steps during backup: 1) read data
from files, 2) form segments and calculate FPs, 3) send
FPs to the server and wait for index lookup results, and
4) for each index miss, transmit the relevant data to
the server—otherwise create references to the existing
segments. This process may suffer from three different
types of bottlenecks. First, reading files from disk is an
I/O-bound operation. Second, calculating cryptographic
hashes is a very CPU-intensive task, and the client may
not be able to compute FPs at the necessary rate. Finally,
high latency and low communication throughput may be-
come the main bottleneck for overall performance.

3 Prototype Design

3.1 Goals and System Architecture
We set our performance goals as follows:

• Scalability: store and index hundreds of billions of
segments.

• Deduplication efficiency: best-effort deduplica-
tion: if resources are scarce, sacrifice some dedu-
plication for speed and scale.

• Throughput: near-raw-disk throughput for data
backup, restore, and delete.

To that end, we have implemented a prototype of our
scalable duplication system aiming to validate the effec-
tiveness of the proposed mechanisms. Our implementa-
tion uses C++ and pthreads, on 64-bit Linux, and it is
based on the architecture shown in Figure 1.

The server side component consists of two main
modules—the File Manager and the Segment Man-
ager—that implement all the deduplication and backup
management logic.

The File Manager (FM) is responsible for keeping
track of files stored on the deduplication server. The FM
manages file information using a three level hierarchy,
visible in Figure 1. The bottom level consists of files,
each represented by a set of metadata and identified by a
file FP, calculated over all segment FPs that the file con-
sists of. The middle level consists of backups, that group
files belonging to the same backup session. At the top
level, multiple backups are aggregated to a backup group,
allowing the FM to perform coarse-granularity tracking
of file/backup changes in the system, so as to assist our
reference management mechanism.

The Segment Manager (SM) is responsible for the in-
dexing and storage of raw data segments, and may run on
the same or a different server than the FM. Segments are
stored on disk in large (e.g., 16 MB) storage units, called
containers. Containers consist of raw data and a cata-
log which lists all FPs stored in the container. All disk
accesses are performed in the granularity of containers.
Storing adjacent segments in the same container greatly
improves dedupe performance, by reducing container I/O
and by improving indexing efficiency (as discussed in
Section 3.2.1). The SM also incorporates the dedupe in-
dex, and updates it when segments are added/removed.

The client component reads file contents or receives
data streams (e.g., data from tar), performs segmenta-
tion, and calculates segment FPs. After querying the SM
index, the client creates references to the existing copies
of FPs located in the SM, and initiates data transfers for
new FPs. Once a file has been fully processed, the File
Manager is updated with file metadata.

Without loss of generality, we use fix-sized, 4 KB seg-
ments, for fine-granularity dedupe—although none of the
mechanisms relies on this assumption.

3.2 Progressive Sampled Indexing
Most dedupe systems, when performing backup restore,
rely on the index—or a similar catalog-like structure—
in order to determine the disk location of each segment.
This forces the strict requirement for at least one com-
plete index containing location information for all FPs,
that the system will have to maintain and protect against
crashes, corruption etc., because errors cannot be toler-
ated. If a segment’s disk location cannot be determined
due to index failure, the whole file or backup gets cor-
rupted. Maintaining such a data structure is a difficult
and resource consuming task, that almost certainly im-
pacts system scalability and performance, since the index
typically needs to be stored both in memory, for perfor-
mance, and on disk, for durability.
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In order to address the indexing challenges and scale
to billions of objects with high performance we had to
remove this restriction by introducing directly locatable
objects: when a file is stored in the system, file seg-
ment location information is stored with the file meta-
data, therefore removing the need to consult the index for
the exact location of file segments. For example, if file F
consists of segments with FPs A, B and C, stored at disk
locations 1, 2 and 3 respectively, F would be represented
by the list ”A,1,B,2,C,3”—instead of just ”A,B,C”. The
increased file metadata size is not a problem, since meta-
data are stored on disk, while the indexing freedom we
get in exchange is extremely valuable.

By decoupling indexing and restore we no longer need
to maintain a full index. Instead, we introduce sampled
indexing, that is based on the observation that given cer-
tain amounts of memory and raw capacity, we can cal-
culate the index size, and determine the number of en-
tries that need to be dropped. In particular, if M is the
amount of memory available for indexing (in GB), S is
the dedupe segment size (in KB), E is the memory entry
size (in bytes), and C is the total supported storage (in
TB), then we can support M/E billion entries, while the
system consists of a total of C/S billion segments. There-
fore, if we assume a sampling period T , signifying that
we maintain “1 out T” fingerprints in memory, we can
define a sampling rate R as follows:

R = 1/T = (M/E)/(C/S) = (M ∗ S)/(E ∗C) (1)

In the example of Table 1, using 22 bytes per index entry,
with 4 KB segments and 64 GB of memory for indexing,
we can support 11.6 TB of data with a sampling rate of
1 (i.e., a full index). Scaling to 1,000 TB, would require
a sampling rate of 0.0116—i.e., insert in the index one
out of 86 FPs. Using an 8 KB segment, we could double
the raw capacity, or double the rate to 1/43, sacrificing
some dedupe accuracy for higher index density. Increas-
ing the indexing capacity of the system by adding more
RAM is rewarded with higher sampling rates (i.e., better
dedupe efficiency), while increasing only the storage ca-
pacity results in a lower sampling rate, but this is often
acceptable, in return for “infinite” system scalability.

3.2.1 Dedupe efficiency: pre-fetching and
caching.

Since “1 out of T ” FPs is inserted in the index, index
hits—and, consequently, dedupe efficiency—would be
reduced by a factor of T . However, when a lookup oper-
ation hits on a sampled FP (also referred to as a “hook”),
we locate the container it belongs to and pre-fetch all
FPs from that container’s catalog into a memory cache.
It has been shown [19] that the likelihood of subsequent
lookups hitting on the FP cache is high, due to spacial lo-
cality: if hook FP A was followed by dropped FP B, then

it is very likely that A and B will reappear in order in the
future, in which case A will have seeded pre-fetching of
its container catalog, resulting in a cache hit for B.

Container catalog pre-fetching can be extremely effec-
tive in improving the deduplication efficiency of a sam-
pled index. However, pre-fetching introduces a minimum
sampling rate: at least one FP per container (e.g., the
first FP stored in the container) must be in the mem-
ory index as a hook, in order to seed pre-fetching. Be-
cause of this, if container size is K MB, then R ≥ Rmin =
S/(K ∗ 210) and, subsequently, scalability is no longer
“unlimited”: the maximum supported capacity is now
C ≤ (M ∗K ∗ 210)/E . For 4 KB segments and 16 MB
containers, at least 1 out 4096 FPs needs to be sampled,
and with 64 GB of RAM, as in the example of Table 1,
C ≤ 47,662 TB—which is still very high.

Deduplication efficiency. Although the combination
of sampling and FP pre-fetching can often yield up to
100% duplicate detection, random eviction of cache en-
tries may reduce deduplication. Using a simplified model
we can estimate the dedupe efficiency of the system.
Each container catalog contains at most (K ∗ 210)/S =
1/Rmin = Tmin entries. If we want to achieve deduplica-
tion efficiency f %, and we suffer x misses from one con-
tainer, then:

f/100 = 1− (x/Tmin)⇒ x = Tmin ∗ (1− ( f/100)).

If a particular container suffers one eviction during a
large time frame (most likely scenario, especially when
LRU is used), then all x misses will fall between two con-
secutive hooks hitting on the index, and therefore:

T = 1/R = x+1 ⇒ T = Tmin ∗ (1− ( f/100))+ 1⇒

⇒ (E ∗C)/(S∗M) = Tmin ∗ (1− ( f/100))+ 1 (2)

Using Equation 2 we can calculate that in the example
of Table 1, with 64 GB of memory, the deduplication
efficiency will be f = 97.9%. Alternatively, for a given
target dedupe efficiency, we can calculate the necessary
values to achieve it: for example, if we want f ≥ 95%,
and given E , C and S, the amount of memory required is
M ≥ 26.7 GB.

3.2.2 Progressive Sampling.
A simple, yet important, optimization to sampled index-
ing is based on the observation that Equation 1 is using
the total storage capacity of the system, and, therefore,
calculates the value of Rtot , required to support all C/S
billions of objects. However, at any given time, only the
amount of data that are actually stored in the system need
to be indexed, which allows us to utilize a progressive

5



276 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

sampling rate that calculates R using the amount of stor-
age used, as opposed to the maximum raw storage. Ini-
tially we set R = 1, and gradually decrease it as more stor-
age gets used. In our working example, with 64 GB of
RAM, R = 1 can index 11 TB of storage. As we approach
the 11 TB limit, we can set R = 0.5 and down-sample the
index (e.g., drop index FPs with FP mod 2 �= 0), thus
doubling the indexing capacity. Eventually, as usage ap-
proaches 1,000 TB, R will converge to Rtot = 0.0116.

3.2.3 Implementation
The index and cache have been implemented in C++
using a highly parametrizable hash table design, which
we call dhash, optimized for high performance and ef-
ficient memory usage. The M GB of memory available
for indexing are divided to fixed size buckets (1 KB
by default), allowing us to have a maximum of Y =
M/bucket size in KB millions of buckets. No pointers
are used in a dhash structure, and all operations use off-
sets, allowing us to 1) perform custom memory manage-
ment (bucket slab allocator), 2) get memory savings by
replacing each 8-byte pointer with 6 bytes of offset data,
and 3) make the dhash easily serializable (e.g., when
checkpointing to disk at system shutdown).

If a dhash is used at the role of the index, we aim
to accommodate as many sampled FP entries as pos-
sible. We utilize 2b buckets for the hash table, where
b= log2(Y ∗220)−k. The system parameter k determines
the number of buckets reserved for collision handling.
Each index entry contains a partial FP (since the b least
significant bits of the FP are encoded in the hash table
position), and the container number the FP belongs to.
For simplicity we use 128-bit MD5 (which is not strong
enough for production, but adequate for our testing pur-
poses), leading to a typical entry size of 18 bytes2. Each
index dhash also utilizes a Bloom filter, to avoid unnec-
essary lookup operations, which greatly improves perfor-
mance.

A cache dhash is optimized mainly for performance:
it will use all buckets for the hash table, and handle col-
lisions by running a cache eviction algorithm. A cache
dhash can employ one of three eviction policies when
collisions for a particular bucket Q occur: Immediate
eviction will empty Q, and consider all the containers of
Q’s previous entries as evicted from the cache. This pol-
icy is very fast since it performs lazy eviction of FPs, al-
lowing for subsequent lookups to hit on those entries. On
the downside, this policy penalizes multiple containers at
once. Eviction by threshold is similar to immediate evic-
tion, but the containers whose entries are being removed
from Q will not be considered as evicted until a certain
percentage of their total entries has been removed from

2With a stronger 160-bit hash, the entry size becomes 22 bytes.

all cache buckets. This imposes less of a penalty to con-
tainers with entries in Q, but may lead to poor deduplica-
tion if the threshold is high, since a particular container
may not be pre-fetched even though many of its entries
have been evicted. Container LRU will evict the entries
of the least recently pre-fetched container. If that does not
free up space in Q, the process is repeated. Although this
is the policy that yields maximum dedupe efficiency, it is
also the one with the most overhead. Our default policy
is immediate eviction, which provides good deduplica-
tion efficiency, and performance only slightly lower than
eviction by threshold.

In order to provide high dedupe efficiency after sys-
tem reboots or crashes, we must ensure that a relatively
recent index checkpoint is stored persistently3. Bucket
change-tracking combined with our pointer-free imple-
mentation make checkpointing efficient (only a few sec-
onds per checkpoint). Our current policy creates check-
points every few minutes, and on system shutdown.

SSD indexing. Although sampling provides an effi-
cient way around scalability restrictions imposed by
memory limitations, we wanted to also provide a way to
improve scalability even with modest amounts of mem-
ory, and without having to resort to very low sampling
rates. To that end we have also implemented a (persis-
tent) SSD-based version of our sampled index. Sam-
pled fingerprints are stored on sorted SSD blocks and
all available memory is used for three performance op-
timizations: 1) create an SSD summary data structure
SSD sum, 2) maintain a Bloom Filter for the SSD index,
and 3) maintain an FP cache of pre-fetched containers—
similar to that used for the memory index. The SSD sum
data structure keeps track of the first FP in each of
the SSD’s (sorted) blocks, thus allowing us to perform
any lookup with at most one SSD block read: when a
lookup(X) operation is performed, X may be found in the
cache, or it may be found by reading the SSD block i,
where SSD sum(i)≤ X < SSD sum(i+1). The SSD in-
dex is read-only, eliminating the need for shared lock-
ing during accesses. All SSD index updates are cached
and logged. Eventually, index updates are performed in
batches (and with the SSD exclusively locked): for our
128 GB SSD a full update takes less than 9 minutes, and
we can afford to update the SSD many times per day.

3.3 Grouped Mark-and-Sweep
The challenge in reference management, as discussed in
Section 2.2, is to ensure reliability while ensuring that
the reference management mechanism is also both scal-
able and fast enough to keep up with the backup speed.
A mark-and-sweep approach is very reliable, but offers

3Notice that even if we lose all index index entries, correctness is
preserved.
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Figure 2: Example illustrating the scalability of grouped mark-and-
sweep.

poor scalability because it needs to touch every file in
the system. To address this challenge we propose the
grouped mark-and-sweep (GMS) mechanism, which is
reliable, scalable, and fast. The key idea is to avoid touch-
ing every file in the mark phase and every container in
the sweep phase. GMS achieves scalability because its
workload becomes proportional to the changes—instead
of the capacity of the system.

The operation of GMS is based on change-tracking
within the File Manager. As presented in Figure 1, the
File Manager keeps track of files, backups, and backup
groups. A file can be a regular file, a database backup
stream, an email, etc. A backup is a set of files, e.g., all
files under a set of directories. The creation and contents
of backups are in the control of the user.

Backup groups aim to control the number of entries
that GMS needs to manage, and are created and man-
aged by the File Manager. When backups are small, we
aggregate multiple small backups to one bigger backup
group. The File Manager tracks changes to each backup
group, and for each changed backup group, it further
tracks whether files have been added to or deleted from
it. During a GMS run, the following steps take place:

1. Mark changed groups. Only mark the changed
backup groups and do nothing for unchanged
backup groups. As an example in Figure 2, as-
sume that File Manager’s change tracking shows
that, since the last GMS cycle, we deleted some
files from group Group1, added some files to group
Group3, and made no modifications to Group2. In
this case we only need to touch files in backup
groups Group1 and Group3. Usually, most backup
groups (e.g., Group2) are not changed and files in
those groups don’t need to be marked. The mark re-
sults of G1 and G3 are recalculated by traversing all
files in Group1 and Group3 and recalculating G1
and G3 for all containers that have segments used
by those files. A group’s mark results, say G1, is a
bitmap implemented as a file for each container.

2. Add affected containers to the sweep list. Only
containers used by groups that have deleted files
need to be swept because only those containers may

have segments freed. In the example of Figure 2,
Group1 has files deleted and it has used containers
1 and 2. So we put these two containers in the sweep
list. The segments in other containers are either still
referenced by files in the unchanged groups (say
Group2), or referenced by new files in new groups
(say Group3).

3. Merge, sweep, and reclaim freed space. For each
container in the sweep list, we merge the mark re-
sults of all groups using that container. If a segment
is not used, it can be reclaimed. In the example of
Figure 2, for Container 1, we merge (the old) G2
and (the new) G1, to determine potentially unused
segments. Similarly, we merge (the new) G3 and
(the new) G1, to determine potentially unused seg-
ments in Container 2.

As it becomes clear from the example of Figure 2,
GMS provides two important scalability benefits. First,
old mark results (e.g., G2) can be reused, without having
to re-generate them in every mark-and-sweep cycle. Each
set of mark results is stored and reused in the future, mak-
ing the mark phase scalable by avoiding to touch the ma-
jority of the unchanged backup groups. Secondly, unlike
conventional mark-and-sweep where all the entries are
swept to determine the unused entries, in GMS we know
which containers have reference removal operations, and
the system only needs to sweep that subset of contain-
ers. Therefore the majority of containers in the system
are usually not touched in the sweep step.

One drawback of GMS is that a group needs to be re-
marked even if just one file has been deleted from it. For-
tunately the overhead is surprisingly small: segments can
be marked at a rate of 26 GB/sec. Since most bitmaps are
not changed, there are little work in the sweep phase.

Overall, GMS makes mark-and-sweep scalable by
only touching the changed objects, while maintaining the
reliability of mark-and-sweep. If errors occur, the whole
process can start over and all operations are idempotent.
Finally, the mark results (e.g., G1 and G2 for Container
1) serve as a coarse reference list for segments in the con-
tainers. When data corruption occurs in a container, the
mark results can give us a complete list of backup groups
that use that particular container. This limits the set of
affected files significantly, and greatly enhances recover-
ability. Otherwise, we would need to go through all files
in the system to determine which files are using that con-
tainer.

Discussion. An interesting issue related to reference
management is concurrent reference updates (data dele-
tion) and data backup. In the example of Figure 2,
Backup 5 may still be active when it gets marked, and
after all changed backup groups are marked, GMS deter-
mines that segment x can be deleted. If Backup 5 uses
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x between the time Backup 5 was marked and the time
that GMS deleted segment x, data loss will occur as a
backup uses deleted/non-existent segments. HYDRAs-
tor [4] uses a read-only phase to freeze the system while
updating segment reference counts. In practice, the vi-
ability is dubious. On a busy system, there are always
some active backups. It is very unlikely to find a time
window when the system can be frozen.

Our system uses an in-memory protection map to ad-
dress this problem: after GMS begins, all segments used
by current active backups are protected by storing their
segment fingerprints in a protection map in memory.
GMS only deletes segments whose fingerprint is not in
the protection map. This way GMS can be certain that
segments in use will never get deleted. The protection
map grows while GMS is running and gets deleted once
GMS completes. This is another reason why GMS needs
to be fast enough to prevent the protection map from
using too much memory. To mitigate the time spent in
GMS, and limit the growth of the protection map, GMS
can be done more frequently.

3.4 Client-Server Interaction
Even with high-performance server components, it is im-
possible to achieve high throughput, unless the client is
able to push data to the server at a high-enough rate.
To that end, our client component is based on an event-
driven, pipelined design, that utilizes a simple, fully
asynchronous RPC implementation.

Our RPC protocol is implemented via message pass-
ing over TCP streams or system IPC mechanisms (e.g.,
named pipes), depending on whether communication is
remote or local. The TCP implementation utilizes mul-
tiple TCP connections to keep up with the throughput
requirements. All RPC requests are asynchronous and
batched in order to minimize the round-trip overheads
and improve throughput. A client can register different
callback functions for each type of RPC. The callback
functions are used to deliver the RPC results to the caller
as they become available.

Based on our asynchronous RPC protocol, we have
implemented an event-driven client pipeline, presented
in Figure 3, where each backup step is implemented as a
separate pipeline stage.

First, the reader thread R receives the backup sched-
ule, reads large chunks of data (e.g., 256 segments), and
enqueues requests to the hash queue HQ. The hashing
thread H dequeues requests from HQ, performs segmen-
tation for each data chunk, and calculates FPs. Calcu-
lating cryptographic hashes is a computationally expen-
sive operation, and, in order to fully utilize multiple CPU
cores, H employs n MD5 worker threads (H1,H2, . . . ,Hn)
that calculate FPs asynchronously. Once a chunk’s seg-
ment FPs have been calculated, callback function CB1

Figure 3: Client pipeline, consisting of five main event-handling
threads connected using queues.

enqueues the updated request to the lookup queue LQ.
The lookup thread L receives requests from LQ and

issues one single, batched, asynchronous lookup RPC to
the server, incurring a single RPC round-trip for all 256
FPs. Callback function CB2 delivers the RPC reply and
creates references to the containers of the FPs that were
found on the server. If one or more FPs were not found,
CB2 enqueues the updated request in the store queue SQ.

The store thread S receives requests from SQ, and
sends raw data blocks to the back-end through one sin-
gle, batched, asynchronous RPC. Callback function CB3
ensures that the write operation was successful, and for-
wards the last request for each file to the close queue CQ.

Finally, close thread C, receives the final request from
CQ, performs cleanup, calculates file metadata, and up-
dates the File Manager.

Client queues allow us to better understand system be-
havior. For instance, on a client with low hash calcula-
tion throughput, we can observe HQ to be full most of
the time, while low network performance will lead to
LQ and SQ being mostly full. In such cases, more than
one threads can be used for each pipeline stage. By using
two store threads, for example, we can consume requests
from SQ at a higher rate.

4 Evaluation

Our main test-bed is an 8-core Xeon E5450 at 3 GHz
with 32 GB RAM, running Linux. Our 24 TB disk array
consists of 12 disks, 2 TB each, and uses RAID 04 to
stripe all physical disks to a single logical volume.

We used two main data sets for testing. Our synthetic
data set consists of multiple 3 GB files, each with glob-
ally unique data segments. Our second data set con-
sists of virtual machine images, which are a very com-
mon real-world enterprise use-case, that takes advantage
of deduplication. We use a VMware “gold” disk image
(VM0), hosting a Microsoft Windows XP installation,
and created three additional versions of it (VM1, VM2,
and VM3), each with incremental changes: VM1 is VM0
with all Microsoft updates and service packs, VM2 is

4RAID 0 is not recommended for a high-availability system, but
we used it to achieve maximum performance and mitigate the disk
bottleneck—thus emulate a high-end array.

8



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 279

VM1 with a large anti-virus suite installed, and VM3
is VM2 after the installation of various utilities (docu-
ment readers, compression tools, etc.). This data set aims
to measure the “real-world” dedupe performance of our
system, using a file type of great importance for the en-
terprise.

For both data sets we configured the system to use
a sampling rate of R = 1/101, which is low enough to
stress the system. For the synthetic tests performed on
our current test-bed, the index uses 25 GB memory to
hold 1.23 billion FPs. With a sampling rate of 1/101, this
is equivalent to a full index of 124 billion FPs, or 500 TB
of raw storage—given that our segment size is 4 KB5.

4.1 Throughput
4.1.1 Backup Throughput
Index throughput. Before performing any macro-
benchmarks, we used micro-benchmarks to ensure that
the index can support our goals—e.g., in the exam-
ple of Table 1, at least 400 MB/sec. In all the micro-
benchmarks the index could easily handle the de-
sired rates: insert/lookup/remove cost does not exceed
7,619/12,020/16,836 cycles, respectively, even when in-
dex occupancy is more than 97%. For instance, on a 3
GHz CPU, and in the worst-case scenario where all in-
coming FPs exist in the system (and the Bloom filter is
of no help), the index can sustain a backup rate of around
975∗T MB/sec, where T is the sampling period. For our
test configuration, T = 101, and the index can sustain a
rate of about 98.5 GB/sec.

Unique data: baseline vs. prototype. Figure 4 shows
the backup throughput using the synthetic data set. We
vary the number of concurrent backups, in steps of 1, 4,
16, 32, 64, 128 and 256, in order to evaluate the system’s
capability for concurrency. For consistency, all backups
consist of multiple 3 GB files that add up to 768 GB.

The unique data throughput test aims to measure the
prototype’s behavior in the absence of duplicates. Unique
data can be significant when a client performs the ini-
tial backup or a lot of changes have been made. This
test stresses the disk and the network systems as large
amounts of data need to be transferred.

To get a sense of the performance of raw hardware,
we first measured a baseline throughput. The baseline
throughput of the disk array (“Baseline” in Figure 4), is

5Testing our system with a configuration that supports a raw capac-
ity of 500 TB per node may seem inadequate at first. One should keep
in mind, however, that 1) We are stressing the system by using 4 KB
segments. Most systems use significantly larger segments, leading to
higher raw capacities. 2) This is single-node capacity with only 25 GB
memory for indexing. As such, it is higher than that of most systems
we know of (as presented in Section 4.4). Unfortunately we don’t have
access to servers with more memory or larger disk arrays so as to test
higher capacities.
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Figure 4: Aggregate throughput for our synthetic data set, with varying
number of concurrent backups. Our system is capable of 6 GB/sec for
duplicate data backup, and close to 1 GB/sec for concurrent backups of
unique data. Dedupe efficiency is 97%, and we support 200 TB storage
for every 10 GB of system memory (500 TB for 25 GB in this test).

measured by writing the same synthetic workload to the
file system. For a single backup, the baseline through-
put is around 1 GB/sec. This is the maximum throughput
of the storage system. The baseline throughput quickly
drops to around 300 MB/sec for storing multiple back-
ups concurrently because disk contention increases with
the number of concurrent backups.

Backing up the same data set (“Unique data” in Fig-
ure 4) using our prototype achieves a steady throughput
of about 950 MB/sec as we scale to multiple concurrent
backups, which is significantly better than the regular file
server. This is mainly because our prototype performs
segmentation on all incoming data, and manages the se-
rialization of containers to disk (regardless of content
source), therefore decreasing concurrent disk accesses.

Duplicate data backup throughput. After backing up
the unique data workload using our prototype, we backup
the same files again (“Duplicate data - cold cache” line
in Figure 4). This time, all segments are duplicates, and
we aim to observe how our prototype performs when it
only needs to reference existing data, instead of physi-
cally storing new data. This test mainly stresses the index
lookup and disk pre-fetching operations.

Initially, for low levels of concurrency, the penalty for
small random disk reads, for container FP catalog pre-
fetching, dominates performance. Throughput improves
steadily as we increase the level of concurrency and du-
plicate elimination pays off, with aggregate disk through-
put reaching over 6.6 GB/sec for 64 concurrent backup
streams. When disk accesses are already random, con-
current access doesn’t introduce more randomness. On
the other hand, concurrent accesses can fully utilize ev-
ery disks in the disk array. Thus the aggregate through-
put increases. After 64 concurrent streams, the disk ar-
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Backup Unique Duplicates Duplicates
streams data (cold cache) (warm cache)

1 840 (-4.9%) 699 (-26.4%) 1,989 (12.9%)
4 992 (-0.5%) 2,556 (-6.3%) 6,326 (0.6%)

16 999 (1.9%) 4,802 (-0.2%) 11,992 (5.1%)
32 985 (0.3%) 6,420 (1.3%) 12,134 (5.3%)
64 984 (-0.2%) 6,621 (0.1%) 11,865 (3.3%)

128 988 (3.2%) 6,315 (1.6%) 11,755 (2.1%)
256 955 (1.9%) 6,041 (-1.1%) 11,946 (12.3%)

Table 2: We repeated the experiments of Figure 4 using the SSD index.
Results are in MB/sec. The percentages in parentheses show how much
faster/slower the SSD index is from the memory index.

ray’s capacity for pre-fetching is saturated and mild ef-
fects from concurrency overhead (index/cache locking,
disk accesses etc.) are becoming obvious: duplicate data
backup throughput falls to 6 GB/sec and remains mostly
constant.

To verify our conjecture that duplicate data backup
throughput limitations are mainly due to disk bottleneck
(container FP catalog pre-fetching) instead of CPU, we
backup the same files a third time immediately after the
second backup. In this case, many FPs are already in the
cache and fewer disk pre-fetches will be necessary. The
throughput is shown as “Duplicate data - warm cache”
in Figure 4. First we observe that overall throughput is
much higher, reaching 11.5 GB/sec at around 16 streams,
confirming that the bottleneck in our previous tests was
in the disk random access performance, which deter-
mines the duplicate backup throughput. Additionally, we
observe that the effects of concurrency are barely visi-
ble: aggregate throughput is stable up to 128 concurrent
backups, but at 256 concurrent streams the overhead of
pthread shared locks used for protected accesses to the
FP cache buckets, as well as a few cache evictions that
render the cache less “warm”, take their toll—slightly
lowering the aggregate throughput (10.6 GB/sec).

SSD indexing throughput. Using SSD index imple-
mentation on an 128 GB SSD drive, we repeated the
throughput experiments of Figure 4 in order to 1) test
the efficiency of our SSD indexing design, and 2) verify
the effects of shared locking to duplicate data backups—
since the SSD index is read-only and uses no shared
locks. For our tests, we maintained the same sampling
rate (R = 1/101) and used the same amount of memory
for caching as before (2 GB)—so as to make a fair com-
parison. Notice that with this setup we are now using a
total of only 10 GB and the amount of raw storage the
system can support rose from 500 to 1,600 TB. Due to
our efficient SSD index design and the lack of shared
locking, most throughput results were similar or superior
to those of the memory index. Table 2 summarizes the
results and difference between the SSD index and mem-
ory index throughput. Notice, however, that these results

CPU Unique 100% Duplicates 100% Duplicates
cores data (cold cache) (warm cache)

1 347 354 356
2 599 612 612
4 900 1,167 1,172
8 907 1,983 2,004

14 925 2,373 2,485

Table 3: End-to-end backup throughput using a varying number of
CPU cores. All numbers in MB/sec.

include the cost of updating the SSD every time 65,536
new sampled entries have accumulated. A less (more)
frequent SSD update policy would yield faster (slower)
throughput results.

End-to-end throughput. Our next test attempted to in-
clude client performance in our evaluation, in an end-
to-end system test, using a single 25 GB backup stream
of unique segments. As presented in Table 3, we var-
ied the number of CPU cores dedicated to MD5 cal-
culation, and performed three tests for each configura-
tion: an initial backup, a second backup of the same
data with cold caches, and a third run with warm caches.
All backups were performed using a 16-core Intel Xeon
E5520 “client”, with 32 GB of RAM, running RedHat
Enterprise Linux 5. The results of Table 3 show that
backing up unique data does not get much faster with
more than 4 cores. Careful observation revealed two rea-
sons for this behavior. First, even when using the Linux
loopback interface, we could not get throughput higher
than 10 Gbps, on that particular host. Notice that when
bulk data transfers become unnecessary, the performance
reaches 2.49 GB/sec. Second, we realized that careful
optimization of our simple RPC mechanism might be
able to yield better performance. However, optimizing
network behavior and the RPC implementation is be-
yond the scope of this study. In order to evaluate the
real throughput of our client design we made the assump-
tion of an infinitely fast network/RPC infrastructure, and,
temporarily, eliminated the network performance bottle-
neck. This revealed the client’s full potential: running on
our (slower) main Intel Xeon 5450 server, the client was
able to push 360/697/1,023/1,319MB/sec of unique data,
with 1/2/3/4 cores dedicated to MD5, respectively.

Backup throughput conclusions. In summary, our
backup throughput experiments show that, when back-
ing up unique data, our system is nearly as efficient as a
normal file server for single stream backup (no penalty
for deduplication) and several times faster for multi-
stream backups. This shows that our system can better
organize the data on disks to achieve high throughput
even with concurrent backups. When data are mostly du-
plicates, we can achieve 950 MB/sec for single stream
backup and 6 GB/sec for multi-stream backups. Multiple
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Figure 5: The reference update time for a given amount of data backed
up or deleted when the system is empty and nearly full. The time is pro-
portional to the data changed, and the slope shows the update through-
put (3 GB/sec). Notice that the throughput is stable regardless of the
capacity of the system or the amount of changed data.

streams help improve the aggregate throughput because
they maximize the throughput of container FP catalog
pre-fetching.

The major limitations that we observed are due
to hardware restrictions: limited container pre-fetching
throughput and CPU/networking bottlenecks in our
end-to-end performance tests. On a production system
equipped with hundreds of fast-seeking physical disks,
and utilizing faster network connectivity, we expect to
see much higher throughput. The only software limi-
tation we observed was due to pthread locks, and is
considered of secondary importance since it only im-
pacts throughput minimally for more than 128 concur-
rent backup streams.

4.1.2 Reference Update Throughput
A critical property that is not often tested in deduplica-
tion systems, is the performance of reference updates, es-
pecially when we need to delete data—an operation that
happens almost daily. Figure 5 shows reference update
times measured when the synthetic data set gets backed
up or deleted, both when the system is empty and near
full capacity. The time is linear with the size of data
backed up or deleted, because we need to update the ref-
erence of each segment that gets used.

The slope of the line corresponds to the throughput
of the reference update, which is 3.2 GB/sec for data
addition, and 3.1 GB/sec for data deletion. Deletion is
slightly slower because when segments get deleted, they
also need to be removed from the index. Contrary to a
regular file-system, the deletion throughput of the dedu-
plication system is slow because we pay the price of
data sharing. However, it is still faster than the backup
throughput of new data, which prevents the backup pro-

Unique Total Ideal Real De-
segs unique MBs MBs dupe

VM0 518,326 518,326 2,123 2,211 96%
VM1 733,267 921,522 3,775 3,938 96%
VM2 904,579 1,189,230 4,871 5,085 96%
VM3 1,145,029 1,616,585 6,621 6,860 97%

Table 4: Deduplication efficiency results for subsequent backups of
four different versions of a Windows XP VMware image file.

cess from having to stall and wait for the deletion mech-
anism to free up space.

4.1.3 Restore Throughput
Deduplication system benchmarks are dominated by
backup testing and testing of restore is mostly ignored—
probably because the restore process is usually slow, and
correctness is the main concern. However, restore is an
important operation and we wanted to ensure that our
prototype provides sufficient performance. During our
tests all data were restored correctly. Our single stream
restore throughput was measured around 1 GB/sec, and
430 MB/sec for two or more concurrent restore streams.
Single stream restore is fast because most accesses are
sequential, while multiple concurrent restore streams in-
troduce disk seeking. The use of directly locatable ob-
jects allows us to perform restore without using the in-
dex, making the whole process very scalable.

4.2 Deduplication Efficiency
Although we are willing to sacrifice some dedupe ac-
curacy for high scalability, we still want to make sure
the system provides adequate duplicate detection. In par-
ticular, since sampling provides the desired scalability,
dedupe efficiency will be mostly determined by the ef-
fectiveness of pre-fetching.

In our synthetic data set, the true (“ground truth”) du-
plication is 100%. Our prototype consistently eliminates
no less than 97% of duplicates. This is consistent with
the theoretical expectation, based on Equation 2: when
we pre-fetch FPs from the container catalog, and because
the sampling rate is 1 out of 101, the first 100 FPs may
not be found. After the first hit, (101st FP in the worst
case), we pre-fetch all FPs in that container. So theoreti-
cally we may fail to detect 100 over 4096 FPs, i.e., 2.4%.

For our VMWare data set we used our test sampling
rate of 1/101, and a small FP cache (256 MB) in order to
ensure that the cache cannot hold the whole working set.
We performed multiple backups of each VM image, ob-
serving 100% dedupe efficiency for each run, with very
high throughput (2.4 GB/sec). A more interesting exper-
iment, however, presented in Table 4, is the dedupe ef-
ficiency achieved when backing up VM0, VM1, VM2,
and VM3 back-to-back. Image VM0 has 518,326 4 KB
segments, taking up 2,211 MB of disk space, instead
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of 2,123 MB, giving us 96% of the ideal dedupe effi-
ciency. Backing up VM1 introduced 403,196 new seg-
ments (330,071 of VM1’s segments were also in VM0),
taking up 3,938 MB, for a steady dedupe efficiency of
96%. Similarly, VM2 and VM3 were deduplicated at
96% and 97% of the optimal dedupe rate, which is a very
satisfying result for a cache of only 256 MB. These re-
sults are particularly encouraging, since field experience
has demonstrated that VM image backups are one of the
most common and effective uses of dedupe.

4.3 Scalability
In order to test the scalability of the system we first pop-
ulated it to near-full capacity (480 out of 500 TB i.e.,
95.5%) with unique data. Because our disk array is only
24 TB, we stored everything except the actual segment
data. As the code mainly operates on the metadata, dis-
carding segment data has no impact on the correctness
of the test. After the system was populated we repeated
the same throughput tests, during which everything was
stored on disk (including segment data).

Figure 6 presents a throughput comparison between an
empty and near-full system. For multi-stream through-
put, the system occupancy has negligible performance
impact because for both unique and duplicate data the
throughput is, once again, bounded by the disk’s sequen-
tial write and random read performance, respectively.
When the system is near full capacity, the index lookup
and update time increase slightly. But the main bottle-
neck is still disk I/O—overshadowing the effects of CPU
overhead. This means that the throughput of the system
will scale well in terms of system capacity while disk
I/O is the main bottleneck—which is probably going to
be true in the foreseeable future.

The index overhead does show up for single stream
throughput. The throughput of single stream backup near
full capacity is slower than that of the empty system be-
cause single stream throughput is CPU bound and ac-
cessing a “fuller” index takes a little bit more CPU time.

Figure 5 also compares reference update performance
when the system is empty and near-full. As expected,
the time for reference update is almost the same, since
the grouped mark-and-sweep algorithm only touches the
changed backup groups. The majority of the references,
regardless of how many they are when the system is near
full capacity, are not touched by the grouped mark-and-
sweep. Finally, we also checked the deduplication effi-
ciency for both the synthetic and real data sets and ob-
served no degradation in a near-full system.

Our results demonstrate that all parts of our prototype
are able to scale to high capacity, with almost no perfor-
mance decrease. We are confident that our system would
scale to higher capacities, given more resources. More-
over, the raw capacity supported by our system (200 TB
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Figure 6: Throughput scalability tests show that there is no signifi-
cant throughput drop when we get close to full capacity. We incur O(1)
cost for most index operations, and throughput is disk-bound for both
unique and duplicate data backups.

for every 10 GB of memory) is higher than the capacity
of any other single-node system presented in Section 4.4.

4.4 Comparison to State-of-the-art
When evaluating dedupe systems it is often the case that
custom methods and private workloads are used to quan-
tify the effectiveness of the proposed mechanisms (e.g.,
[19] and [12]). Comparisons to other systems are usually
difficult, and limited to references to results reported by
vendors, mostly because there is no agreed deduplication
benchmark that would make benchmarking and compar-
isons fair and meaningful. Furthermore, when aiming to
top the performance of state-of-the art systems, it is al-
most impossible to justify the cost and effort of obtain-
ing, deploying and benchmarking even a single one of
them. In our evaluation we tried to use data sets that will
exercise the system in interesting ways, and that are rel-
atively easy to be recreated and tested by other systems.

Table 4.4 presents some of the most popular high-
performance deduplication solutions available as of
April 2011. Assuming that all systems provide adequate
deduplication efficiency (specifications do not provide
precise numbers), we can see that our prototype’s peak
performance is similar to or better than that of all sys-
tems, with the exception of NEC’s HydraStor. However,
notice that HydraStor utilizes a large distributed system
(55 “accelerator” and 110 “storage” nodes) in order to
achieve its maximum throughput, and yet its raw capac-
ity is limited to only 1.3 PB. Our prototype’s single-
node scalability competes with that of all systems and
surpasses most of them, especially considering the lim-
ited amount of resources we have used (e.g., only 25 GB
of RAM per 500 TB for R = 1/101, on an older 8-core
server). Notice, however, that our goal to increase single-
node scalability is not meant to replace all multi-node
systems, but to potentially improve them by enabling
each node to make better use of its resources and increase
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Product Backup Capacity Nodes
(MB/sec) (TB)

DataDomain DD890 [3] 4,083 384 1
HP D2D4324 [7] 1,110 18 1

IBM ProtecTier [8] 1,000 1,000 2
Greenbytes GB4000 [6] 950 216 1

NEC HydraStor 55 +
HS8-3110R [14] 41,250 1,300 110

Our prototype 6,000 500 1

Table 5: Summary: state-of-the art dedupe products as of April 2011.

data density per node. By doing so we could decrease
the number of nodes necessary for a particular deploy-
ment, thus significantly decreasing the overall (acquisi-
tion, management, energy, etc) cost.

5 Related Work

Since the days of early deduplication systems, that per-
formed mostly file-level or naive block-level deduplica-
tion [1, 11, 16], a lot of effort has been put into optimiz-
ing duplicate detection. In particular, many systems have
investigated methods to perform content-aware segment
boundary calculation, aiming to improve better dupli-
cate coverage. Any degradation in dedupe efficiency was
considered unacceptable. Such variable-size segmenta-
tion algorithms, utilize different variations of byte-level
approaches, such as sliding window approaches (e.g.,
[5]), rolling hashes (e.g., [15]), Rabin fingerprints [2],
and bimodal chunking [10]. For instance, systems like
MAD2 [18], HYDRAstor [4, 17], as well as dedu-
plication solutions by DataDomain [19] and Hewlett-
Packard [12], utilize variable-size segments, in an at-
tempt to achieve maximum compression. However, even
if these algorithms make the best of raw storage (which
is not always the case, as observed by [9]), single-node
capacity is limited. Our work takes a different approach:
we are willing to sacrifice some deduplication efficiency
in order to achieve higher single-node scalability.

A sampling method is used in [12] to address indexing
scalability restrictions. However, that approach is signifi-
cantly different from ours, since it uses sampling to prob-
abilistically identify “super-segments” that are used to
perform coarse-granularity deduplication. Our segmen-
tation algorithm operates at fine granularity at all times,
and sampling is not used for pattern-matching, but for in-
dexing actual file segments. Additionally, our approach is
significantly more scalable, and can operate under heavy
memory constraints, with good sampling rates: in a set-
ting similar to the experiments presented in [12], our
sampled index would require about 74% less memory
(4.4 GB instead of 17 GB, with R = 1/101).

A lot of systems have used spacial locality to perform

some type of caching (e.g., [18, 19]), but, to our knowl-
edge, it has not been used before in combination with
an aggressive sampling approach, such as the one we are
proposing.

Our key assumption difference from previous efforts
is that we are willing to relax our duplicate detection ef-
ficiency requirements, in order to address all three major
challenges of single-node deduplication. Most other sys-
tems have provided good solutions for a subset of prob-
lems, usually excluding single-node scalability and ref-
erence management. For instance, DataDomain [19] ad-
dressed the disk bottleneck, by introducing a series of
optimizations, including a Bloom filter, and spacial local-
ity. However, their system can support a limited amount
of raw storage, and is limited by network performance,
since duplicate detection is performed only at the server.
Additionally, it is not clear whether DataDomain’s sys-
tem can perform truly scalable resource reclamation.

HYDRAstor [4] on the other hand, achieves good scal-
ability, but it does so by using a highly distributed, hierar-
chical model, with each node holding only a few tens of
TB of storage. This design yields a high backup through-
put, but at the cost of a highly distributed, costly system.
Deletions in HYDRAstor, are implemented with a dis-
tributed reference counting method, which is difficult to
maintain correctly, and scale without a large performance
hit.

MAD2 [18] also uses a distributed storage system to
provide scalability, as well as a number of optimizations
that include spacial locality caching, and Bloom filters.
Deletions are a very challenging operation in this system
as well: they are performed only at the file level, and they
are also handled by a variant of reference counting, with
all the scalability and correctness problems discussed in
Section 2.2. To our knowledge, our grouped mark-and-
sweep approach is the only truly scalable, documented
reference management implementation, that is also very
resilient to errors.

Many scalable systems have adopted the event-driven
design, however it is interesting that the nature of our ap-
plication requires that we utilize it for the client, rather
than the server. A pipelined client design was also pro-
posed by [13], but it is significantly different from our
design: it assumes pipeline stages whose operation re-
quires a fixed amount of time, making it unrealistic for
network operation. It also uses disk-based, client-side in-
dexing, it implements a lot of functionality in the kernel,
and it achieves scalability and throughput that is orders
of magnitude lower than those of our client design.

6 Conclusion

Important engineering challenges need to be addressed
in order to achieve the scalability, throughput and dedu-
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plication efficiency necessary to provide next-generation
deduplication support. We have presented a clean-slate
design that aims to maximize overall single-node ef-
fectiveness, and introduces new mechanisms that ad-
dress the most pressing of these challenges. Our di-
rectly locatable objects enable the use of progressive
sampled indexing—in memory or on SSD—which pro-
vides superior single-node scalability and memory us-
age efficiency—unlike any other system we know of.
Our grouped mark-and-sweep mechanism attacks the
difficult, and often neglected, resource management
and reclamation problem, in a truly scalable and effi-
cient manner. Additionally, we have proposed an asyn-
chronous interface to the server back-end, capable of
pushing data to the server at a high-enough rate.

The performance of our prototype validates the ef-
fectiveness of our design. Progressive sampled index-
ing achieves very good deduplication efficiency, while
using only 10 GB of memory per 200 TB of raw stor-
age (25 GB for 500 TB in our tests). Additionally, we
were able to achieve backup throughput ranging from
950 (all unique data) to 6,000 MB/sec (all duplicate
data), with deduplication efficiency no less than 97%,
while our grouped mark-and-sweep approach can pro-
cess data with speeds higher than 3.1 GB/sec, demon-
strating that single-node dedupe effectiveness can be
greatly improved by making good use of available re-
sources.
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Abstract

Data Deduplication is becoming increasingly popular in
storage systems as a space-efficient approach to data
backup and archiving. Most existing state-of-the-art
deduplication methods are either locality based or sim-
ilarity based, which, according to our analysis, do not
work adequately in many situations. While the former
produces poor deduplication throughput when there is
little or no locality in datasets, the latter can fail to iden-
tify and thus remove significant amounts of redundant
data when there is a lack of similarity among files. In this
paper, we present SiLo, a near-exact deduplication sys-
tem that effectively and complementarily exploits sim-
ilarity and locality to achieve high duplicate elimina-
tion and throughput at extremely low RAM overheads.
The main idea behind SiLo is to expose and exploit
more similarity by grouping strongly correlated small
files into a segment and segmenting large files, and to
leverage locality in the backup stream by grouping con-
tiguous segments into blocks to capture similar and du-
plicate data missed by the probabilistic similarity detec-
tion. By judiciously enhancing similarity through the ex-
ploitation of locality and vice versa, the SiLo approach
is able to significantly reduce RAM usage for index-
lookup and maintain a very high deduplication through-
put. Our experimental evaluation of SiLo based on real-
world datasets shows that the SiLo system consistently
and significantly outperforms two existing state-of-the-
art system, one based on similarity and the other based
on locality, under various workload conditions.

1 Introduction

As the amount of the important data that needs to be
digitally stored grows explosively to a worldwide stor-
age crisis, data deduplication, a space-efficient method,
has gained increasing attention and popularity in data
storage. It splits files into multiple chunks that are

each uniquely identified by a 20-byte SHA-1 hash sig-
nature, also called a fingerprint [21]. It removes dupli-
cate chunks by checking their fingerprints, which avoids
a byte-by-byte comparison. Data deduplication not only
reduces the storage space overheads, but also minimizes
the network transmission of redundant data in the net-
work storage system [19].

One of the main challenges for centralized backup
services based on deduplication is the scalability of
fingerprint-index search. For example, to backup a
dataset of 800TB and assuming an average chunk size
of 8KB, at least 2TB of fingerprints have to be generated,
which will be too large to be stored in the memory. Since
the access to on-disk index is at least 1000 times slower
than that to RAM, the frequent accesses to on-disk fin-
gerprints are not acceptable for backup services and have
become the main performance bottleneck of such dedu-
plication systems.

Most of the existing solutions aim to make the full
use of RAM, by putting the hot fingerprints into RAM
to minimize accesses to on-disk index and improve the
throughput of deduplication. There are two primary ap-
proaches to scaling data deduplication: locality based
acceleration of deduplication, and similarity based dedu-
plication. Locality-based approaches exploit the inherent
locality in a backup stream, which is widely used in state-
of-the-art deduplication systems such as DDFS [26] and
ChunkStash [8]. Locality in this context means that the
chunks of a backup stream will appear in approximately
the same order in each full backup with a high proba-
bility. Exploitation of this locality increases the RAM
utilization and reduces the accesses to on-disk index,
thus alleviating the disk bottleneck. Similarity-based ap-
proaches are designed to address the problem encoun-
tered by locality-based approaches in backup streams
that either lack or have very weak locality (e.g., incre-
mental backups). They exploit data similarity instead
of locality in a backup stream, and reduce the RAM us-
age by extracting similar characteristics from the backup
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stream. A well-known similarity-based approach is Ex-
treme Binning [3] that exploits the file similarity to
achieve a single on-disk index access for chunk lookup
per file.

While these scaling approaches have significantly alle-
viated the disk bottleneck in data deduplication, there are
still substantial limitations that prevent them from reach-
ing the peta- or exa-scale, as explained below. Based
on our analysis of experimental results, we find that
in general a locality-based deduplication approach per-
forms very poorly when the backup stream lacks locality
while a similarity-based approach underperforms for a
backup stream with a weak similarity. Unfortunately, the
backup data in practice are quite complicated in how or
whether locality/similarity is exhibited. In fact, DDFS is
shown to run very slowly in backup streams with little
or no locality (e.g., when users only do the incremen-
tal backup). On the other hand, the similarity-based Ex-
treme Binning approach is shown to fail to find signifi-
cant amount of duplicate data in datasets with little or no
file similarity (e.g., when the files are edited frequently).
Fortunately, our preliminary study indicates that the ju-
dicious exploitation of locality can compensate for the
lack of similarity in datasets, and vice versa. In other
words, both locality and similarity can be complemen-
tary to each other, and can be jointly exploited to improve
the overall performance of deduplication.

To this end, we propose SiLo, a scalable and low-
overhead near-exact deduplication system, to overcome
the aforementioned shortcomings of existing state-of-
the-art schemes. The main idea of SiLo is to consider
both similarity and locality in the backup stream simul-
taneously. Specifically, we expose and exploit more sim-
ilarity by grouping strongly correlated small files into a
segment and segmenting large files, and leverage locality
in the backup stream by grouping contiguous segments
into blocks to capture similar and duplicate data missed
by the probabilistic similarity detection. The main con-
tributions of this paper include:

• SiLo proposes a new similarity algorithm that
groups many small strongly-correlated files into a
segment or segments a large file to better expose and
exploit their similarity characteristics. This group-
ing of small files results in much smaller similar-
ity index for segments than chunk index, which can
easily fit into RAM for a much larger dataset. The
segmenting of large files can expose and thus ex-
tract more similarity characteristics so as to remove
duplicate data with a higher probability.

• SiLo proposes an effective approach to mining the
locality characteristics to capture similar and dupli-
cate data missed by the probabilistic similarity de-
tection by grouping multiple contiguous segments

into a block, the basic cache and write-buffer unit,
while preserving the spatial locality inherent in the
backup stream on the disk. By keeping the similar-
ity index and preserving spatial locality of backup
streams in RAM (i.e., hash table and locality cache),
SiLo is able to remove large amounts of redun-
dant data, dramatically reduce the numbers of ac-
cesses to on-disk index, and substantially increase
the RAM utilization.

• Our experimental evaluation of SiLo, based on real-
world datasets, shows that the SiLo system con-
sistently and significantly outperforms two exist-
ing state-of-the-art systems, the similarity-based
Extreme Binning system and the locality-based
ChunkStash system, under various workload con-
ditions. According to our evaluations on du-
plicate elimination, SiLo can remove 1%∼28%
more redundant data than Extreme Binning and
only 0.1%∼1% less than the exact-deduplicating
ChunkStash. Our evaluations on deduplication
throughput (MB/sec) suggest that SiLo outperforms
ChunkStash by a factor of about 3 and Extreme Bin-
ning by a factor of about 1.5. On the RAM utiliza-
tion for the same datasets, SiLo consumes a RAM
capacity that is only 1/41∼1/60 and 1/3∼1/90 re-
spectively of that consumed by ChunkStash and Ex-
treme Binning.

The rest of the paper is organized as follow. Section
2 presents background and motivation for this research.
Section 3 describes the architecture and the design of the
SiLo system. Section 4 presents our experimental eval-
uation of SiLo and discusses the results, including the
comparisons with the state-of-the-art ChunkStash and
Extreme Binning systems. Section 5 gives an overview
of related work, and Section 6 draws conclusions and
outlines future work.

2 Background and Motivation

In this section, we first provide the necessary background
for our SiLo research by introducing the existing acceler-
ation approaches for data deduplication, and then moti-
vate our research by analyzing our observations based on
extensive experiments on locality- and similarity-based
deduplication acceleration approaches under real-word
workloads.

2.1 Deduplication Acceleration Ap-
proaches

Previous studies have shown that the main challenge fac-
ing data deduplication lies in the on-disk index-lookup

2
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bottleneck [26, 15, 8]. As the size of dataset to be dedu-
plicated increases, so does the total size of fingerprints
required to detect duplicate chunks, which can quickly
overflow the RAM capacity for even high TB-scale and
low PB-scale datasets. This can result in frequent disk
accesses for fingerprint-index lookups, thus severely lim-
iting the throughput of the deduplication system. Cur-
rently, there are two general approaches to accelerat-
ing the index-lookup of deduplication and alleviating the
disk bottleneck, namely, the locality based and the simi-
larity based methods.

The locality in the former refers to the observation
that files, say A and B (thus their data chunks), in a
backup stream appear in approximately the same order
throughout multiple full backups with a high probability.
DDFS [26] makes full use of this locality characteristic
by storing the chunks in the order of the backup stream
on the disk and preserving the locality in the RAM. It
significantly reduces accesses to the on-disk index by in-
creasing the hit ratio in the RAM. It also uses Bloom
filters to quickly identify new (non-duplicate) chunks,
which helps compensate for the cases where there is
no or little locality, but at the cost of significant RAM
overhead. Sparse Indexing [15] improves this method
by sampling index instead of using Bloom filters. It
uses less than half of the RAM capacity of DDFS. As a
novel content-defined chunking algorithm, Bimodal [14]
suggests that the neighboring data of duplicate chunks
should be assumed to be good deduplication candidates
due to backup-stream locality, which can be exploited to
maximize the chunk size.

Nevertheless, all these approaches still produce unac-
ceptable performance in face of very large datasets with
little or no locality. The similarity-based approaches are
proposed to exploit the similar characteristics in backup
streams to minimize the chunk-lookup index in the mem-
ory. For example, Extreme Binning [3] exploits the simi-
larity among files instead of locality, allowing it to make
only one disk access for chunk lookup per file. It sig-
nificantly reduces the RAM usage by storing only the
similarity-based index in the memory. But it often fails
to find significant amounts of redundant data when simi-
larity among files is either lacking or weak. It puts sim-
ilar files in a bin whose size grows with the size of the
data, resulting in decreased throughput as the size of the
similarity bin increases.

2.2 Small Files and Large Files

Our experimental observations, as well as intuition, sug-
gest that the deduplication of small files can be very
space and time consuming. A file system typically con-
tains a very large number of small files [1]. Since the
small files (e.g., ≤64KB) usually only take up a small

fraction (e.g., ≤20%) of the total space of a file system
but account for a large percentage (e.g., ≥80%) of the
number of files, the chunk-lookup index for small files
will be disproportionally large and likely out of mem-
ory. Consequently, the inline deduplication [26, 15] of
small files will tend to be very slow and inefficient be-
cause of the more frequent accesses to the on-disk index
for chunk lookup and the higher network-protocol costs
between the client and the server.

This problem of small files can be addressed by group-
ing many highly correlated small files into a segment. We
consider files with the logic sequence within the same
parent directory to be highly correlated and thus simi-
lar. We exploit the similarity and the locality of a group
(i.e., segment) of adjacent small files rather than one in-
dividual file or chunk. As a result, at most one access to
on-disk index is needed per segment instead of per file
or per chunk. The segmenting approach can also min-
imize the network costs by avoiding the frequent inline
interactions per file.

A typical file system also contains many large files
(e.g., ≥2MB) that only account for a small fraction (e.g.,
≤20%) of total number of files but occupy a very large
percentage (e.g., ≥ 80%) of the total space [1]. Ob-
viously, these large files are an important considera-
tion for a deduplication system due to their high space-
capacity and bandwidth/time requirements in the backup
process. When a large file is being deduplicated inline,
the server must often wait for a long time for the chunk-
ing and hashing processes, resulting in low efficiency of
the deduplication pipeline. In addition, the larger the
files, the less similar they will appear to be even if sig-
nificant parts within the files may be similar or identical,
which can cause the similarity-based approaches to miss
the identification of significant redundant data in large
files.

To address this problem of large files, our SiLo ap-
proach divides a large file into many small segments to
better expose similarity among large files while increas-
ing the efficiency of the deduplication pipeline. More
specifically, the probability that file S1 and file S2 share
the same representative fingerprint is highly dependent
on their similarity degree according to Broder’s theorem
[5]:

Theorem 1: Consider two sets S1 and S2, with H(S1)
and H(S2) being the corresponding sets of the hashes
of the elements of S1 and S2 respectively, where H is
chosen uniformly and randomly from a min-wise inde-
pendent family of permutations. Let min(S) denote the
smallest element of the set of integers S. Then:

Pr[min(H(S1) = min(H(S2)))] =
|S1 ∩ S2|
|S1 ∪ S2|

3
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This probability can be increased by segmenting the
files and detecting all the segments of the file, as follows:

Pr[min(H(S1) = min(H(S2)))] =
|S1 ∩ S2|
|S1 ∪ S2|

≪

Pr[min(H(S11) = min(H(S21)))] ∪ · · · ∪ Pr[min(H(S1n) = min(H(S2n)))]

=

n∪
i=1

Pr[min(H(S1i) = min(H(S2i)))]

= 1 −
n∩

i=1

Pr[min(H(S1i) ̸= min(H(S2i)))]

= 1 −
n∏

i=1

(1 −
|S1i ∩ S2i|
|S1i ∪ S2i|

)

As files S1 and S2 are segmented into S11 ∼ S1n and
S21 ∼ S2n respectively, the detection of similarity be-
tween S1 and S2 is determined by the union of the prob-
abilities of detections of similarity between S11 ∼ S1n

and S21 ∼ S2n. Based on the above probability analysis,
this segmenting approach will only fail in the worst-case
scenario where all the segments in file S1 are not similar
to segments of file S2. This, based on the inherent lo-
cality in the backup streams, happens with a very small
probability because it is extremely unlikely that two files
are very similar but none or very few of their respective
segments are detected as being similar.

2.3 Similarity and Locality
Now we further analyze the relationship between similar-
ity and locality with respect to backup streams. As men-
tioned earlier, chunk locality can be exploited to store
and prefetch groups of contiguous chunks that are likely
to be accessed together with a high probability in the
backup stream, while files’ similarity may be mined so
that the similarity characteristics instead of the whole
sets of fingerprints of files, are indexed to minimize the
index size in the memory. The exploitation of locality
maximizes the RAM utilization to improve the through-
put but can cause RAM overflows and frequent accesses
to on-disk index when datasets lack or are weak in local-
ity.

The similarity-based approaches minimize the RAM
usage at the cost of potentially missing large amounts
of redundant datawhich is dependent on the similar-
ity degree of the backup stream. We have exam-
ined the similarity degree and the duplicate-elimination
measure of our similarity-only deduplication approach
on four datasets, as shown in Figure 1 and Figure 2.
The four datasets represent one-backups, incremental-
backups, Linux-versions and full-backups respectively,
whose characteristics will be detailed in Section 4.

The similarity degree is computed by our similarity
detection on the Linux dataset as: Simi(Sinput) = Max
(| Sinput ∩ Si |)/|Sinput|,(Si ∈ Sstore, Simi(Sinput) ∈
[0,1]). Thus, the similarity degree “1” signifies that the

Figure 1: The distribution of the segment similarity on
four datasets by our similarity-only approach. It can be
used to describe the similarity characteristics of datasets.
A large proportion of data with low similarity degrees is
observed here.

Figure 2: Percentage of duplicate data eliminated by our
similarity-only deduplication approach.

input segment is completely duplicate and the similarity
degree “0” states that the segment is detected to match
no other segments at all by our similarity-only approach.

Figure 3 further examines the duplicate elimination
missed by the similarity approach on the Linux dataset.
The missed portion of duplication elimination is de-
fined as the difference between the measure achieved
by the exact deduplication and that by the similarity-
based deduplication. Therefore, Figure 3 shows that the
similarity-based deduplication efficiency is heavily de-
pendent on the similarity degree of the backup stream
which is well consistent with Broder’s Theorem in (see
Section 2.2). The similarity approach often fails to re-
move large amounts of duplicate data, especially when
the backup stream has a low similarity degree.

Inspired by Bimodal [14], which shows that the
backup-stream locality can be mined to find more po-
tentially duplicate data, we believe that such locality can
also be mined to expose and thus detect more data sim-
ilarity, a point well demonstrated by our experimental
study in Section 4. More specifically, SiLo mines lo-

4
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Figure 3: Percentage of duplicate data eliminated as
a function of different similarity degree on the Linux
dataset by our similarity-only deduplication approach.

cality in conjunction with similarity by grouping multi-
ple contiguous segments in a backup stream into a block.
While this exploitation of locality helps find more po-
tential deduplication candidates by detecting similar seg-
ments’ adjacent segments in a block, it also reduces the
accesses to on-disk index to improve the deduplication
throughput.

Now we analyze the combined exploitation of simi-
larity and locality. Given two blocks B1 and B2, each
containing n segments (S11 ∼ S1n, S21 ∼ S2n), accord-
ing to the Broder’s theorem, the percentage of duplicate
eliminated by the similarity-only approach can be com-
puted as: DeDupSimi(B1, B2) = |B1∩B2| / |B1∪B2|.
The combined and complementary exploitation of simi-
larity and locality can be computed as follows:

DeDupSiLo(B1, B2)

=

n∪
i=1

Pr[min(H(S1i) = min(H(S2i)))]

= 1 −
n∩

i=1

Pr[min(H(S1i) ̸= min(H(S2i)))]

= 1 −
n∏

i=1

(1 −
|S1i ∩ S2i|
|S1i ∪ S2i|

)

= 1 − (1 − a)
N
(assume all the

|S1i ∩ S2i|
|S1i ∪ S2i|

= a)

Assume that the value a follows a uniform distribu-
tion in the range [0,1] (It may be much more compli-
cated in the real world datasets), the expected value of
duplicate elimination can be further calculated under the
aforementioned assumption as:

ESimi =

∫ 1

0

(a)da =
1

2

ESiLo =

∫ 1

0

(1− (1− a)N )da =
N

N + 1

Thus the larger the value N (i.e., the number of seg-
ments in a block), the more locality can be exploited

in deduplication. ESimi is equal to ESiLo when N=1.
SiLo can remove more than 99% of duplicate data when
N > 99. Thus the combined exploitation of similar-
ity and locality makes it possible to achieve the near-
complete duplicate elimination (recall that exact dedu-
plication achieves complete duplicate elimination) and
requires at most one disk access per segment (a group
of chunks or small files) rather than one access per
chunk (as in locality-based approaches) or per file (as in
similarity-based approaches), thus avoiding the disk bot-
tleneck of data deduplication. In addition, the throughput
of the deduplication system also tends to be improved by
reducing the expensive accesses to on-disk index. As a
result, our SiLo approach, through its judicious and joint
exploitation of locality and similarity, is able to signifi-
cantly improve the overall performance of the deduplica-
tion system as demonstrated in Section 4.

3 Design and Implementation

SiLo is designed for large-scale and disk-inline backup
storage systems. In this section, we will first describe the
architecture of SiLo, followed by detailed discussions of
its design and implementation issues.

3.1 System Architecture Overview
As depicted in Figure 4, the SiLo architecture consists
of four key functional components, namely, File Dea-
mon (FD), Deduplication Server (DS), Storage Server
(SS), and Backup Server (BS), which are distributed in
the datacenters to serve the backup requests. BS and DS
reside in the metadata server (MDS) while FD is installed
on each client machine that requires backup/restore ser-
vices.

• File Deamon is a deamon program providing a
functional interface (e.g., backup/restore) in users’
computers. It is responsible for gathering backup
datasets and sending/restoring them to/from Stor-
age Servers for backups/restores. The processes
of chunking, fingerprinting and segmenting can be
done by FD in the preliminary phase of the inline
deduplication. It also includes a File Agent that is
responsible for communicating with BS and DS and
transferring backup data to/from SS.

• Backup Server is the manager of the backup sys-
tem that globally manages all jobs of backup/restore
and directs all File Agents and Storage Servers. It
maintains a metadata database for administering all
backup files’ information.

• The main function of Deduplication Server is to
store and look up all fingerprints of files and chunks.

5
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Figure 4: The SiLo system architecture.

• Storage Server is the repository for backed-up
data. SS in SiLo manages multiple Storage Nodes
for scalability and provides fast, reliable and safe
backup/restore services.

In this paper, we focus on Deduplication Server since
it is the most likely performance bottleneck of the entire
deduplication system. DS consists of the locality hash ta-
ble (LHTable), the similarity hash table (SHTable), write
buffer and read cache. While SHTable and LHTable in-
dex segments and blocks, the similarity and locality units
of SiLo respectively, the write buffer and read cache pre-
serve the similarity and locality of the backup stream, as
shown in Figure 5.

 

 

 






















Figure 5: Data structures of Deduplication Server.

The notion of segment is used to exploit the similar-
ity of the backup stream while the block preserves the
stream-informed locality layout of segments on the disk.
SHTable provides the similarity detection for input seg-
ments and LHTable serves to quickly index and filter
out duplicate chunks. Note that, since this paper mainly
aims at improving the performance of accessing on-disk
fingerprints in the deduplication system, all write/read

operations in this paper are performed in the form of
writing/reading chunks’ fingerprints rather than the real
backup data.

3.2 Similarity Algorithm
As mentioned in Section 2.3, SiLo exploits similarity
and locality jointly. It exploits similarity by grouping
strongly correlated small files and segmenting large files,
while locality is exploited by grouping contiguous seg-
ments in a backup stream to preserve the locality layout
of these segments as depicted in Figure 6. Thus, seg-
ments are the atomic building units of a block that is
in turn the atomic unit of the write buffer and the read
cache.

Figure 6: Data structure of the SiLo similarity algorithm.

As a salient feature of SiLo, the SiLo similarity algo-
rithm is implemented in File Deamon, which structures
data from backup streams into segments according to the
following three principles.

• P1. Correlated small files in a backup stream (e.g.,
those under the same parent directory) are to be
grouped into a segment.

• P2. A large file in a backup stream is divided into
several independent segments.

• P3. All segments are of approximately the same size
(e.g., 2MB).

Where, P1 aims to reduce the RAM overhead of index-
lookup; P2 helps expose more similarity characteristics
of large files to eliminate more duplicate data; and P3
simplifies the management of segments. Thus, the simi-
larity algorithm exposes and then exploits more similar-
ity by leveraging file semantics and preserving locality-
layout of a backup stream to significantly reduce the
RAM usage.

SiLo employs the method of representative finger-
printing [3] to represent each segment by a similarity-
index entry in the similarity hash table. By virtue of P1,
the SiLo similarity design solves the problem of small
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Figure 7: The workflow of the locality algorithm: it helps
detect more potentially duplicate chunks that are missed
by the similarity algorithm.

files taking up disproportionally large RAM space. For
example, assuming an average segment size of 2MB and
an average chunk or small file size of 8KB, a segment ac-
commodates 250 chunks or small files, thus significantly
reducing the required index size in the memory. If we
assume a 60-byte primary key for the similarity index-
ing of a 2MB segment of backup data, which is consid-
ered economic, a 1TB backup stream only needs 30MB
similarity-index for deduplication that can easily fit in the
memory.

3.3 Locality Algorithm

As another salient feature of SiLo, the SiLo locality al-
gorithm groups several contiguous segments in a backup
stream into a block and preserves their locality-layout on
the disk. Since block is also the minimal write/read unit
of the write buffer and read cache in the SiLo system, it
serves to maximize the RAM utilization and reduce fre-
quent accesses to on-disk index by retaining access lo-
cality in the backup stream. By exploiting the inherent
locality in backup streams, the block-based SiLo locality
algorithm is able to eliminate more duplicate data.

Figure 7 shows the workflow of the locality algorithm.
According the locality characteristic of backup streams,
if input segment S1k in block B1 is determined to be sim-
ilar to segment S2k by hitting in the similarity hash table,
SiLo will consider the whole block B1 to be similar to
block B2 that contains S2k. As a result, this grouping of
contiguous segments into a block can eliminate more po-
tentially duplicate data that is missed by the probabilistic
similarity detection, thus complementing the similarity
detection.

When SiLo reads the blocks from disk by the simi-
larity detection, it puts the recently accessed block into

the read cache. By preserving the backup-stream local-
ity in the read cache, the accesses to on-disk index due to
similarity detection can be significantly reduced, which
alleviates the disk bottleneck and increases the dedupli-
cation throughput. Since it is at the block level where
locality is preserved and exploited, the block size is an
important system parameter that affects the system per-
formance such as duplicate elimination and throughput.
The smaller the block size, the more disk accesses will be
required by the server to read the index, weakening the
locality exploitation. The larger the block size, on the
other hand, the more unrelated segments will be read by
the server from the disk, increasing system’s space and
time overheads. Therefore, a proper block size not only
provides good duplicate elimination, but also achieves
high throughput and low RAM usage in the SiLo system.

Each block in SiLo has its own Locality Hash Ta-
ble (i.e., LHTable shown in Figure 5) for chunk filter-
ing. Since a block contains several segments, it needs an
indexing tool for thousands of fingerprints. The finger-
prints in a block are organized into the LHTable when
reading the block from the disk. The additional time
required for constructing LHTable in a block is signifi-
cantly compensated by its quick indexing.

3.4 Cache and RAM Considerations

SiLo uses a very small portion of RAM as its write buffer
and read cache to store a small number of recently ac-
cessed blocks to avoid the frequent and expensive disk
read/write operations. In our current design of SiLo, the
read cache and the write buffer each contains a fixed
number of blocks. As illustrated in Figures 5 and 6, a
locality-block contains only metadata information such
as LHTable, segment information, chunk information,
and file information, which enables a 1MB locality-block
to represent a 200MB data-block.

Since users of file systems tend to duplicate files or di-
rectories under the same directories, a significant amount
of duplicate data can be eliminated by detecting the du-
plication in the write buffer that also preserves the local-
ity of a backup stream. For example, a code directory
may include many versions of source code files or docu-
ments that can be good deduplication candidates.

The largest portion of RAM in the SiLo system is oc-
cupied by the similarity hash table (i.e., SHTable shown
in Figure 5). Assuming an average segment size of 2MB
and a primary-key size of 60B, the SiLo SHTable re-
quires 300MB for an average backup data of 10 TB. Thus
the RAM usage for the cache becomes negligibly small
as the data size further increases.
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3.5 SiLo Workflow
To put things together and in perspective, Figure 8 shows
the main workflow of the SiLo deduplication process.
For an incoming backup stream, SiLo goes through the
following key steps:




 




















 














Figure 8: The SiLo deduplication workflow.

1. Files in the backup stream are first chunked, fin-
gerprinted and packed into segments by grouping
strongly correlated small files and segmenting large
files in the File Agent.

2. Each newly generated segment Snew is checked
against SHTable for similarity detection. If the new
segment hits in SHTable, SiLo checks if the block
Bbk containing Snew’s similar segment is in the
cache. If it is not in the cache, Bbk is read from
the disk to the read cache, where a block is replaced
in the FIFO order if the cache is full. If Snew misses
in SHTable, it is then checked against recently ac-
cessed blocks in the read cache for potentially sim-
ilar segment in one of the cached blocks (Bbk).

3. The duplicate chunks in Snew are eliminated by
checking LHTable of Bbk in the read cache. Then
the chunks in the neighbouring segments of Snew

in the backup stream are filtered by the locality-
enhanced similarity detection (i.e., these chunks are
checked against LHTable of Bbk for possible dupli-
cation).

4. After chunk filtering and constructing a new and
non-duplicate block Bnew from the backup stream,
SiLo checks if the write buffer is full. If the write
buffer is full, a block there is replaced in the FIFO
order by Bnew and then written to the disk.

As demonstrated in Section 4, SiLo is able to minimize
both the time and space overheads of indexing finger-

prints while maintaining a duplicate elimination perfor-
mance comparable to exact deduplication methods such
as ChunkStash.

4 Evaluation

In order to evaluate SiLo, we have implemented a pro-
totype of SiLo that allows us to examine several impor-
tant design parameters to provide useful insights. We
compare SiLo with the similarity-based and locality-
based state-of-the-art approaches Extreme Binning and
ChunkStash in the key deduplication metrics of duplicate
elimination, RAM usage and throughput. The evaluation
is driven by four real-world traces collected from real
backup datasets that represent different workload char-
acteristics.

4.1 The Experimental Setup

We use a standard server configuration to evaluate and
compare the inline deduplication performances of the
SiLo, ChunkStash and Extreme Binning approaches run-
ning on a Linux environment. The hardware configura-
tion includes a quad-core CPU running at 2.4GHz, with
a 4GB RAM, 2 gigabit network interface cards, and two
500GB 7200rpm hard disks.

Due to our lack of access to the source code of ei-
ther the ChunkStash or Extreme Binning scheme, we
have chosen to implement both of them. More specifi-
cally, we have implemented the locality-based and exact-
deduplication approach of ChunkStash incorporating the
principles and algorithms described in the ChunkStash
paper [8]. The ChunkStash approach makes full use
of the inherent locality of backup streams and uses a
novel data structure called Cuckoo hash for fingerprint
indexing. We have also implemented a simple ver-
sion of the Extreme Binning approach, which repre-
sents a similarity-based and approximate-deduplication
approach according to the algorithms described in the
Extreme Binning paper [3]. Extreme Binning exploits
file similarity instead of locality in the backup streams.

Note that our evaluation platform is not a production-
quality deduplication system but rather a research pro-
totype. Hence, our evaluation results should be inter-
preted as an approximate and comparative assessment
of the three systems above, and not be used for abso-
lute comparisons with other deduplication systems. The
RAM usage in our evaluation is obtained by recording
the space overhead of index-lookup. The duplicate elim-
ination performance metric is defined as the percentage
of duplicate data eliminated by the system. Throughput
of the system is measured by the rate at which finger-
prints of the backup stream are processed, not the real
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Feature One-set Inc-set Linux Full-set
Total size 530GB 251GB 101 GB 2.51TB
Total files 3.5M 0.59M 8.8M 11.3M
Total chunks 51.7M 29.4M 16.9M 417.6M
Avg.chunk size 10KB 8KB 5.9KB 6.5KB
Dedupe factor 1.7 2.7 19 25
Locality weak weak strong strong
Similarity weak strong strong strong

Table 1: Workload characteristics of the four traces used
in the performance evaluation. All use SHA-1 for chunk
fingerprints and the content-based chunking algorithm.
The deduplication factor is defined as the Totalsize /(To-
talsize - Dedupsize) ratio.

backup throughput in that it does not measure the rate at
which the backup data is transferred and stored.

Four traces representing different strengths of locality
and similarity are used in the performance evaluation of
the three deduplication systems and are listed in Table
1. The four traces are collected from real-world datasets
of One-backup, Incremental-backup, Linux-version and
Full-backup respectively.

The One-set trace was collected from 15 graduate stu-
dents of our research group. To obtain traces from this
backup dataset, we have built a deduplication analysis
tool that crawls the backup directory, and generates the
sequences of chunk and file hashes for traces. Since we
obtain only one full backup for this group, this trace has
weak locality and weak similarity. The Inc-set is a subset
of the trace reported by Tan et al. [24] and was collected
from initial full backups and subsequent incremental
backups of eight members in a research group. There are
391 backups with a total of 251GB data. Therefore, Inc-
set represents datasets with strong similarity but weak
locality.

Linux-set, downloaded from the website [16], consists
of 900 versions from version 1.1.13 to 2.6.33, and repre-
sents the characteristics of small files. Full-set consists
of 380 full backups of 19 researchers’ PCs, which is also
reported by Xing et al. [25] and can be downloaded from
the website [10]. Full-set represents datasets with strong
locality and strong similarity. Both Linux-set and Full-
set are used in [25] and [3] to evaluate the performance of
Extreme Binning, and our use of these datasets resulted
in similar and consistent evaluation results with the pub-
lished studies.

With the above traces representing different but typ-
ical workload characteristics, this evaluation intends to
answer, among other things, the following questions:
Can the SiLo locality algorithm compensate for the
probabilistic similarity detection that may miss detect-
ing large amounts of duplicate data? How effective is
the SiLo similarity algorithm under different workload
conditions? How is SiLo compared with existing state-

of-the-art deduplication approaches in key performance
measures?

4.2 Interplay between Similarity and Lo-
cality

The mutually interactive nature of similarity and locality
in SiLo dictates a good understanding of the relationship
between locality and similarity before a thorough perfor-
mance evaluation is carried out. Thus, we first examine
the impact of the SiLo design parameters of block size
and segment size on duplicate elimination and time over-
head, which is critical for the SiLo locality and similarity
algorithms.

From Figure 9 that shows the percentage of duplicate
data not eliminated, we find that the duplicate elimina-
tion performance, defined as the percentage of dupli-
cate data eliminated, increases with the block size but
decreases with the segment size. This is because the
smaller the segment is (e.g., segment size of 512KB),
the more similarity can be exposed and detected, en-
abling more duplicate data to be removed. On the other
hand, the larger the block is (e.g., block size of 512MB),
the more locality of the backup stream will be retained
and captured, allowing SiLo to eliminate more (i.e.,
97%∼99.9%) of redundant data regardless of the seg-
ment size.

Although more redundant data can be eliminated by
reducing the segment size or filling a block with more
segmentsas indicated by the results shown in Figure 9,
it results in more accesses to on-disks index and higher
RAM usage due to the increased index entries in the
SHTable (see Figure 5). As the deduplication-time-
overhead results of Figure 10 clearly suggest, continu-
ously decreasing the segment size or increasing the block
size can become counterproductive after a certain point.
From Figure 10, we further find that, for a fixed block
size, the time overhead is inversely proportional to the
segment size. This is consistent with our intuition that
smaller segment size results in more frequent similar-
ity detections for the input segments, which in turn can
cause more accesses to on-disk index.

Figure 10 also shows that there is a knee point for each
curve, meaning that for a given segment size and work-
load the time overhead decreases first and then increases
(except Figure 10 (c)). This may be explained by the fact
that, with a very small block size (e.g., 8MB), there is
little locality to be mined, resulting in frequent accesses
to on-disk index. With a very large block size (e.g.,
512MB), SiLo also runs slower because the increased
disk accesses for locality exploitation may result in more
unrelated segments being read in. The Linux-set are dif-
ferent from other datasets in Figure 10, because the av-
erage size of a Linux version is 110MB, which enables
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(a) One-set (b) Inc-set (c) Linux-set (d) Full-set

Figure 9: Percentage of duplicate data eliminated as a function of block size and segment size.

(a) One-set (b) Inc-set (c) Linux-set (d) Full-set

Figure 10: Time overhead of SiLo deduplication as a function of block size and segment size.

Figure 11: Percentage of duplicate data eliminated as
a function of different similarity degrees on the Linux-
dataset by the similarity-only approach and locality-only
approach respectively.

more related locality to be exploited at the block size of
256MB.

As analyzed above, there evidently exist an optimum
segment size and an optimum block size, subject to a
given workload and deduplication requirements (e.g., du-
plicate elimination or deduplication throughput). The
choice of segment size and block size can be dynami-
cally adjusted by the user’s specific requirements (e.g.,
the backup throughput or duplicate elimination or the
RAM usage).

Figures 11 and 12 suggest that the full exploitation of
locality jointly with that of similarity can remove almost
all redundant data missed by the similarity detection un-

Figure 12: Percentage of duplicate data eliminated
on four datasets by the similarity-only approach and
locality-only approach respectively.

der all workloads. These results can be compared with
Figure 2 and 3, then well verify our motivation of simi-
larity and locality in Section 2. In fact, only an extremely
small amount of duplicate data is missed by SiLo even on
the datasets with weak locality and similarity.

4.3 Comparative Evaluation of SiLo

This subsection presents evaluation results comparing
SiLo with two other state-of-the-art deduplication sys-
tems, the similarity-based Extreme Binning system and
the locality-based ChunkStash system, by executing the
four real-world traces described in Section 4.1 on these
three systems. Note that in this evaluation SiLo assumes
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Figure 13: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of percentage of duplicate data
eliminated on the four datasets.

a block size of 256MB, while SiLo-2MB and SiLo-4MB
represent SiLo with a segment size of 2MB and 4MB
respectively.

A. Duplicate elimination
Figure 13 shows the duplicate elimination perfor-

mance of the three systems under the four workloads.
Since ChunkStash does the exact deduplication, it elim-
inates 100% of duplicate data. Compared with Extreme
Binning that eliminates 71%∼99% of duplicate data in
the four datasets, SiLo removes about 98.5%∼99.9% of
duplicate data. Note that, while Extreme Binning elimi-
nates about 99% of duplicate data as expected in Linux-
set and Full-set that has strong similarity and locality, it
fails to detect almost 30% of duplicate data in One-set
that has weak locality and similarity, and about 25% of
duplicate data in Inc-set with weak locality but strong
similarity. Although there is strong similarity in Inc-
set, Extreme Binning still fails to eliminate a significant
amount of duplicate data primarily due to its probabilistic
similarity detection that simply chooses one representa-
tive fingerprint for each file regardless of the file size.

On the contrary, SiLo-2MB eliminates 99% of dupli-
cate data even in One-set with both weak similarity and
locality, and also removes almost 99.9% of duplicate data
in Linux-set and Full-set with both strong similarity and
locality. These results show that SiLo’s joint and com-
plementary exploitation of similarity and locality is very
effective in detecting and eliminating duplicate data un-
der all workloads evaluated, achieving near-complete du-
plicate elimination (i.e., exact deduplication).

B. RAM usage
Figure 14 shows the RAM usage for deduplication

among these three systems under the four workloads.
For Linux-set that has a very large number of small files
and small chunks, the highest RAM usage is incurred for
both Chunkstash and Extreme Binning. There is also a
clear negative correlation between the deduplication fac-

Figure 14: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of RAM usage (B: RAM re-
quired per MB backup data).

tor and the RAM usage for the approximate deduplica-
tion systems of SiLo and Extreme Binning on the other
four workloads. That is, for One-set that has the lowest
deduplication factor, the highest RAM usage is incurred,
while for Full-set that has highest deduplication factor,
the smallest RAM space is required.

The average RAM usage for ChunkStash is the high-
est among the three approaches, except for the Linux-
set trace, as it does the exact deduplication that needs
a large hash table in the memory to put all the indices
of chunk fingerprints. Although ChunkStash uses the
Cuckoo hash to store compact key signatures instead of
full chunk-fingerprints, it still requires at least 6 bytes for
each new chunk, resulting in a very large cuckoo hash
table for millions of fingerprints. In addition, accord-
ing to the open-source code of Cuckoo Hash [14], the
ChunkStash system needs to allocate about two million
hash table slots in advance to support one million index
entries.

Since only the file similarity index needs to be stored
in RAM, Extreme Binning only consumes about 1/9∼
1/15 of the RAM space required of ChunkStash except
on the Linux-set where it consumes more RAM usage
than ChunkStash due to the extremely large number of
small files. However, SiLo-2MB’s RAM efficiency al-
lows it to reduce the RAM consumption of Extreme Bin-
ning by a factor of 3∼900. The extremely low RAM
overhead of the SiLo system stems from the interplay be-
tween its similarity algorithm, which groups many small
correlated files into segments and extracts their similarity
characteristics, and its locality algorithm, which groups
contiguous segments of the backup stream into blocks
to effectively exploit the locality residing in the backup-
streams. On the other hand, the RAM usage for Extreme
Binning depends on the average file size of the file set, in
addition to the deduplication factor. The smaller the av-
erage file size is, the more RAM space Extreme Binning
will consume, which is demonstrated in the Linux-set.
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Figure 15: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of RAM usage in PB-scale
deduplication with different deduplication factors. We
assume that the average file size is 200KB, and 80% of
duplicate data are from duplicate files.

The RAM usage of the SiLo system remains relatively
stable with the change in average file size in the four
traces and is inversely proportional to the deduplication
factor of the traces.

Now we analyze the RAM usage in a PB-scale dedu-
plcation system for the three approaches. As a 2MB-
segment needs 60 bytes of key index in the memory, SiLo
takes up about 30GB of RAM in a PB-scale deduplica-
tion system. With 4MB-segments, SiLo’s RAM usage
is halved to 15 GB in a PB-scale deduplication system
while its performance degrades gracefully as shown in
Figures 9 and 10. Extreme Binning needs almost 300GB
of RAM space with an average file size of 200KB while
ChunkStash consumes almost 2TB of RAM space to
maintain a global index in a PB-scale deduplication sys-
tem.Figure 15 also shows RAM usage of these three ap-
proaches with different deduplication factors. According
to [15], Sparse Indexing uses 170GB of RAM space for a
PB-scale deduplication system, whereas it estimates that
DDFS would require 360GB RAM to maintain a partial
index depending on locality in backup streams.

C. Deduplication throughput
Figure 16 shows a comparison among the three ap-

proaches in terms of deduplication throughput, where the
throughput is observed to more than double as the aver-
age chunk size changes from 6KB (e.g., Linux-set) to
10KB (e.g., One-set).

ChunkStash achieves an average throughput of about
335MB/sec with a range of 24MB/sec∼ 654MB/sec on
the four datasets. The frequency of accesses to on-disk
index by Chunkstash’s compact key signatures algorithm
on the Cuckoo hash lookup tends to increase with the
size of the dataset, thus adversely affecting the through-
put. Extreme Binning achieves an average throughput of
904MB/sec with a range of 158MB/sec∼1571/sec on the
four datasets, since it only needs to access the disk once

Figure 16: Comparison among ChunkStash, SiLo, and
Extreme Binning in terms of deduplication throughput
(MB/sec).

per similar-file and eliminates the duplicate files in the
memory. As SiLo-2MB makes at most one disk access
per segment, it deduplicates data at an average through-
put of 1167 MB/sec with a range of 581MB/sec∼1486
MB /sec on the four datasets.

Although Extreme Binning runs faster than SiLo-2MB
under Inc-set where many duplicate files exist, it runs
much slower in other datasets. Since each bin stores all
similar files and it tends to grow in size with the dataset
size. As a result, Extreme Binning will slow down as
the size of each bin increases since each similar file must
read its corresponding bin in its entirety. In addition, the
design of bin fails to exploit the backup-stream locality
that can help reduce disk accesses and increase the RAM
utilization by preserving the locality layout in the mem-
ory.

Since SiLo uses significantly less RAM space than
other approaches for a given dataset, SiLo can also boost
the deduplication throughput by caching more index in-
formation in RAM to reduce accesses to on-disk index.
In fact, the SiLo system can be dynamically configured
with users’ requirements such as the throughput and du-
plicate elimination by tuning the appropriate system pa-
rameters (e.g., the number of blocks in the cache, the seg-
ment size and block size, etc.). Therefore, compared with
Extreme Binning and ChunkStash, SiLo is shown to pro-
vide robust and consistently good deduplication perfor-
mance, achieving higher throughput and near-complete
duplicate elimination at a much lower RAM overhead.

5 Related work

Data deduplication is an essential and critical compo-
nent of backup/archiving storage systems. It not only
reduces storage space requirements, but also improves
the throughput of the backup/archiving systems by elim-
inating the network transmission of redundant data. We
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briefly review the work that is most relevant to our SiLo
system to put it in the appropriate perspective, as follows.
LBFS [19] first proposes the content-based chunking al-
gorithm with the adoption of the Rabin fingerprints [22],
and applies it to the network file system to reduce trans-
mission of redundant data. Venti [21] employs dedupli-
cation in an archival storage system and significantly re-
duces the storage space requirement. Policroniades etc.
[20] compares the performance of several deduplication
approaches, such as file-level, fixed-size chunking and
content-based chunking.

In recent years, more attention has been paid to avoid-
ing the fingerprint-lookup disk bottleneck and enabling
more efficient and scalable deduplication in mass storage
systems. DDFS [26] is the earliest research to propose
the idea of exploiting the backup-stream locality to re-
duce accesses to on-disk index and avoid the disk bottle-
neck of inline deduplication. Sparse Indexing [15] also
exploits the inherent backup-stream locality to solve the
index-lookup bottleneck problem. Different from DDFS,
Sparse Indexing is an approximate deduplication solu-
tion that samples index for fingerprint-lookup and only
requires about half of the RAM usage of DDFS. But its
duplicate elimination and throughput are heavily depen-
dent on the sampling rate and chunks locality of backup
streams.

ChunkStash [8] stores the chunk fingerprints on an
SSD instead of an HDD to accelerate the index-lookup.
It also preserves the backup-stream locality in the mem-
ory to increase the RAM utilization and reduce ac-
cesses to on-disk index. Cuckoo hash is used by
ChunkStash to organize the fingerprint index in RAM,
which is shown to be more efficient than Bloom filters
in DDFS. ChunkStash study also shows that the disk-
based Chunkstash scheme performs comparable to the
flash-based ChunkStash scheme when there is sufficient
locality in the data stream.

The aforementioned locality-based approaches would
produce unacceptably poor performance of deduplica-
tion in the case of the data streams with little or no lo-
cality [3]. Several earlier studies [17, 5, 9, 4] propose to
exploit similarity characteristics for small-scale dedupli-
cation of documents in the field of knowledge discovery
and database. SDS [2] exploits the similarity of backup
streams in mass deduplication systems. It divides a data
stream into large 16MB blocks and constructs signatures
to identify possibly similar blocks. A byte-by-byte com-
parison is conducted to eliminate duplicate data, which
is also the first deduplication scheme that uses similar-
ity matching. But the index structure in SDS appears
to be proprietary and no details are provided in the refer-
ence paper. Extreme Binning [3] exploits the file similar-
ity for deduplication to apply to non-traditional backup
workloads with low-locality (e.g., incremental backup).

It stores a similarity index of each new file in RAM and
groups many similar files into bins that are stored on the
disks, thus it eliminates duplicate files in RAM and du-
plicate chunks inside each bin by similarity detection.

SiLo is in part inspired by the Cumulus system and
Bimodal algorithm. Cumulus is designed for file-system
backup over the Internet under the assumption of a thin
cloud [18]. It proposes the aggregation of many small
files to a segment to avoid frequent network transfers of
small files in the backup system, and implements a gen-
eral user-level deduplication. Bimodal [14] aims to re-
duce the size of index by exploiting data-stream local-
ity. It merges some contiguous and duplicate chunks,
produces a chunk size that is 2-4 times larger than that
of general algorithms, and finds more potential duplicate
data among the boundaries of duplicate chunks.

Most recently, there have also been studies that ex-
plore the emerging applications of deduplication, such
as the virtual machines [12, 7], the buffer cache [23],
I/O deduplication [13] and flash [6, 11], suggesting an
increasing popularity and importance of data deduplica-
tion.

6 Conclusion and future work

In this paper, we present SiLo, a similarity-locality based
deduplication system that exploits both similarity and lo-
cality in backup streams to achieve higher throughput
and near-complete duplicate elimination at a much lower
RAM overhead than existing state-of-the-art approaches.
SiLo exploits the similarity of backup streams by group-
ing small correlated files and segmenting large files to
reduce the RAM usage for index-lookup. The backup-
stream locality is mined in SiLo by grouping contigu-
ous segments in backup streams to complement the sim-
ilarity detection and alleviate the disk bottleneck due
to frequent accesses to on-disk index. The combined
and complementary exploitation of these two backup-
stream properties overcomes the shortcomings of exist-
ing approaches based on either property alone, achieving
a robust and consistently superior deduplication perfor-
mance.

Results from experiments driven by real-world
datasets show that the SiLo similarity algorithm signif-
icantly reduces the RAM usage while the SiLo locality
algorithm helps eliminate most of the duplicate data that
is missed by the similarity detection. And there exists
a solution that optimizes the trade-off between duplicate
elimination and throughput by appropriately tuning the
locality and similarity parameters (i.e., the size of seg-
ment and block).

As our future work of SiLo, we plan to build a mathe-
matical model to quantitatively analyze why SiLo works
well with the combined and complementary exploitation
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of similarity and locality and learn and adapt to the opti-
mal parameter automatically by the real-time deduplica-
tion factor and other system status. Due to its low sys-
tem overheads, we also plan to apply the SiLo system to
other deduplication applications such as cloud storage or
primary storage environments that desire to deduplicate
redundant data with extremely low system overheads.
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ABSTRACT

G2 is a graph processing system for diagnosing dis-
tributed systems. It works on execution graphs that
model runtime events and their correlations in distributed
systems. In G2, a diagnosis process involves a series of
queries, expressed in a high-level declarative language
that supports both relational and graph-based operators.
Each query is compiled into a distributed execution. G2’s
execution engine supports both parallel relational data
processing and iterative graph traversal.

Execution graphs in G2 tend to have long paths and
are in structure distinctly different from other large-
scale graphs, such as social or web graphs. Tailored
for execution graphs and graph traversal operations on
those graphs, G2’s graph engine distinguishes itself by
embracing batched asynchronous iterations that allows
for better parallelism without barriers, and by enabling
partition-level states and aggregation.

We have applied G2 to diagnosis of distributed sys-
tems such as Berkeley DB, SCOPE/Dryad, and G2 itself
to validate its effectiveness. When co-deployed on a 60-
machine cluster, G2’s execution engine can handle exe-
cution graphs with millions of vertices and edges; for in-
stance, using a query in G2, we traverse, filter, and sum-
marize a 130 million-vertex graph into a 12 thousand-
vertex graph within 268 seconds on 60 machines. The
use of an asynchronous model and a partition-level in-
terface delivered a 66% reduction in response time when
applied to queries in our diagnosis tasks.

1 INTRODUCTION

Distributed applications in data centers are increasingly
important as they power large-scale web and cloud ser-
vices. Often, the execution of such an application in-
volves a large number of cooperating processes running
on different machines, spanning multiple software mod-
ules and layers, tolerating and recovering from various
machine failures and network disruptions. Increases in
both the scale and complexity of such systems have made
it difficult to understand and diagnose their runtime (mis-
)behavior.

Typical diagnosis tasks start with observing misbe-
havior or anomaly, navigating through runtime informa-
tion such as logs to find relevant information, and pro-
cessing the information to infer root causes. For example,
starting with a log entry with an error message, diagnosis
could find all relevant log entries to infer the root cause

for the error. As another example, given two similar jobs
that noticeably perform differently, diagnosis could ex-
tract related runtime information to identify major differ-
ences. Also, it might be difficult to spot problems from a
large number of low-level runtime events. A useful prac-
tice is to aggregate performance information at an appro-
priate layer, identify which aggregated component in that
layer is problematic, and then drill down into the next
layer of details in an iterative process.

Effective diagnosis depends heavily on the ability
to correlate runtime events and to leverage these corre-
lations. Previous work, especially those on path-based
analysis [14, 7, 13, 8, 19, 26, 18, 27], has largely ad-
dressed the important problem of generating and cor-
relating runtime information from executions of a dis-
tributed system. Often the difficulty for diagnosis is not
due to lack of information, but due to the inability to nav-
igate through and process a sea of information to find out
what is relevant.

In this paper, we propose G2, a distributed graph pro-
cessing system for storing runtime information of dis-
tributed systems and for processing queries on such in-
formation. Runtime information is organized as a graph,
where vertices correspond to events and edges corre-
spond to correlations between events. Diagnosis then in-
volves an iterative process of writing queries against the
graph and analyzing the results of those queries. G2 pro-
vides a declarative language that supports relational and
graph operators that operate on the graph structure. For
example, given an error log entry e, a G2 query can be is-
sued to find all events (vertices) that vertex e is causally
dependent on, where causal dependencies are captured
by certain types of edges. This query uses a slicing oper-
ator that G2 provides. From a starting vertex v, forward
slicing finds all vertices that causally and transitively de-
pend on v, while backward slicing finds all vertices that
v is dependent on.

Graph aggregation and summarization are another ef-
fective way of reducing the amount of information to be
examined during diagnosis. In an execution graph, each
vertex is associated with a context that indicates the ag-
gregation units that the event belongs to. Examples of ag-
gregation units include static ones such as components,
classes, and functions, as well as dynamic ones such as
machines, processes, and threads. A G2 query can ag-
gregate information at an appropriate level. For example,
to compare executions of two jobs, a query can compute
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the forward slices from the starting points of two jobs. To
make comparison easier, the query can continue to com-
pute a machine-level aggregation from the two slices.
This requires a hierarchical aggregation graph operator
that transforms an input graph into a smaller one: it con-
denses each continuous segment of events with the same
aggregation unit (e.g., machine) to create a single super-
node and applies an aggregation function on those events
to compute the an associated aggregated value.

Distributed query execution in G2 is supported by a
distributed storage and execution system that addresses
the challenges of storing and processing large execution
graphs with millions or even billions of vertices effi-
ciently. In G2, events and correlations are captured on
local machines as they occur during system execution,
leading to a natural partitioning of an execution graph.

G2’s execution engine is tailored for execution graphs
that exhibit significantly different characteristics from
other large graphs, such as social and web graphs. Ex-
ecution graphs tend to have long paths corresponding to
events along a logically related progression of execution,
where social and web graphs have relatively small diam-
eters. Graph operations on execution graphs are often in
the form of graph traversal, which is again different from
iterative graph operations that must proceed in globally
synchronized rounds, such as in page-rank computation
for example. Consequently, G2 embraces batched asyn-
chronous iterations, where processing on each partition
is batched, but does not have to proceed synchronously
in lock steps. Both slicing and hierarchical aggregation
fall into this model that allows for improved parallelism
and efficiency than the bulk synchronous computation
model in previous work, such as in Pregel [24]. Barri-
ers are used only at the end of graph traversal or to create
global consistent checkpoints for failure recovery. Fur-
thermore, partitions tend to contain long local paths be-
fore those paths connect to vertices on other partitions
due to cross-machine communication. Graph traversal
within each partition is therefore significant to the overall
graph traversal performance. Instead of a vertex-oriented
interface, G2 exposes a partition-oriented interface that
allows partition-level aggregation states to be maintained
in an appropriate data structure. This is particularly valu-
able for hierarchical aggregation, where the choice of
partition-level data structure significantly influences per-
formance.

We have built a prototype and applied it to a
set of distributed systems, including Berkeley DB [2],
SCOPE/Dryad [11, 22], and G2 itself. Berkeley DB is a
replicated distributed key-value database that can be eas-
ily linked with applications. SCOPE/Dryad is a produc-
tion data intensive computation system, which includes
a distributed file system, a distributed execution engine
(Dryad), and a declarative query language (SCOPE). G2

is shown to be effective in diagnosis: for instance, us-
ing a query in G2, we traverse, filter, and summarize a
130 million-vertex graph into a 12 thousand-vertex graph
within 268 seconds on 60 machines. The optimizations
we introduce into G2’s execution engine are effective: the
use of asynchronous model and partition-level interface
delivered up to a factor of 3 performance improvement
when applied to graph operators in our diagnosis tasks.
We have also studied scalability of G2 and the check-
pointing overhead introduced to enable failure recovery.

The contribution of G2 is two-fold. First, as a tool,
G2 enables efficient distributed-system diagnosis by al-
lowing users to write declarative queries with both rela-
tional and graph operators, and by providing a distributed
engine that executes those queries efficiently. Second, as
a distributed system, G2’s execution engine targets a dif-
ferent type of graphs with different structural characteris-
tics and with different type of graph operations. It allows
a batched asynchronous graph computation model and a
partition-level interface, which have contributed signifi-
cantly to its efficiency.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the system execution graph data model,
and the diagnosis primitives applied to the graph. Sec-
tion 3 presents the operators, and the language that
G2 supports, as well as several examples expressed in
those constructs. The design and optimization of the dis-
tributed graph engine is the focus of Section 4, followed
by implementation details in Section 5. We evaluate G2

and share experience in Section 6. Section 7 discusses
the related work. Finally, we conclude in Section 8.

2 MODEL

Distributed-system diagnosis in G2 centers on the data
model and the operations defined on the model, which
are the topic of this section.

2.1 Text, Paths, and Graphs

Traditionally, system diagnosis treats runtime infor-
mation (e.g., logs) as unstructured text and involves a te-
dious and ineffective process of going through logs using
primitive text-processing tools such as grep. Using grep
on a special tag (such as a request id) captures all entries
that are explicitly related to that request, but is likely to
miss information that has implicit dependencies.

Previous work [14, 7, 13, 8, 20, 18, 27] on correlating
runtime information has effectively addressed this short-
coming by capturing common causal relationship in dis-
tributed systems. A path-like abstraction is often used to
track how a request flows through a distributed system.
This relatively simple structure is effective for request-
centric analysis and modeling, and reflects a good bal-
ance between what an abstraction enables, the simplicity

2
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of an abstraction, and the complexity involved in sup-
porting operations on an abstraction.

Yet, the effectiveness of a path-based model is con-
strained by its simplifying assumptions: by embracing
paths based on requests, the model cuts off interactions
between requests that occur in distributed systems. For
example, Figure 1 shows a piece of code for a replicated
file system. The system receives client requests and ap-
pends them in a local cache (line 2-4). When there are
enough accumulated requests (line 6), the system batches
requests, writes them to local disks (line 11), and for-
wards them to secondaries for data replication (line 12).
The OnPersistRequests call in Figure 1 is in fact a batch
operation of multiple write requests from clients to the
distributed file system. In such a case, it is difficult to as-
sign a path id to the events inside the call (e.g., event h
can only share with the path id from e or f , but not both).
Two paths might also be correlated when they access the
same shared variables. In fact, a more general graph is
already used to some extent in previous work such as
Pip [26].

G2 instead explores a different point in the design
space. Rather than constraining users to a path-based
model a priori, G2 preserves and presents the full struc-
ture captured during the execution of a distributed system
as a graph. During diagnosis, users can choose to con-
struct paths from such a graph if paths are appropriate for
the diagnosis task at hand, or they can choose to process
information in a different way that is more appropriate
for that particular task. G2 does not make that decision
for users during the modeling phase. This design choice
effectively shifts the burden to the underlying distributed
engine, as it must enable efficient operations on a more
complicated graph structure.

2.2 Execution Graph
G2’s execution graph model embraces two key concepts:
causality and aggregation. This is based on our observa-
tion of common system diagnosis practices: users tend
to (i) follow cause-effect relations to find relevant infor-
mation and (ii) to summarize runtime information at an
appropriate aggregation level in a hierarchy in order to
find trouble spots for further in-depth analysis.

In an execution graph of G2, each runtime event from
a target system is represented as a vertex. In Figure 1,
events are shown in small rectangles; examples are printf
log event b (line 3), asynchronous request define events c
and d, and request use event e. A context is associated
with an event, indicating the aggregation units that the
event belongs to. Multiple levels of aggregation units can
be defined. Examples include static constructs, such as
modules, classes, and functions, as well as runtime con-
structs, such as machines, processes, and threads.

Runtime events are correlated, where directed edges

in an execution graph are used to represent such correla-
tions. Different types of edges can be defined for differ-
ent types of correlations. For example, an use edge con-
nects a source event that defines/forwards an object with
a destination event that consumes that object. Network
messages or cross-thread requests are examples of such
objects. 〈c,e〉 and 〈d,e〉 in Figure 1 are use edges. A sync
edge indicates synchronization of two events from two
different threads in order to ensure exclusive access to a
shared object or ensure ordered inter-thread execution. A
fall-through edge connects two consecutive events in the
same thread (e.g., 〈b,c〉).

G2 provides primitives to define and customize graph
traversal for diagnosis. Two are built-in: Slicing finds all
causally related events in a graph and HierarchicalAg-
gregate summarizes information at an appropriate aggre-
gation level.

2.3 Filter with Slicing
Instead of simply “grepping” runtime information with a
special tag, Slicing filters information using graph struc-
ture: it starts from a root event and transitively col-
lects causally dependent events. Forward and backward
traversal yield a forward slice and a backward slice, re-
spectively.

Computing precise and complete causal dependen-
cies for slicing is usually too costly if not infeasible,
where a reasonable approximation is often sufficient in
practice. A naive way is to consider all use and fall-
through edges as causal edges. Our practical experience
has shown that fall-through edges often do not imply
causal relations. For example, in a typical implementa-
tion of message processing subsystem, a thread will con-
tinuously accept new incoming messages and call corre-
sponding message handlers. Fall-through edges between
two message handler invocations do not represent any
meaningful causal dependencies. Such false causal de-
pendencies could render slicing ineffective. All events
in the corresponding message handler should however
be considered causally dependent on the message-send
event. G2 introduces causal scope to specify, for each
use edge, the set of events that are causally dependent on
the source event of that edge. A causal scope consists of
a continuous region from the destination event of each
use edge: all events within that region are causally de-
pendent on the source event; all fall-though edges within
that region are considered causal edges. In Figure 1, large
rectangle boxes define causal scopes. The shaded area
outlines the forward slice from event a.

2.4 Summarize with HierarchicalAggregate
Aggregation is another effective way of managing a large
amount of data, especially with a hierarchy. There are
natural hierarchies in distributed systems: a program is

3
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1  class ClientReq { 
2  void OnRecieveClientRequest(...) { 
3     Log(LOG_INFO, "...");  
4     IssuePersistRequest(...); } 
5  int PersistMainThread() { 
6      while (IsEnoughRequest(reqs)) 
7          OnPersistRequests(reqs); 
8          …} 
9  int OnPersistRequests(list<ClientReq*> reqs) { 
10     MemBuf* buf = CreateBuf(reqs); 
11     WriteToLocalDisk(buf); 
12     ForwardToSecondary(buf, ...); }  

 

Figure 1: System execution graph, causal scope, and slice.

often made of modules, each module is comprised of
classes, and each class contains a set of functions. A
distributed-system execution can be aggregated at thread
level, then at process level, and further at machine level.
A distributed system often consists of multiple logical
layers that are application-specific: for example, a sys-
tem behavior can be analyzed at an RPC layer or at a
lower OS layer with a socket interface.

G2 supports an important notion called hierarchical
aggregation. The key idea is to construct a condensed
graph at an appropriate layer of a hierarchy to summarize
system behavior. A continuous segment of events with
the same aggregation unit in an execution graph is sum-
marized and condensed into a single higher-level vertex
in the resulting graph. G2 by default attaches signatures
of code and runtime location to all events for aggrega-
tion. Aggregation in G2 is customizable: a user can lever-
age her domain knowledge to specify how to aggregate
events and summarize high-level information (e.g., ag-
gregated performance counters) from low-level events.

Figure 2 shows an example of event aggregation
when debugging replication in the distributed storage
for SCOPE. Numbers inside rectangles are total event-
counts within corresponding vertices in the aggregated
graphs. An error occurs during a replicated write opera-
tion. The upper part of Figure 2 performs event aggrega-
tion at machine level: it clearly shows whether the write
operation was propagated to all replicas. Once a sus-
pected machine is identified, a user selects that machine
and zooms in to see how the write request was processed
by each component in this machine, shown in the lower
part of Figure 2.

3 PROGRAMMING IN G2

Programming in G2 consists of two parts. One is to “pro-
gram” distributed systems so as to to make them diag-
nosable by G2. We defer this to Section 5. The other is
for “programming” queries to be executed on G2, which
is the focus of this section.











 

 

 

 

















Figure 2: Hierarchical aggregation for a replication im-
plementation. Numbers in rectangles show numbers of
events within vertices in the aggregated graphs.

1 Graph<TV, TE> Slicing (
2 this Vertex<TV, TE> srcVertex,
3 Slice.Type type);
4
5 Graph<THighV, THighE>
6 HierarchicalAggregate (
7 this Graph<TLowV, TLowE> g,
8 Func<Vertex<TLowV, TLowE>, __out UInt64> labelCb,
9 Func<VertexIterator<TLowV, TLowE>,

10 __out THighV> AggreFunc);

Figure 3: Graph operators.

3.1 Graph Operators
Figure 3 shows the basic graph operators. Each Vertex
contains its incoming and outgoing edge lists, and it is a
generic type that can be instantiated with 〈TV ,TE〉. Type
TV describes the data associated with the vertex, such as
logs, code locations, and runtime locations, while type
TE describes the data associated with each edge, such as
timestamps for the source and the destination events. A
generic Graph type can be further defined as a collection
of vertices.

As shown in the figure, operator Slicing takes
srcVertex as the root event and type as the di-
rection (forward or backward) for slicing. Operator
HierarchicalAggregate condenses a graph to a higher-
level graph (line 5). Given a vertex in the original graph,

4
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1 Events
2 .Where(e => e.Val.Type == EventType.LOG_ERROR
3 && e.Val.PayLoad.Contains("Write request failed"))
4 .Slicing(Slice.Backward)
5 .Select(e => Console.WriteLine(e.Val.PayLoad));

(a) Error log analysis.
1 var req = Events
2 .Where(e => e.Val.Location.Name=="SubmitWriteReq");
3 req.Slicing(Slice.Forward)
4 .HierarchicalAggregate(
5 e => e.Val.Process.Machine.Signature,
6 evts => evts.First().Val.Process.Machine.Name)
7 .CriticalPath(req,dst,e=>{e.Val.SrcTs, e.Val.DstTs});

(b) Machine level critical path analysis.
1 var s1 = Events.Where(t => t.VertexID == 1)
2 .Slicing(Slice.Forward)
3 .HierarchicalAggregate(...aggregate by component...);
4 var s2 = Events.Where(t => t.VertexID == 2)
5 .Slicing(Slice.Forward)
6 .HierarchicalAggregate(...aggregate by component...);
7 s1.Diff(s2, e => {e.Val.SrcTs, e.Val.DstTs});

(c) Component level performance regression analysis.

Figure 4: Sample diagnosis queries.

the labelCb callback returns its aggregation-unit label.
The AggreFunc callback aggregates a continuous se-
quence of vertices with the same label (line 9) into a new
vertex at the high-level graph (line 10) (Note the structure
is determined by G2, and the associated value(THighV)
is defined by the callback).

All those operators are built on top of two dis-
tributed primitives: GraphTraversal and MapReduce.
GraphTraversal starts with a set of vertices in a graph
and traverses the graph by following edges forward,
backward, or bi-directionally. A user can customize
graph traversal by deriving a graph traversal class, which
defines computations on vertices, messages passed along
edges, as well as final output during graph traversal.
MapReduce is standard with a map function and a reduce
function for aggregation. Details of these distributed
primitives and how they are used to build graph opera-
tors are left to Section 4.

3.2 Composing Graph Operators
Extensibility and composability are two key fea-
tures of G2 design for programming. Slicing and
HierarchicalAggregate both consume a graph and pro-
duce another, so they can be composed. We further lever-
age the extensibility of the LINQ framework [3] in .Net,
so that developers can write diagnosis queries using our
new operators, LINQ’s relational operators, and even
customized local analysis modules, such as finding crit-
ical path (CriticalPath) and comparing two aggregated
graphs (Diff ). Figure 4 shows a set of examples; all from
real diagnosis practice.

The first query returns the logs in a backward slice
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Figure 5: Data flow for the machine-level critical-path
analysis query in Figure 4 (b).

rooted from an error log event. The query first uses
Where in LINQ to locate the error event and then in-
vokes Slicing. The second query aims to find straggler
machines during processing of a request. The query first
calculates the forward slice from the point of request
submission, aggregates the slice into a machine-level
graph via HierarchicalAggregate, and computes the crit-
ical path for request processing. Each vertex in the re-
turned critical path summarizes a continuous execution
on a machine with the start and stop times of the execu-
tion, from which stragglers can be easily identified. The
last query intends to find components responsible for an
instance of slower-than-normal request processing. It ex-
tracts forward slices rooted from the slow request and
normal ones, aggregates at the component level, and out-
puts differences. If needed, users could drill down into
problematic components and investigate further at the
function level or lower.

4 DISTRIBUTED ENGINE

A distributed engine is responsible for transforming di-
agnosis queries into distributed jobs to be executed on
the set of machines storing the execution graphs.

4.1 Overview
In G2, events and correlations between events are cap-
tured and recorded locally, and transformed into appro-
priate graph representations. G2 therefore naturally par-
titions original system execution graphs based on where
events occur. Such a partitioning method tends to exhibit
good locality as distributed systems are usually designed
to minimize cross-machine traffic.

A job manager initiates a job when a query is sub-
mitted. Each machine storing graph partitions runs a
daemon. The job manager coordinates executions of

5
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phases by communicating with these daemons. A job
involves multiple phases that can be represented as a
data flow graph. Figure 5 shows the data flow graph
for the machine-level critical-path analysis query in Fig-
ure 4 (b). It consists of 5 phases: Where, Slicing, Hi-
erarchicalAggregate, Merge, and CriticalPath. The dis-
tributed engine takes care of the first 4 phases and sends
the aggregated results to clients for local critical-path
analysis. The Merge phase does not appear in the orig-
inal query and is added automatically during compi-
lation. Both Slicing and HierarchicalAggregate involve
graph traversal, where the latter consumes the graph cre-
ated by the former and outputs an aggregated graph for
client analysis. In particular, the mappers during Hierar-
chicalAggregate shuffle the vertices according to which
high level vertex they belong to, and the reducers aggre-
gate the vertices inside one high level vertex using the
AggreFunc callback provided by the queries.

The part of the data flow graph without graph
traversal is similar to directed acyclic graphs (DAG)
in previous data-parallel computation engines, such as
Map/Reduce and Dryad. Graph traversal however re-
quires a different type of coordination to support loops
and barriers. G2’s graph traversal support distinguishes
itself from previous graph engines (e.g., Pregel [24]) in
several noticeable ways. First, for operations such as slic-
ing and hierarchical aggregation, G2 supports batched
asynchronous iterations, where partitions batch opera-
tions locally, but do not have to be synchronized using a
barrier in each iteration. Second, G2 exposes a partition-
level interface, rather than a vertex-level interface, to al-
low better batching and aggregation for graph computa-
tion. This is particularly important for enabling efficient
implementation of hierarchical aggregation. These opti-
mizations can be applied not only to G2 but also to other
distributed graph traversal problems such as shortest path
computation.

4.2 Batched Asynchronous Iterations
A typical graph engine implements synchronous itera-
tions through loops and barriers. For graph computation
such as page-rank computation and belief propagation,
all participants must synchronize with each other in each
iteration via a barrier, and in each iteration the partici-
pants can only traverse one hop. Such synchronization is
easily done with the help of a job manager.

In G2, we observe that graph traversal for slicing
and hierarchical aggregation is inherently asynchronous.
Take forward slicing for example, each partition has a
set of vertices to start with in each iteration (except the
first one where only one partition has the root vertex).
For one local iteration, a partition starts graph explo-
ration from those vertices following causal edges until
it reaches cross-partition edges without synchronization

1 IQueryable<T> GraphTraversal<TWorker> (
2 this Graph<TV, TE> g,
3 IQueryable<Vertex<TV, TE>> startVertices
4 ) where TWorker : GPartitionWorker<TV, TE, _, T>;
5 class GPartitionWorker<TV, TE, TMsg, T> {
6 Vertex<TV, TE> GetLocalVertex(ID VertexID);
7 void SendMessage(ID VertexID, TMsg msg);
8 void WriteOutput(T val);
9 virtual void Initialize(VertexIterator<TV, TE>)=0;

10 virtual void OnMessage(Vertex<TV, TE>, TMsg) = 0;
11 virtual void Finalize() = 0;
12 };

(a) GraphTraversal interface.
1 class GPartitionSlicingWorker<TV, TE>
2 : GPartitionWorker<TV, TE, bool, Vertex<TV, TE>> {
3 HashSet<ID> VisitedVertices;
4 void Initialize(VertexIterator<TV, TE> inits) {
5 foreach (var v in inits)
6 SendMessage(v.ID, true);
7 }
8 void OnMessage(Vertex<TV, TE> v, bool msg) {
9 if (VisitedVertices.Contains(v.ID)) return;

10 VisitedVertices.Add(v.ID);
11 WriteOutput(v);
12 foreach(var e in v.OutEdgeIterator)
13 if (e.IsCausal())
14 SendMessage(e.DstVertexID, true);
15 }
16 void Finalize() {}
17 }

(b) GPartitionSlicingWorker for forward slicing.

Figure 6: GraphTraversal interface and example

with others after every one hop traversal. When this it-
eration ends, a partition reports to the job manager with
pointers to lists of vertices to other partitions for further
exploration. The job manager will notify other partitions
of the availability of these lists. A partition finishing the
current iteration can fetch the lists of new vertices from
other partitions and start the next iteration. It does not
have to wait to get lists from all other partitions before
initiating the next iteration.

G2 does support global barriers for two cases. In
the first case, completion of a graph-traversal stage is
through a global barrier: all participants must have com-
pleted their last iteration locally. The job manager initi-
ates the next phase of computation only after that global
barrier is established. In the second case, the job manager
can periodically introduce a barrier to an ongoing graph-
traversal stage for failure recovery; the barrier is used to
perform a globally consistent snapshot.

4.3 Partition vs. Vertex
G2 provides a GraphTraversal interface so that users can
implement their own custom graph-traversal algorithms.
Previous graph processing systems such as Pregel allow
users to specify actions on each vertex, which is natu-
ral for a large number of graph computation algorithms.
However, we have found a partition-level interface offers
additional opportunities for better performance.

6
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Graph Traversal Interface. Figure 6 (a) shows the sig-
nature of GraphTraversal. It starts from a set of initial
vertices (line 3), with traversal polices designated by
TWorker derived from GPartitionWorker (line 4). When
a graph traversal phase starts, G2 creates an instance of
GPartitionWorker on every graph partition of g (line 2),
and the job manager coordinates the workers to perform
multiple iterations of computation: a first round for Ini-
tialize (line 9), followed by multiple rounds of graph
traversal via message exchanges among vertices (line 10)
until all workers reach the completion barrier, and a last
round for Finalize (line 11). In each round, a worker cre-
ates remote messages for other partitions. Those remote
messages are eventually transported to appropriate parti-
tions and serve as the input for next-round computation
on those partitions.
Forward Slicing. Figure 6 (b) shows a sample that im-
plements forward slicing. During Initialize, the worker
sends a message to the initial vertices of the graph
traversal via SendMessage (lines 5,6). After initializa-
tion, each worker invokes OnMessage (line 8) on each
message, inside which a worker can read/write partition-
local states (lines 9,10), produces partial outputs via
WriteOutput (line 11), and send messages to other ver-
tices via SendMessage (line 14) by following the edges
of the current vertex (line 12).OnMessage does not cause
a real network message to be sent: for a local destination,
the worker again applies OnMessage on the destination
vertex in the current round. Only messages destined to
a remote partition are gathered and made available to
other partitions at the end of this iteration. After a worker
completes the current round, it fetches the available re-
mote messages for its partition from other partitions, and
starts a new round. This process ends when all workers
have completed the current rounds with no new remote
messages. In the final round, the workers invoke Finalize
(line 16), which usually produces outputs of this traver-
sal phase from final local states. It is empty in this case
because output is generated during traversal (line 11).
Hierarchical Aggregation. The value of exposing a
partition-oriented interface is more evident in the imple-
mentation of HierarchicalAggregate.

Figure 7 (a) shows a simple vertex-oriented imple-
mentation from a vertex’s perspective. Each vertex has
a label based on its context; for example, the label is its
process id for process-level aggregation. We use AggId
to identify a set of vertices that have already been aggre-
gated together: those vertices will have the same value
v.AggId. Every vertex uses its own ID as the initial AggId
(line 3), and broadcasts both its label and AggId to its
neighbors (lines 4,5). A message is ignored when a re-
ceiving vertex has a different label (line 8), indicating
a boundary of aggregation. Otherwise, if an incoming
AggId is smaller than the current one, a vertex changes

1 void Initialize(VertexIterator inits) {
2 foreach (Vertex v in inits) {
3 v.AggId = v.ID;
4 foreach (Vertex iv in neighbour vertices)
5 SendMessage(iv, {v.ID, v.Label});
6 } ...
7 void OnMessage(Vertex v, MSG msg) {
8 if (msg.Label != v.Label) return;
9 if (msg.AggId < v.AggId) {

10 v.AggId = msg.AggId;
11 foreach (var e in connected edges)
12 SendMessage(e.DstVertexID, msg);
13 } ...

(a) Vertex oriented implementation.
1 Map<ID, ID> VertexLeader; // vertex->leader
2 Map<ID, ID> LeaderAggIds; // leader -> aggId
3 Map<ID, ID[]> RemoteVertexGroup;//leader->rvertices
4 void Initialize(VertexIterator inits) {
5 ... local aggregation to initialize the maps ...
6 ... send messages to remote vertices ...
7 }
8 void OnMessage(Vertex v, MSG msg) {
9 if (msg.Label != v.Label) return;

10 ID leaderId = VertexLeader[v.ID];
11 int oldAggId = LeaderAggIds[leaderId];
12 if (msg.AggId < oldAggId) {
13 ... update aggId for the group ...
14 foreach (var vid in RemoteVertexGroup[leaderId])
15 SendMessage(vid, msg);
16 } ...

(b) Partition oriented implementation.

Figure 7: Optimization for HierarchicalAggregate.

its own AggId and propagates the change to its neighbors
(lines 9-12). The traversal ends when all vertices are as-
signed the smallest label of the vertices to be aggregated
together.

Figure 7 (b) shows a partition-oriented implementa-
tion, where partition-level aggregated states are main-
tained (lines 1-3) and initialized (lines 5-6). These data
structures essentially aggregate local continuous seg-
ments with the same labels and update them as a sin-
gle unit during traversal, rather than going through each
vertex repeatedly: each local continuous segment with
the same label is assigned a leader. Rather than having
each vertex maintaining an aggId, the partition main-
tains a mapping from leaders to aggIds in LeaderAggIds.
Because vertices with the same leader always have the
same aggId, a partition can simply update one entry
in LeaderAggIds for all those vertices when the aggId
changes for any of the vertices. Similarly, destination
vertices of cross-partition edges from this segment of
vertices are recorded in RemoteVertexGroup and can be
identified without following the edges within this seg-
ment repeatedly. Those data structures are populated dur-
ing initialization. When a message arrives at a partition
with a boundary vertex as the destination vertex, the
worker checks its label (line 9), and updates the AggId
of the corresponding leader vertex if it receives a smaller
AggId (lines 10-13). Finally, it broadcasts the new AggId

7
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Component Name Language LOC(K)
Annotation Library C++, C 3.4
Binary Rewriter C++/CLI 1.6
Transformer C++ 1.5
Engine(JobMgr,Daemon,MetaSvr) C++ 27.5
FrontEnd(Compiler, JobClient) C# 17.3
VS AddIn(Wizards, UI) C# 57.8
Total - 109.1

Table 1: Components in G2.

to its cross-partition neighbors (lines 14-15).

4.4 Failure Handling
G2 supports iterative graph computation, which renders
inapplicable the map/reduce type of failure recovery us-
ing re-computation. In a synchronous graph computa-
tion model, where a global barrier is established at each
round, a globally consistent checkpoint can be taken at
each barrier. When failures happen, computation can be
rolled back to the most recent checkpoint. G2 allows each
partition to maintain states. A checkpoint therefore cov-
ers such per-partition state, as well as the remote mes-
sages that each partition generates at the end of a round
for other partitions. Appropriate levels of redundancies
might be needed for checkpoints in order to recover from
permanent machine failures.

With an asynchronous graph computation model, G2

can choose to insert a global barrier at an appropriate in-
terval for consistent checkpointing. We can also resort
to the standard Chandy-Lamport algorithm for taking a
consistent snapshot, where a global barrier is a special
simple (yet less efficient) implementation for this algo-
rithm. In the worst case, G2 can always roll back to re-
execute a graph-traversal phase (assuming that failures
do not lead to data loss in the original graph information).
Our current implementation uses global barriers for con-
sistent checkpointing, but do not replicate the checkpoint
to tolerate permanent failures.

5 IMPLEMENTATION

G2 provides a complete tool set to help developers diag-
nose systems. Table 1 shows the programming language
and lines of code for components of G2: annotation li-
brary and binary rewriter are used to capture system ex-
ecution graphs. Transformer is used to store a graph. En-
gine, Front-End, and Visual Studio AddIn are for pro-
cessing and visualizing a graph.
Capture Graph. G2 can use existing traces from pre-
vious work, e.g., those on path-based analysis, to build
execution graphs. It also provides its own tool chain for
developers to instrument target systems for gathering in-
formation of interest. Whether instrumentation requires

manual code change depends on the types of edges to
be captured. We have developed a Phoenix [5] based
binary rewriter tool to annotate synchronous use edges
(i.e., call) and their corresponding causal scopes (i.e., the
call boundary) automatically. A user can choose what
to instrument with a configuration file, reflecting her
choice to balance between cost and coverage. G2 also
captures sync edges automatically at the Win32 layer by
instrumenting Windows synchronization APIs. For asyn-
chronous use edges, G2 provides an annotation library;
the following code illustrates how to track network mes-
sages and their corresponding handlers using this library.
Users first annotate a context(NetworkMsg) by making
it inherit a G2::CausalCtx object. Users then add a call
to LogUseEdgeBegin and LogCausalScope respectively,
when this context is about to be delivered and used. The
macro call of LogCausalScope is a C++ object, whose
lifetime defines a causal scope.

1 class NetworkMsg : public G2::CausalCtx {
2 int Send(...) {
3 LogUseEdgeBegin(this, ...);
4 ...
5 } ...
6 void OnRecvNetworkMessage (NetworkMsg& msg, ...) {
7 LogCausalScope(msg);
8 msg.Execute(...);
9 ... }

Store Graph. We developed a Transformer that converts
raw runtime-event streams to database tables. G2 stores
a system execution graph in four relational tables. Each
object has a unique key, which we use as reference keys
across tables and partitions. The CodeLocation provides
the context for each event and in particular the compo-
nent, class, function, file, and line number of the state-
ment that generates the event. The ProcessInfo table cov-
ers the runtime process information, such as process id,
machine name, process start time, and so on. The Event
table contains information about each event, including
its type, a reference to an edge if it is an endpoint of that
edge, a physical timestamp, references to CodeLocation
and ProcessInfo, and payload (e.g., printf log content).
The Edge table contains the edge type, a unique edge ID,
and references to the source and destination events. The
Edge table defines the structure plane of a system execu-
tion graph, while the other three form the data plane. A
slicing operation can be done purely on the Edge table,
but for event aggregation it is often necessary to query
the CodeLocation and ProcessInfo tables. The Edge ta-
ble is frequently accessed during graph traversal and is
therefore cached in memory for fast access.
Process Graph. Queries submitted to G2 are compiled
into a distributed query plan, with appropriate resource
files dispatched to workers running on machines manag-
ing partitions of a graph. Execution of a query plan is
done through coordination between the job manager and
the workers, as described in Section 4. The job manager
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Systems Acs# Ace# Func# Rule#
G2 9 11 197 10
SCOPE/Dryad 17 13 730 5
BerkeleyDB 2 2 1,542 23

Table 2: Instrumentation statistics. Acs#, Ace#, Func#,
and Rule# refer to the number of manually annotated
causal scopes, manually annotated edges, instrumented
functions, and rules in the configuration files for the bi-
nary rewriter, respectively.

monitors progress of graph traversal and assists in mes-
sage exchanges between workers. After a round of local
processing ends on a partition A, the worker for A groups
messages based on their destinations and notifies the job
manager of the list of partitions with data from A. The job
manager piggybacks the list partitions with data ready for
A. The worker for A will then fetch those from the corre-
sponding workers. To make message exchange efficient,
workers cache generated message groups in memory and
discard them after they are fetched. The job manager is
also responsible for enforcing global barriers upon com-
pletion of graph traversal, as well as to create consistent
checkpoints.

6 EXPERIMENTS AND EXPERIENCE

We have applied G2 to SCOPE/Dryad, G2 itself, and
BerkeleyDB. Our evaluation attempts to answer the fol-
lowing questions: a) what is the cost of applying G2?
b) how does the G2 engine perform on real execution
graphs? c) does G2 help developers diagnose compli-
cated distributed system problems?

Target systems are co-deployed with G2 on a cluster
of 60 machines; each has a dual 2GHz Intel Xeon CPU,
8 GB memory, two 1TB SATA disks, and are connected
with 1 Gb Ethernet.

6.1 Cost of Applying G2

Human effort. Table 2 reports the statistics about the
annotation effort to apply G2 on these systems. For in-
strumenting functions, users write only a configuration
file for the binary rewriter to specify names of functions
they are interested in. For all three cases, the configura-
tion files are less than 25 lines, as shown in Table 2.

The asynchronous use edges and correspondent
causal scopes require manual annotation on source code.
Our experiences show that most asynchronous messages
and events are handled by a small number of compo-
nents or by a middleware library, making annotation
easy. We annotated fewer than 20 places for each bench-
mark. Annotations on G2 took us less than one hour. In-
terestingly, in our SCOPE/Dryad experiment, we did for-
get to annotate a place where the code directly uses the

CreateProcess function to create a new process, bypass-
ing the middleware component that we annotated. Such
cases are rare and can often be discovered during a di-
agnosis process. Developers can optionally capture other
dependencies: we do not model those.
Runtime overhead. Runtime overhead for emitting
events and edges is comparable to those in previous work
on capturing causal dependencies [14, 7, 13, 8, 19, 26,
18, 27]. There are several categories of events/edges.
The first category are asynchronous use edges and
the corresponding causal-scope events (e.g., message
send/receive), which are always captured. The second are
legacy printf logs. These two parts do not introduce no-
ticeable system slowdown compared to previous systems
(with the same printf logs). The third are events from in-
strumented functions, and the cost is proportional to the
numbers of function invocations that are captured. Usu-
ally invocations of interface functions of each component
that are associated with error and failure handling are
enough for diagnosis. For our experiments on the three
distributed systems, only less than 0.1% of overall func-
tion invocations are captured in system execution graphs,
and no noticeable overhead was observed. If more func-
tions need to be instrumented, and we cannot afford to
instrument all, we can turn to dynamic instrumentation
techniques as done in our previous work [23].

Table 3 reports the statistics on sample execution
graphs from our target systems. The G2 data include
events from executing tens of diagnosis queries against a
SCOPE/Dryad snapshot. The SCOPE/Dryad data came
from ten SCOPE queries for calculating different statis-
tics of web data. The BerkeleyDB data was collected dur-
ing approximately one hundred instances of system ini-
tialization guided by a model checker; the goal is to use
G2 to assist model checking research in another project.
All numbers reported are per-machine averages. For ex-
ample, for SCOPE/Dryad, a 120-minute trace generates
about 1.2GB of G2 data on each of the 60 machines.
On average, the imposed I/O bandwidth ranges from
85.3 KB/s (G2) to 174 KB/s (SCOPE/Dryad) on aver-
age, which did not cause noticeable runtime interference
to the host systems. Not reported in this figure, in our
sample SCOPE/Dryad execution graph, about 28% of the
events recorded are legacy logs (category 2), which ac-
count for 64% of total sizes. Category 1 accounts for 33%
by count and 16% by size, while category 3 takes the rest.

6.2 Performance Evaluation
This section evaluates the performance of G2 engine.
Graph statistics. Table 3 shows the numbers of edges
and vertices for the sample execution graphs from our
target systems. The number of edges is far fewer than the
number of events because all fall-through edges are im-
plicit. The func# is the number of invocations for instru-
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Systems LOC(K) Func# Edge# Event# Raw(MB) DB(MB) Time(min) node#
G2 27 267,728 634,704 1,212,778 85 231 17 60
SCOPE/Dryad 1,577 3,128,105 8,964,168 20,106,457 1,226 3,269 120 60
BerkeleyDB 172 46,164 92,502 186,597 14 29 2 3

Table 3: Execution graph statistics about a snapshot for the target systems.

mented functions as specified in Table 2. System execu-
tion graphs can be large: the SCOPE/Dryad snapshot has
on average more than 20 million events on each machine.
The database size (DB) is approximately three times the
raw event stream size (Raw), due to verbose DB data for-
mat (factor of 1.5) and associated indices. The edge table
(including its indices) counts for only 30% of the total
database size. Because it is frequently accessed, caching
it in memory makes sense.
End to end performance. We evaluate the end to end
performance of G2 with 5770 random queries on the
SCOPE/Dryad graph. Each query calculates a forward
slice from a randomly selected root event and then com-
putes a process-level aggregation on the slice. Figure 8
shows the overall running time of these queries with all
optimizations turned-on. The G2 engine is generally fast
on these queries: 94.5% queries finished within 5 sec-
onds, with only three queries (in the upper-right circle)
taking more than 100 seconds. Our investigation shows
that the randomly chosen root events for those three
queries are close to the entry point of the Dryad job,
yielding huge slices with up to 130 millions of events.
Running time depends not only on the sizes of resulting
slices, but also on properties of the graph (and its par-
titions), those properties dictating concurrency of query
processing. For example, some queries (in the circle on
the left) take more than 50 seconds, even though the cor-
responding slices are relatively small. This is because
they experience a period of time with low concurrency.

We also inspected the result of hierarchical aggre-
gation. The result shows that it is effective in simpli-
fying graphs. All resulting process-level graphs contain
less than 85 vertices, except the three queries in the up-
per right circle: the aggregation yields graphs with only
0.01% of vertices.
Graph and graph computation characteristics. We
recorded and examined a large forward-slice computa-
tion on the SCOPE/Dryad graph. Figure 9 shows how the
numbers of events, local edges, and remote edges vary
over time. The SCOPE/Dryad job has a bootstrap phase,
during which a job scheduler copies resource files be-
tween machines. In the actual execution, this phase takes
little time. However, because this phase involves a series
of communication, slicing at this segment of the execu-
tion graph has little concurrency. It takes a relatively long
time to process even though the number of events and the
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Figure 9: How the # of events, local edges, and remote
edges vary along the execution time.

total I/O are small. This is reflected in the flat start in the
figure. Graph traversal experiences respectable concur-
rency in the middle range when traversing the portion of
the graph for the real Dryad execution. Then after around
time 00:40 it starts to process the portion of the graph
corresponding to the final phase, in which a job manager
again has to talk to many machines to fetch statistics and
to write them into a distributed file. The overall concur-
rency level on 60 machines is 7.23.
Effectiveness of graph engine optimizations. To eval-
uate the effectiveness of batched asynchronous itera-
tion and partition-oriented interface design, we mea-
sured both Slicing and HierarchicalAggregate perfor-
mance with nine different configurations, which are the
combinations of two dimensions of configurations. The
first is whether to enable Barriers among workers and
Checkpointing after each round (None, B, or B/C). The
second is to choose which local graph traversal policy
(OneHop, Batched, or Partition). OneHop is to allow one
hop traversal only in each round, a typical setting for
other graph engines such as Pregel; Batched is to tra-
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Phase OneHop Batched Partition
Slicing(None) 1.49 0.99 1.00
Slicing(B) 2.70 1.19 1.21
Slicing(B/C) 2.86 1.27 1.27
Aggregation(None) 1.80 1.48 1.00
Aggregation(B) 2.67 1.91 1.01
Aggregation(B/C) 3.40 2.42 1.09

Table 4: Relative execution time for the component level
aggregation analysis with nine different configurations.
Abbreviations: B - barriers are enabled among workers;
B/C - barriers are enabled among workers, and partition
state is checkpointed.

verse until no further local vertices to be visited during
this round; and Partition is similar to the second, but
with the partition-state optimization discussed in Sec-
tion 4.3, enabled by G2’s partition-oriented interface. Ta-
ble 4 shows the average relative execution time for the
component level aggregation analysis for a Dryad job
with the nine configurations; each runs ten times. To be
fair, with 〈OneHop,B/C〉, we checkpoint every 7 and 18
rounds for slicing and aggregation, respectively, so that
they take approximately the same number of checkpoints
as in other configurations.

Overall, batched asynchronous iterations and
partition-oriented interface are effective: without check-
pointing, we see a 62-63% reduction in latency for both
slicing (2.70 vs. 1) and hierarchical aggregation (2.67
vs. 1). The data also reveal the following: (i) Batched
asynchronous iterations bring benefits in two ways:
First, it allows local traversal to proceed (as in Batched)
and significantly reduces the number of global rounds
(from 208 rounds to 28 rounds for Slicing and from
111 rounds to 6 rounds for hierarchical aggregation).
Second, it removes the need for global barriers. This is
particularly effective when there are many rounds and
significant variations across machines in each round. It
is noticeably ineffective for Aggregation (〈Partition,B〉,
〈Partition,None〉) because our partition-oriented op-
timization makes process-time variations between
partitions negligible. (ii) Partition-oriented interface and
data structures are effective for Aggregation (with 32%
reduction) because we are seeing large local islands
(e.g., one island with 7.7 million internal edges and
only 2,895 remote edges): those local islands do not
have to be visited repeatedly with our optimization. (iii)
Overhead of checkpointing depends on how frequent
we checkpoint and how much data we checkpoint.
OneHop introduces lower overhead (5.11 MB/s) because
it checkpoints the same amount of state in a longer time
period compared to Batched (7.18 MB/s), and Batched
has higher overhead compared to Partition because its
state size is larger than that under Partition (5.96 MB/s).

Scaling performance. We evaluated scaling perfor-
mance from two perspectives. The first is to measure
scaling in terms of the number of machines. We do not
show figures due to space constraints. We observe that
the job latency decreases almost linearly initially when
more machines are used. But after we have more than 16
machines, the speedup slows down due to inherent limit
on concurrency. With 60 machines, the average latency
is reduced to under 3 minutes from over 14 minutes on 8
machines.

The second is to measure scaling in terms of the num-
ber of concurrent queries. We use two different sets of
slices for those queries. The first set has several large
slices, which involves 5 to 8 graph partitions and con-
tains approximately 0.4 to 1 million events. The second
set has a set of randomly selected slices, which typically
involves 1 to 2 machines and contains several thousands
of events. For large slices, latency increases dramatically
when we reach 100 queries. For small slices, the system
can support almost 500 queries simultaneously without
affecting query latencies and can handle 5,000 queries
with an average latency under 3 minutes.

6.3 Experience, Limitations and Future Work
To make G2 accessible to developers, we have built a set
of templates to guide the use of the system and integrated
the tool into Visual Studio for a seamless debugging ex-
perience. The Visual Studio AddIn includes a set of com-
mon diagnosis tools based on G2, including event naviga-
tion along edges in all levels of graphs (called gwalker),
as well as a set of wizards focusing on specific visual-
ized diagnosis tasks, such as error log analysis, critical
path analysis, and performance regression analysis, as
discussed in Section 3.2. Following are two showcases
from our experiences.
Slower job. When developing G2, we found that query
processing time became 60 times slower after minor code
changes. To investigate, we applied G2 for a machine-
level aggregation with critical-path analysis on a forward
slice of a query job. The result showed that most of the
processing time was spent on machine srgsi-10. We then
zoomed into a thread-level execution graph, and per-
formed a graph diff with its counterpart from the same
run in the previous day (before code changes were ap-
plied). Figure 10 depicts the diff result, which shows that
thread 8772 has the largest deviation between the two
jobs in terms of execution time. We further zoomed into
the component level and then function level execution
graphs in that thread, and found that the largest deviation
happened in the AcquireRowById function which reads a
row from a local table using the primary key. Our further
investigation revealed that the table did not have a proper
index, the result of a bug we introduced in Transformer
that caused index creation to fail. This kind of perfor-
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Figure 10: Thread level performance regression diff.

mance regression problem is common in our experiences
and a hierarchical diff analysis between two similar tasks
is often effective in identifying root causes.
Failed write. We have used G2 to investigate root causes
of error logs in SCOPE/Dryad. One case is shown in Fig-
ure 11. The error log in the underlying distributed storage
system reported that a write request to a chunk server c1
at time 21:27 failed. Using G2, we managed to find its
root cause through several steps, marked in Figure 11.

1. We computed a backward slice starting from the
error log entry and listed the warning and error entries
ordered by time (OrderBy). A warning log entry showed
up in the disk IO module, indicating that a chunk x was
marked as deleted. However, we were not able to figure
out why this happened based on the information in this
backward slice.

2. We wrote a Where query for the most recent logs
on the same machine who contain keyword “chunk x”,
trying to connect the missing edges which may tell why
chunk x was marked as deleted. The query returned an
event B indicating that at time 21:17 a background thread
marked this chunk as deleted.

3. We use gwalker to navigate the logs on the graph
from event B, and found an event C indicating that the
meta server m1 sent a delete request to c1 because it
found that chunk x no longer belonged to any file stream.

4. To locate the origin of the write request to c1 on
presumably deleted chunk x, we aggregated the back-
ward slice rooted at event A at process level and found the
write request came from c3, and propagated by c2, where
c1, c2, and c3 formed a replication group for x. A further
drill-down of the logs on c3 showed that c3 restarted at
21:27. During its replication log replay, it found an in-
complete local chunk x and issued an empty write request
to sync data from other replicas (c1 and c2).

5. Trying to understand why c3 did not receive the
delete request from meta server for chunk x, we ran a
process level aggregation on the forward slice from event
C, and found that m1 sent a delete request to c3 at time
21:25, but c3 was not online at that time. This revealed
the root cause.

This interactive diagnosis process involved gwalker,

slicing (at a specific layer), aggregation, and relational
queries in G2, and is guided with human expert knowl-
edge. It is worth pointing out that G2, as any diagno-
sis tool, is not intended to replace human completely.
Rather, its value lies in its ability to allow users to find
the right information efficiently.

Implicit dependencies. The backward slice in step 1 of
the Failed Write diagnosis did not contain all the interest-
ing events for us to find the root cause, due to implicit de-
pendencies (through chunk x), which are not captured by
G2. This is a common limitation in causality-based ap-
proaches. We managed to connect the dots through a re-
lational query in this case. In our performance diagnosis
experience, we also found a lot of problems caused by re-
source contention or interference, and again such causal
relations are not modeled by G2. In the future, we plan to
incorporate some interference analysis techniques (e.g.,
[25]) to introduce interference edges into our model.

Customized slicing computation. We found some slices
were fairly large and took a long time to compute. In
many cases, users do not need all the information in a
slice. To better control the cost, G2 provides three addi-
tional parameters to the Slicing operator: maximum slice
radius (hops starting from the root event), maximum net-
work hops, and a customizable edge filter which decides
whether the computation should continue following this
edge for a bigger slice. Our experience shows these pa-
rameters can greatly improve the productivity, especially
when people are familiar with their target systems.

Deployment and interference. The data placement has
three reasonable choices as we see: data on each ma-
chine, on one dedicated machine per pod (in which the
machines share a same uplink), and on a single machine.
We did not run the second option (in a real data center)
yet, and our scalability study above touched on diagno-
sis performance vs. number of machines. Our belief is
that the second option is more suitable for a real deploy-
ment to minimize interference, while the other two can
be used in testing environments depending on the size of
the setup.
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Figure 11: Diagnosis process for the failed-write scenario.

7 RELATED WORK

The design of G2 draw inspirations from a great num-
ber of previous works. We discuss those in three cat-
egories: execution modeling, distributed execution en-
gine/storage, and diagnosis platform.
Execution Modeling. G2 captures overall system behav-
ior in a system execution graph with the help of anno-
tation and instrumentation. It is clearly related to path-
based analysis [14, 13, 26, 7, 8, 27], where a path is
often defined as a sequence of events that is triggered
by a client request. Path instances can either be col-
lected through annotation [14, 13, 26] and schemas [8]
provided by developers, or statistically inferred from
inter-machine communications [7]. A variety of analy-
sis can be enabled on path instances. For example, Mag-
pie [8] aims to analyze workload models from path in-
stances; PinPoint [14, 13] uses statistical methods to
find components that are highly correlated to failed re-
quests; Pip [26] checks these instances against specifica-
tions of expected system behavior defined by users. Path
instances correspond to forward slices from the points
where client requests are submitted in a system execu-
tion graph—G2’s model is general in that slicing can
be in both directions from any point. Technically, path-
based techniques [14, 13, 26, 7, 8, 19] could be applied
on these forward slices and therefore integrated into G2.
We plan to investigate this feasibility in the future. X-
Trace [19, 18] is similar to G2 as it captures system be-
havior as task trees, and it tends to store the information
in a service like OpenDHT to allow further distributed
processing.

A large body of work focuses on diagnosing dis-
tributed systems using purely legacy logs. For example,
Wei et al. [29] use machine learning to mine console logs
to detect large-scale system problems, and SherLog [31]
uses a constraint solver with information from a log to
rebuild system execution flow that produces the same
log. While no annotation or schema input from users
are needed in those systems, there is usually a trade off:

a machine-learning approach [29] involves sufficient art
to ensure accuracy, while recovering information using
constraint solving [31] faces scalability challenges.

Our slicing concept is inspired by program slic-
ing [6] in program analysis. Hierarchical aggregation is
related to hierarchical dynamic slicing [28], although
the underlying techniques are different. Program slic-
ing captures fine-grain data/control dependencies among
variables/statements, and semantic hierarchy inside pro-
grams, while G2 captures dependencies at a coarse gran-
ularity and resorts to approximation for scalability.
Distributed Execution Engine and Storage. G2 hinges
on its graph traversal engine to operate on huge execu-
tion graphs, often composed of millions even billions
of vertices. Pregel [24] is a system for general large-
scale graph processing. Tailored for execution graphs and
graph traversal, G2 adopts a batched asynchronous model
rather than a bulk synchronous model in Pregel; it ex-
poses a partition-oriented interface, rather than a vertex-
oriented one in Pregel.

Other distributed computing engines have also been
applied to specific computation on large graphs. Dis-
tributed execution engines such as MapReduce [16] and
Dryad/DryadLINQ [22, 30] have been applied to com-
pute PageRank [4] on a web graph. Recently, MapRe-
duce Online [15] is also used for interactive big data
analysis. G2 also leverages MapReduce as the basic con-
struction primitive to implement the diagnosis operators.
Besides, it employs dedicated graph traversal primitive
to reduce the query latency. G2 partitions a graph into
partitions and stores partitions on different machines.
Distributed storage systems, such as key/value stores
or table-based stores, have been studies extensively, al-
though not for storing large graphs in particular. Re-
cent examples include Cassandra [1], Dynamo [17], and
BigTable [12]. G2 adopts the similar approach, and it co-
locates the execution to the partitions so as to reduce the
storage access latency.
Diagnosis Platform. Several previous diagnosis tools
have also leveraged the power of distributed systems.
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Cloud9 [10] has pioneered the concept of testing as a
service. In particular, it shows a symbolic execution test-
ing engine that can be parallelized in a cloud. We share
the same vision and believe G2 can enable diagnosis as
a service. Wei et al. [29] parallelized their algorithm for
learning legacy logs on Amazon EC2 with Hadoop [21].

Dapper [27] is a tracing framework designed for low
overhead, application transparency, and ubiquitous de-
ployment. Trace data are organized in a Dapper trace
tree, where each node represents a basic unit of work
called a span. Each trace is stored in BigTable. It also of-
fers a programmatic API, as well as an annotation API.
Due to its more restricted trace-tree model, it does not
support graph-traversal or any of the operators in G2.
DTrace [9] is another tracing framework that supports
on-demand instrumentation of distributed systems. It al-
lows customized predicates and aggregation functions
via a scripting language. The aggregation is applied to
a set of flat trace records, which is different from G2 as
the later applies aggregation to a graph.

8 CONCLUDING REMARKS

Execution graphs capture runtime behavior of distributed
system executions. These graphs are unique in their value
for distributed-system diagnosis and in their distinctly
different characteristics compared to well-known social
and web graphs. G2 makes those graphs useful with new
graph operators and with query support, and makes graph
processing efficient with a distributed engine. By doing
so, G2 becomes an effective tool for distributed-system
diagnosis and at the same time advances the state of art
in distributed large-scale graph processing.
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Abstract
Software failures due to configuration errors are com-

monplace as computer systems continue to grow larger
and more complex. Troubleshooting these configura-
tion errors is a major administration cost, especially in
server clusters where problems often go undetected with-
out user interference.

This paper presents CODE–a tool that automatically
detects software configuration errors. Our approach is
based on identifying invariant configuration access rules
that predict what access events follow what contexts. It
requires no source code, application-specific semantics,
or heavyweight program analysis. Using these rules,
CODE can sift through a voluminous number of events
and detect deviant program executions. This is in con-
trast to previous approaches that focus on only diagno-
sis. In our experiments, CODE successfully detected a
real configuration error in one of our deployment ma-
chines, in addition to 20 user-reported errors that we
reproduced in our test environment. When analyzing
month-long event logs from both user desktops and pro-
duction servers, CODE yielded a low false positive rate.
The efficiency of CODE makes it feasible to be deployed
as a practical management tool with low overhead.

1 Introduction
Software configuration errors impose a major cost on
system administration. Configuration errors may re-
sult in security vulnerabilities, application crashes, se-
vere disruptions in software functionality, unexpected
changes in the UI, and incorrect program executions [7].
While several approaches have attempted to automate
configuration error diagnosis [2, 20, 26, 29], they rely
solely on manual efforts to detect the error symp-
toms [20, 26, 29]. As usual, manual approaches in-
cur high overhead (e.g., requiring users to write error-
detection scripts for each application) and are unreliable
(e.g., security policy errors may show no user-visible
symptoms). These drawbacks often lead to long delays
between the occurrence and the detection of errors, caus-
ing unrecoverable damage to system states.
In this paper, we aim to automatically detect config-

uration errors that are triggered by changes in config-
∗This work was done when the authors were at Microsoft Research

Silicon Valley.

uration data. These types of errors are commonplace
and can be introduced in many ways, such as operator
mistakes, software updates or even software bugs that
corrupt configuration data. For example, a software up-
date may turn off the “AutoComplete” option for a Web
browser, which, as a result, can no longer remember user-
names or passwords. An accidental menu click by a user
may corrupt a configuration entry and cause an applica-
tion toolbar to disappear. A seemingly benign user oper-
ation that disables the ActiveX control can unexpectedly
disable the remote desktop application.
We consider configuration data because it captures im-

portant OS and application settings. Further, the data is
typically accessed through well defined interfaces such
as Windows Registries. We can thus treat the applica-
tions and the OS as black boxes, transparently intercept-
ing and checking configuration accessing events (called
events hereafter). This approach is lightweight: it does
not require modifying the OS [13] or using virtual ma-
chines [29].

We focus on Windows, where applications use the
Registry to store and access configuration data. In partic-
ular, we log all Registry events and analyze them online
to automatically detect errors. While Windows has the
largest OS market share 1 and is also the focus of many
previous efforts [26], our methodologies can be general-
ized to other types of OS and configuration data.
Analyzing configuration-access events automatically

for error detection faces three practical challenges. First,
we need to efficiently process a huge number of events.
A typical Windows machine has on average 200 thou-
sand Registry entries [26], with 106 to 108 access events
per day [23]. Commonly used learning techniques
(e.g., [1, 28]) rarely scale to this level.

Second, we must automatically handle a large set of
diverse applications. Different applications may have
drastically different configuration access patterns. These
patterns may evolve with user behavior changes or soft-
ware updates.

Finally, our analysis must effectively detect errors
without generating a large number of false positives.
Configuration data is highly dynamic: there are, on av-
erage, 104 writes to Registry per day per machine, and
102 of them are writes to frequently accessed Registries

1Specifically, Windows has 91% of client operating system mar-
ket [22, 31] and 74% of server market [10].
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that have never changed before. Application runtime be-
haviors such as user inputs, caching, and performance
optimizations may all add noise and unpredictability to
configuration states, making it difficult to distinguish be-
tween real errors and normal updates.

In this paper we present CODE, an automatic online
configuration-error detection tool for system administra-
tors. CODE is based on the observation that the seemingly
unrelated events are actually dependent. The events ex-
ternalize the control flow of a program and typically oc-
cur in predictable orders. Therefore, a sequence of events
provides the context of a program’s runtime behavior and
often implies what follows. Further, the more frequently
a group of events appear together, the more correlated
they should be.

Thus, rather than analyzing each event in isolation,
CODE extracts repetitive, predictable event sequences,
and constructs invariant configuration access rules in the
form of context → event that a program should fol-
low. CODE then enforces these rules and reports out-of-
context events as errors. By tracking sequences, CODE
also enables richer error diagnosis than looking at each
individual event. Once CODE detects an error, it also sug-
gests a possible fix based on the context, the expected
event, and the error event.

We implemented CODE as a stand-alone tool that runs
continuously on a single desktop for error detection. It
can also be extended to support centralized configura-
tion management in data center environments. Our eval-
uation, using both real user desktops and production
servers, shows that the context-based approach has four
desirable features:
• Application independent: CODE requires no source

code, application semantics, or heavyweight program
analysis to generate contexts; it can automatically con-
struct rules to represent more than 80% of events for
most processes we studied.

• Effective: CODE successfully detected all reproduced
real-world configuration errors and 96.6% of randomly
injected errors in our experiments. CODE also detected
a real configuration error on a coauthor’s desktop.

• Configurable false positive rate: Since CODE re-
ports only out-of-context events instead of new events,
it will not report normal configuration changes as
alarms. Further, the false positive rate is configurable.
In our experiments it reports an average of 0.26 warn-
ing per desktop per day and 0.06 per server per day.

• Low overhead: CODE keeps only a small number of
rules for detection and processes events as they arrive
online. The CPU overhead is small (less than 1% over
99% of the time). The memory overhead is less than
0.5% for data-center servers with 16GB memory.

We explicitly designed CODE to detect configuration
errors; our goal is not to catch all errors or malicious at-

tacks. We view our focus on frequent event sequences
as a good tradeoff. The high access frequencies indicate
that errors in these events are more critical. Moreover,
our detection takes place at the time when erroneous con-
figurations are accessed and manifest. Hence, these er-
rors are the ones that actually affected normal program
executions, and CODE naturally concentrates on them.
This paper is organized as follows. We first discuss re-

lated work in Section 2 and introduce Windows Registry
and a motivation example in Section 3. We then present
an overview of CODE in Section 4. We next describe its
rule learning (Section 5) and error detection (Section 6).
We show our evaluation results in Section 7. Finally, we
discuss our limitations and future work (Section 8) be-
fore we conclude (Section 9).

2 Related Work
To our best knowledge, CODE is the first automatic sys-
tem for online configuration error detection. Below we
discuss related work on configuration-error diagnosis
and sequence-analysis based intrusion detection.
Configuration error diagnosis. Several diagnosis
tools have been developed to assist administrators
in diagnosing software failures. ConfAid [2] uses
information-flow tracking to analyze the dependencies
between the error symptoms and the configuration en-
tries to identify root causes. Autobash [20] leverages
OS-level speculative execution to causally track activi-
ties across different processes. Chronus [29] uses virtual
machine checkpoints to maintain a history of the entire
system states. KarDo [14] automatically applies the ex-
isting fix to a repeated configuration error by searching
for a solution in a database. SherLog [33] uses static
analysis to infer the execution path based on the runtime
log messages to diagnose failures.
Another family of tools compares the configuration

data in a problematic system with those in other systems
to pinpoint the root cause of a failure [12, 26, 27]. They
focus on the snapshots of configuration states, and use
statistical tools to compare either historical snapshots or
snapshots across machines. While it may seem feasible
to extend these state-based approaches for error detec-
tion, our experiments showed that such approaches will
generate a large number of false positives due to the noise
in configuration states (e.g., constant state modifications
or legitimate updates). In contrast, CODE reasons about
actions rather than states for error detection.

The existing systems discussed so far have enhanced
off-line diagnosis of configuration errors. However, they
all require users or administrators to detect configuration
errors. In contrast, CODE focuses on automatic error de-
tection (it can further aid error diagnosis). The impor-
tance of having an automatic detection system is also
recognized in [19]. Due to the complex dependencies
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of modern computer systems, detecting faulty configura-
tion states as early as possible helps to isolate the dam-
age and localize the root cause of a failure, especially
in server clusters or data centers with thousands of user-
unmonitored machines.
Software resilience to configuration errors Candea
et al. proposed a tool called ConfErr for measuring a sys-
tem’s resilience to configuration errors [4, 11]. ConfErr
automatically generates configuration mistakes using hu-
man error models rooted in psychology and linguistics.
ConfErr and CODE differ in their purposes. ConfErr can
help improve software resilience to configuration errors
and thus prevent errors from occurring, while CODE can
be used to detect and diagnose configuration errors once
they occur and is thus complementary.
Sequence analysis. A large number of intrusion detec-
tion systems (IDS) identify intrusions with abnormal sys-
tem call sequences (e.g., [6, 9, 24, 32]). They

construct models of legal system call sequences by an-
alyzing either the source code or the normal executions in
an off-line learning phase. A deviation from the learned
models is flagged as an intrusion.

By analyzing event sequences to identify predictable
patterns, CODE shares similar benefits to run-time
system-call analysis. However, our focus on configura-
tion events instead of system calls leads to significantly
different design decisions. Configuration access patterns
constantly evolve, so off-line analysis used in IDS sys-
tems risks overfitting and producing outdated rules. Fur-
ther, while IDS systems have to prevent sophisticated at-
tacks [25] using conservative, non-deterministic models,
CODE explicitly focuses on the potentially more criti-
cal frequent sequences using simple, deterministic rules.
More importantly, the heavyweight learning algorithms
that IDS systems commonly use make them difficult to
scale to the volume of configuration access events, thus
these systems are often unable to adapt to dynamic en-
vironments online. In contrast, the focus of identifying
only invariant rules enables CODE to adopt and adapt
much more efficient sequence-analysis methods to op-
erate online.
Prior work (e.g., [8, 15]) has also used event transi-

tions to build program behavior profiles. They mostly
focus on depth-2 transitions on code call graphs. In con-
trast, CODE’s event transition rules can consist of all pos-
sible lengths of prefixes, thus are more flexible and ex-
pressive when representing event sequences as contexts.

3 Background and A Motivating Example
In this section, we first introduce Windows Registry,
the default configuration store for Windows applications.
We then present a motivating configuration-error exam-
ple and show how CODE can automatically detect and
diagnose this error using contexts.

Key: HKEY LOCAL MACHINE\Software\Perl
Value: BinDir
Data: C:\Perl\bin\perl.exe
Operation: QueryValue
Status: Success

Table 1: An example Windows Registry operation.

Average Maximum
Data modification 1051 5505
Key/Value creation 883 32676
Key/Value deletion 172 4997
Total 2106 43178

Table 2: Average and maximum number of Registry update
operations/process/day (across 115 processes on a regular user
desktop over one month period).

3.1 Windows Registry
Windows Registry is a centralized repository for soft-
ware, hardware, and user settings on Windows machines.
This repository makes it easy for different system com-
ponents to share and track configurations.

Windows Registry is organized hierarchically, closely
resembling a file system. Each Registry entry is uniquely
identified by a Registry key and a Registry value. A Reg-
istry key resembles a directory and a Registry value a
file name. A key may contain multiple subkeys and val-
ues. Given a key/value pair, Windows Registry maps it
to Registry data, which resembles the content of a file.
Hereafter, we will refer to Registry keys, Registry val-
ues, and Registry data as Keys, Values, and Data.

Table 1 shows a Windows Registry entry example.
Its Key is a hierarchical path name with root Key
HKEY LOCAL MACHINE, which stores settings generic
to all users. The Key in the example stores settings about
the Perl application. The Value/Data specifies that the
Perl executable is located at C:\Perl\bin\perl.exe. Win-
dows Registry supports about 30 operations (e.g., Cre-
atekey and OpenKey), each with a return value indicat-
ing the success or failure of the operation. Table 1 shows
a successful QueryValue operation (given a Key/Value
pair, fetch associated Data).
Previous studies have shown that a significant fraction

of configuration errors are due to Windows Registry cor-
ruptions [7]. Software bugs, user mistakes, or applica-
tion updates can all trigger unexpected Registry modifi-
cations that lead to software errors. In many cases, even
a single entry corruption may result in serious applica-
tion failures ranging from user-interface changes (e.g., a
menu or icon missing) to software crashes.
While Windows Registry facilitates configuration ac-

cess, it remains challenging to detect and diagnose con-
figuration errors due to the complex and dynamic nature
of Windows Registry. The number of Registry entries
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…, … (check other settings)29-45
(normal)

Key: HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU
Op: QueryValue, Status:not exist, Value: NoAutoUpdate, Data:“”

28 
(normal)

Key: HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU
Op: QueryValue, Status:0, Value: NoAutoUpdate, Data:1

28
(error)

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate\AU
Op: QueryValue, Status:not exist, 
Value: DetectionFrequencyEnabled, Data:“”

27

…, … (check other settings)4-26

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate
Op: QueryValue, Status: sucess, Value: WUStatusServer, 
Data: http://sup-nam-nlb.redmond.corp.microsoft.com:80

3

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate
Op: QueryValue, Status: success, Value: WUServer, 
Data: http://sup-nam-nlb.redmond.corp.microsoft.com:80

2

Key: HKLM\Software\Policies\Microsoft\W indows\WindowsUpdate
Op: OpenKey, Status: success, Value: “”, Data: “”

1

Figure 1: Registry access sequence of Windows update.

is huge—about 200K for an average machine, and this
number is increasing [26]. Furthermore, Registry up-
dates are highly frequent. As shown in Table 2, the num-
ber of updates can be as high as tens of thousands per
process per day. Despite several recent proposals for au-
tomatic mis-configuration diagnosis, configuration-error
detection remains an open problem.

3.2 A Motivating Example
In this example, we illustrates how CODE can detect and
diagnose a real-world configuration error that disables
the Windows automatic update feature (i.e., switch the
OS to the manual update mode).

Given that Windows update often runs as a back-
ground task, users who normally leave automatic-update
on will hardly notice that their computers have stopped
checking for updates. Previous tools do not help in this
case because they diagnose configuration errors only af-
ter users detect them. Consequently, this error may go
undetected, leaving security vulnerabilities not patched
and machines compromised. Early detection is thus crit-
ical to alert users to reset this important safety feature.
This configuration error was reported when a user

removed a program that he or she thought was ex-
traneous [30]. The program removal adds a Value
“NoAutoUpdate” and Data 1 under the Key

K = [HKLM\Software\Policies\Microsoft\Windows\
WindowsUpdate\AU]

Since an average process can have over 2000 Registry
modifications (i.e., writes) per day during its normal ex-
ecution (Table 2), we need to determine which modifica-
tions are relevant to detection. One approach is to mon-
itor and report modifications to only frequently accessed
Keys. However, our experiments show that this approach
would generate 154 false alarms per desktop/day, an un-
acceptably high number.

In our detection, CODE identifies that a rule involv-
ing a frequent sequence of exactly 45 Registry accesses
is violated. By examining this sequence and its occur-
rence timestamps, we find that these events are issued by
an svchost.exe process, which synchronizes with an
update server and checks for available updates periodi-
cally (once per hour for Windows laptops). If there are
updates available, the checking process will proceed to
download and install the updates.

Figure 1 shows this 45-event sequence. It be-
gins with an OpenKey operation on registry Key
“HKLM\...\WindowsUpdate”, which stores all the infor-
mation about Windows update. Next, svchost.exe
accesses this Key and all its Values. For example, the
second and third operations show that svchost.exe
queries the URLs of the windows update server and the
status reporting server.

At the 28th event, svchost.exe queries the Value
“NoAutoUpdate” (highlighted in Figure 1). Since this
Value does not exist during normal execution, the
QueryValue operation will return “Value not found” and
svchost.exe continues to check other automatic up-
date options. However, after the Value “NoAutoUp-
date” is created with Data 1, the operation returns “Suc-
cess”, causing svchost.exe to prematurely stop with-
out further checks.

Since the 45-event sequence occurs frequently in nor-
mal execution, CODE will learn a set of rules from this
sequence. In particular, it will identify the first 27 events
as the context for the 28th event. Thus, in the error
case, CODE successfully detects the deviation. In addi-
tion, CODE knows (1) the context, the expected event and
the event actually happened and (2) what process and the
time at which the process created the problematic Value.
It can thus pinpoint the root cause and recover the error.

4 System Overview
From a high level, our approach identifies predictable
configuration-access rules from program executions for
error detection and diagnosis. From the example de-
scribed in Section 3, we see that each Windows update
check triggers a sequence of 45 Registry accesses. This
entire sequence is deterministic and thus predictable.
This behavior is not surprising, as configuration-access
patterns are usually reflective of a program’s control
flow. When a program runs the same code blocks with
same/similar user inputs, the set of external events tend
to be same/similar and in order.

We focus on only these predictable event sequences
in our detection. For each event in such a sequence, its
preceding event subsequence provides the context for the
current program execution point. A deviation from the
predicable event sequence suggests that the correspond-
ing program’s control flow might have changed, which
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Figure 2: The CODE system architecture.

may indicate the existence of configuration errors. In this
case, the expected sequence and the actually observed
one are further used to diagnose the error’s root cause.
However, not all configuration-access events are pre-

dictable. A program’s runtime behavior such as caching,
optimizations, or the use of temporary files may all affect
the program’s control flow. Correspondingly, accessing
the configuration data will be less predictable. We may
observe a large number of temporary events, and even
the same set of events may exhibit completely different
timing orders. The challenge is how to differentiate the
two cases and identify only predictable patterns from a
voluminous number of events.

Given the complexity and dynamics of Windows Reg-
istry, CODE must meet the following two requirements to
realize online detection and diagnosis:

• Efficient: The tool should have low timing com-
plexity in order to process events as they arrive in
real time. The number of Registry events to process
is on the order of 106 to 108 per machine per day.

• Effective: As an online tool, CODE needs to distin-
guish true errors from volatile or benign changes.

We implement CODE as a stand alone tool, monitor-
ing each host independently (Section 8 discusses our de-
ployment of CODE as a centralized manager for data cen-
ters). We structure CODE into two parts: an event collec-
tion module and an analysis module (Figure 2). Both
run simultaneously as a pipeline. The collection mod-
ule writes Registry operations to disk and the analysis
module reads them back for learning, detection, and di-
agnosis. We chose this architecture to keep the collection
module simple; otherwise, it may perturb the monitored
processes. We chose files as the communication method
between the two modules (instead of sockets) for flexible
control over analysis frequency (e.g., every few seconds
to minutes).

The core of the event collection module is a Windows
kernel module written in C++, similar to FDR [23]. It

intercepts all Registry operations and stores them in a
buffer in highly compressed forms. It then writes them
to disk periodically.2 Each event contains the following
fields: event time-stamp, program name represented by
the entire file system path to the executable, command
line arguments, process ID, thread ID, Registry Key,
Value, Data, operation type (e.g., OpenKey and Query-
Value) and operation status.

The analysis module is implemented in C#. It includes
a learning component and a detection/diagnosis compo-
nent. Both learning and detection are done by analyzing
the event sequences at a per-thread level because they
faithfully follow the program’s control flow in execu-
tion. For compact representation, we fingerprint a Reg-
istry event to generate a Rabin hash [18] by considering
all of its fields excluding the time-stamp, the process ID,
and the thread ID.

a  b  c d

context

Figure 3: Example of a rule.

The learning component takes the Registry event se-
quences as input, and generates a set of event transition
rules. Figure 3 shows an example rule. In this exam-
ple, a, b, and c each represents a unique Registry event.
This rule means if we have observed events a, b, and c in
sequence, then the next event is determined to be d. In
other words, event sequence abc is the context of event d
if and only if abc will be always followed by d with no
exceptions (We do not consider non-deterministic cases
where abc can be followed by other events such as e, as
majority of the important errors can be captured by de-
terministic cases in our experience).

We further require the number of occurrences of the
rule sequence to exceed a certain threshold for it to be
deemed as a rule. We use the complete command line
that launched a process to group the set of threads shar-
ing the common executable name and input arguments3.
The frequency of a rule is thus measured over all the
event sequences across a process group. Finally, the set
of learned rules are updated periodically by epochs and
stored in a rule repository as illustrated in Figure 2. We
define an epoch as a time period where we observe a
fixed number of events, so that the rules learned from
one epoch can be applied immediately in the next epoch.

The detection component takes the set of learned rules
and applies them to detect errors as new events arrive.

2The overhead is negligible, even when flushing the buffer every
minute [23].

3Different arguments often lead to different program execution
paths for different tasks. Applications that launch at machine boot time
often start with fixed arguments. In Windows, many applications have
a graphical icon on the desktop that launches the application with fixed
arguments each time.
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In case of a rule violation, the detection module per-
forms a set of checks to facilitate diagnosis based on the
rule sequence, the expected event, the Registry write that
caused the error, and the actually observed event. In the
next two sections, we describe the details of rule learning
and error detection/diagnosis.

5 Learning Configuration Access Rules
This section describes how CODE generates event transi-
tion rules from input Registry-access sequences. These
input sequences consist of registry accesses at thread
granularity for each process group (i.e., all processes that
share the same executable name and command-line argu-
ments). Figure 2 shows the three steps of this procedure:
(1) generate frequent event sequences, (2) construct a trie
(i.e., a prefix tree) to represent the event transition states,
and (3) derive invariant event transition rules based on
the trie. For efficient detection, CODE represents the set
of output rules in the form of a trie with labeled edges,
and each process group has a separate trie.

Throughout the process, CODE has time complexity
linear in the number of events processed. Although
CODE generates a set of frequent event sequences in-
dependently from each epoch, meaning that a sequence
has to appear frequently enough within one epoch to be
learned by CODE, it maintains the labeled tries in mem-
ory across epoches and updates them incrementally. We
will show in Section 7.3 that the generated trie sizes are
small for most of the programs.

5.1 Frequent Sequence Generation
The first step of generating frequent sequences is the
most critical, since it provides the candidate event sets
for generating rules as well as the potential context
lengths. To identify frequent event sequences, one op-
tion is to generate hash values for fixed-length event sub-
sequences, and then count their frequencies. We may po-
tentially leverage data structures such as bloom filters [3]
to optimize space usage. However, this option is not de-
sirable because it is difficult to pre-determine the event
subsequence lengths. Although we may choose several
popular lengths (e.g., 2, 4, 8), the semantically meaning-
ful event sequences can be very large (as illustrated in
Section 3) and can have varied lengths. Popular tech-
niques such as suffix trees [16] are not applicable either.
They typically require the entire input sequence to be
available. Furthermore, their space-time requirements
are not efficient enough to deal with a large number of
Registry events arriving in real time.

In order to generate the longest applicable frequent
subsequences efficiently, CODE adopts the Sequitur [17]
algorithm. Given a sequence of symbols, Sequitur iden-
tifies repeated sequence patterns and generates a set of

Figure 4: An example of Sequitur hierarchical rules. We also
show the flattened rule in the parenthesis.

Modified 

Sequitur

T
1

T
2

a b c d

a b c d  h   i

e  f g S
1
: abcd

S
2
: efg

S
3
: abcdhi

Input event streams Event sequence

segments

FS
1
: abcd

Frequent 

event sequence

Figure 5: Generating frequent event sequences. T1 and T2 are
two threads belonging to the same process group.

grammar rules to hierarchically represent the original se-
quence. Figure 4 shows an example input sequence and
the hierarchical grammar rules derived by Sequitur. The
lower case letters represent the input symbols, and we
use upper case letters to denote the derived symbols.
During learning, the default epoch size is 500K events,

which can span from hours to days for different pro-
cesses.4 For each epoch, CODE does not need to store the
complete input sequence because the hierarchical repre-
sentation makes the original sequence more compact. In
practice, the number of symbols to store in memory is
roughly on the order of the number of distinct Registry
events, which is around only 1% of the total events [23].

Compared with other methods, Sequitur has a lin-
ear time complexity and reads only one pass of data in
streaming mode. Although it may generate sub-optimal
frequent sequences, we found it acceptable in our appli-
cation, as low time complexity is an important require-
ment. To apply Sequitur in our context, we make the
following two modifications to the algorithm:
Analyzing multiple sequences simultaneously. The in-
coming events processed by CODE contain not a sin-
gle event sequence, but multiple sequences. These se-
quences come from different processes and different
threads in the same process group. In addition, we ob-
serve that events belonging to the same task often occur
in a bursty manner. Mixing events from these semanti-
cally different tasks as one sequence would create unnec-
essary noise. We thus segment them into per-thread per-
burst sequences (the default time interval between two
bursts is one second), as shown in Figure 5.

The original Sequitur algorithm, however, analyzes
only one sequence at a time. We thus modify it to take
multiple sequences. We could maintain a separate gram-

4After learning, the detection takes place in real time.
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Figure 6: Constructing a trie from frequent event sequences and identifying its rule edges.

mar table (needed for Sequitur) for each sequence, but
this approach would miss common subsequences shared
across different threads in the same group. For example,
in Figure 5, both threads share the subsequence abcd.
Thus a grammar table is shared among all sequences.
This sharing also reduces CODE’s memory usage.

With grammar table sharing, one complication arises
when a sequence Sx completely contains another one
Sy . To avoid storing the same sequence twice, Sequitur
would replace the redundant copy of Sy in Sx with a
pointer to Sy . However, we cannot expand Sy if new
events come in, because this expansion may make Sy no
longer a subsequence of Sx. To solve this problem, we
give Sy a fresh name S′

y
each time we expand it.

Flattening the hierarchy: The second modification is
to flatten the default hierarchical symbols output by Se-
quitur to event symbols in order to construct the trie later
(illustrated by Figure 4). To ensure each learned se-
quence is not too short, we select a flattened event se-
quence only if its length is above a pre-defined length
threshold l (by default l = 4) and its sequence is above a
pre-defined frequency threshold s (by default s = 5). We
call the frequency of an event sequence as its support.
Although the rule flattening process is relatively

straightforward, correctly computing the support (i.e.,
frequency) of the expanded sequences is a more involved
task. In Figure 4, R1 appears at both R2 and R3, and R2

further appears at R3. CODE takes a top-down approach
to traverse the hierarchical representations for computing
the correct support. The final output of this step is a set
of frequent event sequences with support greater than s.

5.2 Event Trie Construction
After CODE generates the frequent sequences from in-
put events, it proceeds to construct an event trie in the
form of a prefix tree to store all the frequent sequences
from all threads of each process group. Figure 6 shows
the construction of an example trie. In a trie, each node
represents a Registry access event (encoded as a Rabin
hash), and each directed edge represents the transition
between the two corresponding events in temporal order.

The adoption of a trie representation serves a couple
of important purposes. First, it represents the temporal
transition relationships between different events, provid-

ing the basis for deriving event transition rules. Second,
we found that many frequent event sequences have com-
mon prefixes. Hence a prefix tree explicitly encodes the
divergence of different event paths from a single point.

We further optimize the trie data structure to make it
more compact. An observation is that many event se-
quences share suffixes as well. In practice, merging com-
mon suffixes is very effective in reducing the trie size (by
half). Meanwhile, this optimization still preserves the
event transition relationship and ensures the correctness
of the derived rules.

5.3 Rule Derivation

With a trie, CODE proceeds to derive event transition
rules that all threads from the same process group have
to follow. We look at only the rules that were never vio-
lated. Our approach is to identify those event transitions
a → b that are deterministic given the sequence of events
from the root to a. We define such an edge as a rule edge.
Clearly, only edges from nodes with only one outgoing
edge are rule edge candidates.

However, simply counting outgoing edges is incom-
plete. For example, given a frequent sequence abcd, we
can construct a trie of 4 nodes, and the edge from c → d
appears to be a rule edge. However, there may exist a
sequence abce that did not occur frequently enough to be
selected as a popular sequence. In this case, the transition
c → d is not deterministic.

For each newly created rule edge, CODE determines
whether it is truly a deterministic transition by check-
ing it against the upcoming event sequences in the next
epoch. Figure 6 shows this edge-marking process. Doing
so defers the use of this edge for detection. It is worth
noting that for each event, CODE identifies all possible
matches based on the preceding subsequences. Addition-
ally, CODE also starts from the root every time to capture
subsequences that begin with the current event. During
the edge-marking process in Figure 6, if the incoming
event e is following sub-sequence abc, we will un-mark
the two c → d transitions from rule edge in the trie.

7
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6 Error Detection and Diagnosis
This section describes how CODE detects configuration
errors using the learned rules and further outputs diagno-
sis information. Since the labeled trie structure captures
the rules as deterministic event transitions and is efficient
at matching sequences, we conveniently reuse this data
structure for error detection without explicitly represent-
ing the rules. The detection algorithm is thus simple and
similar to the edge-marking process in Figure 6, except
when we see a violation, we report a warning rather than
un-marking the transition. This online detection method
ensures that we can detect a configuration error as early
as possible, before it affects other system states.

6.1 False Positive Suppression
In the rule-learning process, the support threshold s can
be used to configure the false positive rate. A larger s
usually implies a smaller false positive rate, but we may
also miss some real errors. We further evaluate this pa-
rameter in Section 7.2.

Additionally, we use three techniques to reduce
CODE’s false positive rate. First, before CODE reports
a warning, it performs an additional check to ensure that
the violated (i.e., expected) event does not appear in the
near future. So if abc → e is a rule that is violated by
observing abc followed by f , then we monitor the events
for a delay buffer (set to 1 sec) to check if e appears;
if it does, we suppress the warning. The idea behind
this check is that since we are looking for corruptions
of Registry Keys/Values, if f is indeed a corruption of
the Key/Value corresponding to the Registry in event e,
then e should not appear again. Otherwise it is perhaps
simply a benign program flow change.

Second, if multiple alarms are generated in a 1 second
delay buffer, CODE only reports the first one as the oth-
ers are likely manifestations of the same root cause. We
found the first alarm is always the true root cause in our
experiments (see Section 7.1.1).

The third technique is cooperative false positive sup-
pression: aggregate warnings from all machines, and re-
port only unique ones. We consider two warnings iden-
tical if they warn about the same Key, Value, and Data.
We canonicalized user names when comparing Registry
Keys (More canonicalization would help, but it is beyond
the scope of this paper). This technique effectively re-
duced the number of false positives by 30% in our exper-
iments, though it can be turned off for privacy concerns.

6.2 Error Diagnosis
CODE also provides rich diagnosis information after er-
ror detection. When a process violates a rule context →
event, CODE knows precisely the context, the expected
event, the violating event, and the violating process.
Such information can help diagnosis in a few ways.

First, CODE allows the operator to understand how the
Registry in the expected event was changed by track-
ing which process, at what time, modified the entry that
caused the error. To do so, CODE uses a modification
cache to store the last modification operations (along
with timestamps) on the Registries in the rules. Because
the rules track only frequently accessed Registries and
the majority of the accesses to these Registries are read-
only events, we need only a small cache. In practice,
the size of the modification cache is always smaller than
2,000 events for all the machines that we used in our ex-
periments. The typical size of 200 events is enough for
the majority of them.

Second, the expected event and its context often
provide enough information regarding the program’s
anomalous behavior to the administrator. They also pro-
vide the candidate Registry entries for recovery. In the
“auto-update error” example in Section 3.2, the expected
event has empty Data for Value NoAutoUpdate, while
the violating event has “1” as the Data. Further the ex-
pected event belongs to a sequence where svchost.exe is
checking for auto-update setting. Such information pro-
vides hints to the administrators about the root causes.

Finally, CODE returns all the processes whose rule
repositories involve the corrupted Registry. Operators
can use this information to examine whether the same
configuration error might affect other programs.

7 Evaluation
We deployed CODE on 10 actively used user desktops
and 8 production servers. In our month-long deployment,
we set the data collection interval to every one hour. We
ran the analysis module separately off-line on the col-
lected registry-event logs. This allowed us to conve-
niently examine the logs in detail. For the off-line anal-
ysis, it took about 12 hours to process each machine’s
one-month log. We also evaluated the same version of
CODE using one minute intervals to measure its online
analysis performance.

To demonstrate the value of using context, we also
implemented a state-based approach that does not use
context for error detection and compared it with CODE.
Instead of looking at sequences, this approach tracks
commonly used Registry Key/Value entries and raises an
alarm if the Data field has not been observed before. To
ensure a fair comparison, we applied the same param-
eters used by CODE as well as the set of false positive
suppression heuristics described in Section 6 whenever
applicable. Below we present our evaluation results.

7.1 Detection Rate and Coverage
We first evaluate CODE using real-world configuration
errors and randomly injected Key corruptions.
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Error name Description
Doubleclick When double clicking any folder in explorer, “Search Result” window pops up.
Advanced IE advanced options missing from menu.
IE Search Search dialog will always be on the left panel of IE that can’t be closed.
Brandbitmap The animated IE logo disappears.
Title IE title changed to some arbitrary strings.
Explorer Policy Windows start menu becomes blank.
Shortcut In explorer, clicking the shortcut to a file no longer works.
Password IE can no longer remember the user’s password.
IE Offline IE would launch in offline mode and user’s homepage can’t be displayed.
Outlook trash Outlook asks to permanently delete items in the “Deleted Items” folder every time it exits.

Table 3: Description of the 10 reproduced errors.

7.1.1 Detection of Real-Errors
The real world error discovered by CODE was
caused by Hotbar Adware [21], which unexpect-
edly infected one co-author’s desktop. This adware
adds graphical skins to Internet Explorer (IE), and
modifies a group of Registries related to the Key
“HKLM\Software\Classes\Mime\Database\Content type\
App”. CODE successfully detected rule violations at
the IE start-up time. CODE further provided diagnostic
information to help remove the IE tool bars created by
the adware.

Additionally, we manually reproduced 20 real-user re-
ported errors to evaluate CODE. These errors were se-
lected from a system-admin support database. The only
criteria we used in our selection was whether these er-
rors were triggered by modifications to Windows Reg-
istry and were reproducible.5 The error reproduction pro-
cess exactly followed the set of user actions that triggered
the software failures as described in the failure report.
The 20 errors involved nine different programs, includ-
ing popular ones such as Internet Explorer, Windows Ex-
plorer, Outlook, Firefox.

CODE successfully detected all these reproduced er-
rors. Due to space constraints, we do not describe all
of them, but list the 10 representative ones in Table 3.
To further evaluate the effectiveness of CODE across dif-
ferent environments, we reproduced these 10 errors in
5 different OS environments (one of them was a virtual
machine). Not all of these 10 errors can be reproduced
on all 5 machines; out of all combinations, we were able
to reproduce 41 cases.

Among these 41 cases, CODE detected 40 cases and
missed only 1 case (Table 4). Further investigation on
the missing case showed CODE had over-fitted the con-
text for that error; that is, the context learned was longer
than that observed after the reproduction. We suspect
there might exist two different program flows that pre-
ceded the access to the corresponding Registry Key, and
CODE learned a longer context than what was observed
during detection.

5Some errors require special hardware setup or specific software
versions to reproduce.

Machine OS and Server 03 Vista xp-sp2 xp-sp3 xp-VM
IE version IE 6 IE 7 IE7 IE 7 IE 6
Doubleclick 1 (1) 1 (1) 1 (3) 1 (3) 1 (2)
Advanced 1 (1) 1 (1) 1 (2) 1 (1) 1 (6)
IE Search 1 (10) N/A N/A N/A 1 (7)
Brandbitmap N/A N/A N/A N/A 1 (3)
Title 1 (1) 1 (1) 1 (2) 1 (3) 1 (3)
Explorer Policy 1 (1) 1 (2) 1 (2) 1 (5) 1 (2)
Shortcut 1 (1) 1 (1) 1 (3) 1 (1) 1 (2)
Password N/A 1 (2) 1 (1) 1 (2) 1 (2)
IE Offline 1 (1) 1 (1) 1 (2) - 1 (1)
Outlook Trash 1 (2) 1 (2) 1 (2) 1 (2) N/A

Table 4: Detection results of reproduced real errors. The first
number in each box is the rank of the root cause event, and the
second number in the parenthesis is the total number of viola-
tions observed in detection. N/A means we couldn’t reproduce
that error on that machine, and “-” is the case CODE missed.

Table 4 lists the total number of violations before
CODE aggregated the warnings within the one second de-
lay buffer. In all these cases, the root cause event was the
first event that occurred. The other violations all hap-
pened in a burst right after the first one. By aggregating
warnings ( Sect. 6.1), only the first alarm is reported.

Indeed, manual inspection suggests those additional
violations are not false positives but are highly corre-
lated to the root cause. For example, the Outlook
Trash error is triggered by modifying the Data of
Key “HKCU\Software\Microsoft\Office\11.0\Outlook\
Preferences\Emptytrash” to 1. This error caused an
alert window to pop up on each exit of Outlook,
asking whether to permanently delete all items
in the “Deleted Items” folder. This alert win-
dow is related to another Registry Key “\HKCU\
Software\Microsoft\Office\11.0\Outlook\Common\Alerts”,
whose settings were changed during the error, causing
CODE to report additional violations.

Based on the diagnosis information output by CODE,
we can easily recover all the reproduced errors by chang-
ing the corrupted Registry entries back to the expected
ones. However, due to the complex dependencies be-
tween today’s system components, we expect automatic
recovery to be a challenging topic for future work.
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7.1.2 Exhaustive Key Corruption
To evaluate the coverage of CODE’s error detection, we
manually deleted every Registry Key that is frequently
accessed (≥ 2 times) by a process on a virtual ma-
chine. Note that this does not imply CODE can detect
configuration errors caused by only Registry deletions.
Any change to Registries such as modifications or new
Key/Value creations, can be detected by CODE so long
as a future access to these modified Registries violates a
learned rule. For example, the AutoUpdate error in Sec-
tion 3.2 was caused by modification to a Registry Data.
The process we chose is Internet Explorer (IE), which

has both the maximum number of Registries and distinct
Registry Key accesses on a typical desktop machine. We
ran a program that simulates user browsing activities by
periodically launching an IE browser, visiting a Web site,
and then closing the browser. After running this program
for two hours (for the learning phase), we deleted every
Registry Key that IE accessed more than twice during the
two hours, one at at time. After each corruption, we ran
the program twice that simulates a user’s Web visit and
let CODE perform detection. We then recovered the cor-
rupted Key before proceeding to the next Key corruption.

Total Registry accesses Registry writes Distinct Keys
2,097,642 275,549 (13.1%) 1,247

Frequent Registry Successfully CODE detected
Keys (≥ 2 times) corrupted Keys corruptions
783 (62.8%) 387 374 (96.6%)

Table 5: Summary of the Key corruption experiment.

Table 5 summarizes the statistics and the results.
Among the 387 successfully corrupted Keys, CODE de-
tected 374 (96.6%) of them. Note not every frequently
accessed Key can be corrupted. Among 783 of the fre-
quent Keys, we successfully found and corrupted only
387 of them. The remaining Keys were temporary to the
life time of a particular IE instance. Since our experiment
periodically launched a new IE instance, those temporary
Keys no longer existed at the deletion time.

In total, CODE failed to detect 13 of the corrupted
Keys, among which, 12 are Keys or sub-Keys of the fol-
lowing 4 Keys:

• HKEY LOCAL MACHINE\software\ classes\rlogin
• HKEY LOCAL MACHINE\software\ classes\telnet
• HKEY LOCAL MACHINE\software\ classes\tn3270
• HKEY LOCAL MACHINE\software\ classes\mailto

These Keys store settings about the dynamically linked
libraries for handling four application-layer protocols
and they are periodically queried by IE. During the ex-
haustive Key-corruption experiment, we deleted a Reg-
istry Key “AutoProxyTypes” that stores settings about
automatic Internet sign-up and proxy detection. The

deletion of this Key may have triggered persistent pro-
gram behavior changes in IE, which switched to an alter-
native configuration option that did not rely on the above
four Keys to perform Internet sign-up and proxy detec-
tion. This example also suggests that recovering from
errors triggered by configuration changes may require
more than reversing these modifications.

Total Frequent Frequent Access Distinct Accesses
Key Access CODE Captures To Frequent Keys
2,090,777 2,083,912 (99.7%) 2,400

Distinct Access Accesses with Average Number
CODE captures single context of contexts
2,400 (100.0%) 1,743,708 (83.4%) 1.74

Table 6: Event context statistics.

To further understand the predictability of using con-
texts for detection, we measure the number of the Reg-
istry accesses that fall into contexts, where our detec-
tion is applicable. Table 6 shows that out of the to-
tal 2,090,777 accesses to the frequent Keys, 2,083,912
(99.7%) of them fall into some contexts, and thus may
be captured by CODE. Furthermore, 83.4% of the fre-
quent accesses belong to a single non-overlapping con-
text. This means that their access happened in only one
deterministic way. On average, for each frequent Reg-
istry access, it has 1.74 contexts. For those Registry ac-
cesses that have more than one context, most of them are
related to the settings of dynamically linked modules that
may be shared by different components in IE, resulting
in more than one context.

7.2 False Positive Rate
We evaluated the false positive rate of CODE using
month-long Registry access logs from the following two
sets of machines: (1) 8 production servers with similar
hardware and workloads and (2) 10 desktops used by
two interns, four researchers, one research lab manager,
and three part-time vendors, giving us a diverse set of
workloads. Other than the Hotbar Adware, we were un-
aware of any other configuration errors reported for the
log-collection time period.

CODE State-based
Num/day/machine Average Max Min Average

Server 0.06 0.27 0 13.67
Desktop 0.26 0.96 0 153.83

Table 7: Summary of false positive rates (in terms of the num-
ber of warnings/machine/day) across 10 desktops and 8 servers.

Table 7 shows the false positive rates of CODE. Over
the 30 day period with hundreds of billions of events
from all machines, CODE reported a total of 78 warnings
with an average of 0.26 warning/desktop/day and 0.06
warning/server/day. As a comparison, the state-based
approach reported three orders of magnitude more, on
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Name Description Percentage
File Association The default program used to open different file types is changed. 24.1%

MRU List Changes to most recently accessed files tracked by applications (e.g., explorer and IE) 12.7%
IE Cache The meta-data for the IE Cache entities is changed. 3.8%
Session The statistics for a user login session are updated. 3.8%

Environment Environment variable changes. 2.5%
Table 8: Top 5 reasons for causing false positives on one machine. The “Percentage” column shows, using the 5 categories, the
percentage of alarms that can be summarized over all alarms from all machines.

average 153.83 warnings/desktop/day and 13.67 warn-
ings/server/day. This difference can be explained by sev-
eral reasons. First, many modifications to frequently ac-
cessed Registries do not occur in any frequent sequences
(i.e., no context). Second, multiple Registry modifica-
tions often belong to a single sequence where CODE re-
ports only the first modification as a warning while the
state-based the approach reports all of them. Finally,
some modified Registries will never be accessed again
after the modification. While the state-based approach
reports all such cases as warnings, CODE does not be-
cause it reports a warning only when the modified Reg-
istry is read again.

We further examine the time distribution of the warn-
ings generate by CODE. Figure 7 shows that for the
desktop that generated the largest number of warnings
(0.96/machine/day in Table 7), only 4 processes reported
a total of 29 warnings during the 740 hours (more than 30
days). Most warnings are clustered in time, and are likely
caused by the same configuration modification event.
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Figure 7: Number of warnings per hour generated by the desk-
top that had the most number of warnings.

We analyzed the different causes of the false positives
on user desktops and found that they can be categorized
into a few types (Table 8 summarizes the top five causes).
Some of them (File Association and Environment Vari-
able) are intended configuration changes issued by users;
the others (Most Recently Used List, IE Cache, and Ses-
sion Information) are temporary-data changes. By using
regular expressions to filter the Registry Keys that fall
into these top five causes, we can potentially reduce the
false positive rate to 0.14 warnings/desktop/day.
We also observed a significant overlap in the false

positives generated across different machines. Without
the cooperative false positive suppression heuristic that
merges false positives across machines, the false positive
rate in an isolated detection would have increased from
0.26 to 0.36 warnings/desktop/day.

7.2.1 Analysis Sensitivity
We study CODE’s sensitivity to workload and the support
threshold (i.e., the number of occurrences for a frequent
event sequence to be learned as a rule) in this section.
Workload sensitivity. Table 7 shows that CODE’s false
positive rate is four times lower on servers than on
user desktops. This is because server workloads are
less interactive, and thus, their Registry access logs are
less noisy. To evaluate the workload sensitivity, we
measure the false positive rate of different programs
for all the machines in our experiment. Among all
the programs running on the servers, only 2 ever re-
ported warnings; for programs running on desktops, 12
reported warnings. The program Windows Explorer
(explorer.exe) generated the maximum number of
warnings, contributing to 1/3 of the total alarms followed
by Internet Explorer (iexplore.exe) and Windows
Login (winlogon.exe). Windows Explorer is like the
Unix shell for Windows and is highly interactive. While
CODE currently uses the same support threshold 5 for
learning frequent sequences, we can adjust the false pos-
itive rate by setting a larger support threshold.
Support-threshold sensitivity. As discussed above,
an important parameter is the support threshold for sep-
arating frequent and infrequent sequences. We evaluated
this sensitivity using the desktop with the highest false
positive rate (0.96/machine/day in Table 7). Figure 8
shows the result. As was expected, using a larger thresh-
old decreased the false positive rate. Users and adminis-
trators can tune this parameter to trade-off detection rate
vs. false positive rate.
7.2.2 Impact of Software Updates
Software updates are frequent on modern computers.
Their activities may be intrusive and change a program’s
configuration-access patterns. We study the impact of
software updates on the false positive rate in this section.

We used the logs collected from the 10 desktop ma-
chines for our analysis. We treat a warning as a
software-update related false positive if the correspond-
ing Registry was last modified by one of the Win-
dows software update processes (e.g., ccmexec.exe,
svchost.exe, update.exe) and Windows soft-
ware installation processes (e.g., msiexec.exe).

Among the 78 false positives reported by CODE, only
5 were due to software updates, averaging to 0.017 warn-
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Figure 8: (a) Sensitivity of false positive rate vs. support threshold. (b) The growth of the trie size and the number of events over
time for IE (desktop) in log scale. (c) Trie size vs. event coverage for different processes on two machines.

ing per desktop/day or 0.139 per update across total 36
updates from these machines. These 5 warnings were
caused by two environment variable updates, one display
icon update, one DLL update, and one daylight saving
start date update. This small false-positive number is not
surprising, as software updates tend to fix bugs and add
new functionalities, but do not change the existing fre-
quent configuration-access patterns.

CODE learned the new access patterns introduced by
software updates as new rules, rather than considering
them as false positives. For example, after a large Office
update on a desktop, the trie size of the corresponding
program increased by 10% within one day. Otherwise,
the trie size was relatively stable.

We further examine the most intrusive update we
found in the logs: an update from Office Service Pack
2 to Service Pack 3 [5]. This upgrade includes more
than 200 patches. It affected 7 of the Office applica-
tions, created and modified more than 20,000 keys, but
caused only one false positive warning. A closer look
revealed that while this update created many keys, the
majority of them were temporary keys for bookkeeping
and were deleted right after the update, causing no warn-
ings. This update additionally modified or deleted 61 ex-
isting keys; only 10 keys overlapped with the rules CODE
learned and they were all captured in one rule, causing
the only warning. These 10 keys specified the daylight
saving start dates of 10 countries and were frequently
queried by Outlook 6, resulting in a CODE rule. When
the Office update changed these keys, CODE detected a
rule violation.

7.3 Performance Evaluation
When we deploy CODE in online mode, where it periodi-
cally (every minute) processes Registry events arriving in
real time, the CPU overhead is very small–less than 1%
over 99% of the time, with a peak usage between 10%-
25% (on an AMD 2.41GHz due-core machine). The cur-
rent memory usage is between 500 MB-900 MB.

6Outlook queries these keys to determine how to display the calen-
dar items based on the current time zone.

The memory overhead is largely caused by maintain-
ing sets of tries, one for each process group. Figure 8 (b)
plots the trie size growth over time in log scale for an IE
process. The trie size is about 2000-3000 and converges
roughly after 1 day. In contrast, the number of Registry
events can be up to hundreds of millions. Even the num-
ber of distinct events is one order magnitude larger than
the trie size, suggesting CODE is effective in reducing the
event complexity.

We proceed to examine the trie sizes for different pro-
cesses in Figure 8 (c). For the majority of the pro-
cesses, their trie sizes are consistently small, on the or-
der of hundreds to tens of thousands of events. The
total trie size across all processes on a machine is still
small, on average 529,500 per user desktop and 97,042
per server. Given each trie node requires around 12 bytes
(8 byte Rabin hash + 4 byte pointer), maintaining all the
tries requires around 1MB-6MB in the ideal, optimized
case. We suspect a large portion of the current mem-
ory overhead is caused by both caching the event se-
quences during the learning phase and the C# overhead.
Such overhead can be potentially reduced by using sam-
pled epoches to reduce the learning frequency, and by
re-implementing the analysis module in C++.
Figure 8 (c) also shows the percentage of unique

events included in the tries defined as event cover-
age. This metric roughly tracks the Registry-access
predictability. We found that most of the processes
have over 80% of event coverage. In particular, the
snmp.exe process running on the server is highly pre-
dictable, where a trie with 27 unique events can represent
99.77% of all its Registry access events.

One of our goals is to use CODE to monitor server clus-
ters or data center machines for detecting abnormal con-
figuration changes. A typical server cluster consists of
machines with similar hardware, software settings, run-
ning similar workloads. In this scenario, CODE could of-
fload the analysis task from each server to a small num-
ber of centralized management servers.

We run CODE in a centralized mode, constructing a
single centralized trie that consists of all the rules from
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Trie Size (%) Memory MB (%)
1 machine 98,042 503
2 machines 119,503 (21.9%) 510 (1.4%)
4 machines 134,892 (12.9%) 560 (9.8%)
8 machines 139,918 (3.7%) 600 (7.1%)

Table 9: The size and memory usage of a centralized trie con-
structed by analyzing events from multiple machines. The trie
size is monitored after 3 days, and the memory usage is the
average usage in one day.

multiple machines. Table 9 shows the growth of the trie
size and the memory usage as we increase the number of
machines to monitor. As we see, the trie size grows by
only 3.7% when the number of machines to monitor in-
creases from 4 to 8. This suggests that rules learned from
multiple machines can be applied to other similarly con-
figured machines (i.e., with similar hardware, software
and workload). For centralized configuration-error de-
tection, the memory overhead is on average about 0.4%
per machine for 16GB-memory servers. We leave it as
future work to fully generalize the CODE approach to per-
form centralized data-center management.

8 Discussion
Limitations: Not all configuration errors can be detected
by CODE. By focusing on changes to configuration data
and their access patterns, CODE may not detect errors in-
troduced at system or software installation/setup time.
To detect these errors, we can extend CODE to process
event sequences across machines, so that errors on one
machine can be detected by comparing Registry event
sequences from another properly installed machine. Pre-
vious work [26] has also showed encouraging results by
cross referencing static configuration states in a similar
way. If a configuration error is caused by an event with-
out any context, CODE cannot detect it either. However,
in our evaluation, we have not encountered such errors.

We have evaluated CODE on only Windows Registry,
but we believe CODE’s underlying techniques can poten-
tially be generalized to other configuration formats, such
as Unix’s configuration files under /etc/. However, in
Unix, different applications manage their own configu-
ration data in their own format, so it might require per-
application instrumentation to collect the configuration
data access trace.

CODE can be deployed as both a stand-alone tool run-
ning on end user’s desktops and a centralized manage-
ment tool used by system administrators to monitor mul-
tiple machines in a data-center or a corporate network.
We expect CODE to work better in the latter scenario
for the following reasons. First, end users might have
no clue on how to deal with warnings for filtering false
positives. Second, with centralized management, an end
user desktop can be spared from the 500-900MB mem-

ory overhead (the event collection component still needs
to run on end user machines, but it has a negligible over-
head [23]). Third, our cooperative false positive suppres-
sion feature requires the sharing of canoncalized configu-
ration entries, which is easier to perform in a centralized-
management setting.
Future work: Our experiments showed that the noise
in event logs varied greatly from program to program—
after all, these programs have different purposes, work-
loads, and users. Currently CODE treats all programs
uniformly in learning. However, we envision harnessing
program-specific knowledge to further improve our de-
tection accuracy and reduce false positives. In particular
we may set a higher support threshold for a noisier pro-
gram. Another possibility is to rank errors based on the
importance of the programs affected by these errors. For
example, a warning from system.exe (the Windows
kernel process) may be more important than a warning
from explore.exe.

In a distributed setting, CODE can collect a much
larger, unbiased set of logs to improve the quality of its
rules. In particular, for managing server clusters, the ho-
mogeneity of the machines may also help reduce CODE’s
memory overhead and false positive rates (see Section 6,
7.2, and 7.3). One challenge is canonicalization: the
rules CODE learns may contain machine-specific infor-
mation (e.g. machine names, IP addresses, and user
names). We manually added user-name canonicalization
in CODE. As future work, we plan to develop automatic
or semi-automatic techniques to infer more machine-
specific configuration data for canonicalization.

9 Conclusion
We presented CODE, an online, automatic tool for con-
figuration error detection. Our observation is rather sim-
ple: key configuration access events form highly repeti-
tive sequences. These sequences are much more deter-
ministic than each individual event, thus can serve as
contexts to predict future events. Based on this obser-
vation, CODE uses a context-based analysis to efficiently
analyze a massive amount of configuration events. We
implemented CODE on Windows and used it to detect
Windows Registry errors. Our results showed that CODE
could successfully detect real-world configuration errors
with a low false positive rate and low runtime overhead.
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Abstract

Debugging operational networks can be a daunting task,

due to their size, distributed state, and the presence

of black box components such as commercial routers

and switches, which are poorly instrumentable and only

coarsely configurable. The debugging tool set available

to administrators is limited, and provides only aggre-

gated statistics (SNMP), sampled data (NetFlow/sFlow),

or local measurements on single hosts (tcpdump). In this

paper, we leverage split forwarding architectures such as

OpenFlow to add record and replay debugging capabil-

ities to networks – a powerful, yet currently lacking ap-

proach. We present the design of OFRewind, which en-

ables scalable, multi-granularity, temporally consistent

recording and coordinated replay in a network, with fine-

grained, dynamic, centrally orchestrated control over

both record and replay. Thus, OFRewind helps op-

erators to reproduce software errors, identify data-path

limitations, or locate configuration errors.

1 Introduction

Life as a network operator can be hard. In spite of many

efforts to the contrary, problem localization and trou-

bleshooting in operational networks still remain largely

unsolved problems today. Consider the following anec-

dotal evidence:

Towards the end of October 2009, the administrators

of the Stanford production OpenFlow network began ob-

serving strange CPU usage patterns in their switches.

The CPU utilization oscillated between 25% and 100%

roughly every 30 minutes and led to prolonged flow setup

times, which where unacceptable for many users. The

network operators began debugging the problem using

standard tools and data sets, including SNMP statistics,

however the cause for the oscillation of the switch CPU

remained inexplicable. Even an analysis of the entire

control channel data could not shed light on the cause

of the problem, as no observed parameter (number of:

packets in, packets out, flow modifications, flow expira-

tions, statistics requests, and statistics replies) seemed to

correlate with the CPU utilization. This left the network

operator puzzled regarding the cause of the problem.

This anecdote (further discussion in Section 4.2) hints

at some of the challenges encountered when debugging

problems in networks. Networks typically contain black

box devices, e.g., commercial routers, switches, and mid-

dleboxes, that can be only coarsely configured and in-

strumented, via command-line or simple protocols such

as SNMP. Often, the behavior of black box components

in the network cannot be understood by analytical means

alone – controlled replay and experimentation is needed.

Furthermore, network operators remain stuck with a

fairly simplistic arsenal of tools. Many operators re-

cord statistics via NetFlow or sFlow [33]. These tools

are valuable for observing general traffic trends, but of-

ten too coarse to pinpoint the origin problems. Collect-

ing full packet traces, e.g., by tcpdump or specialized

hardware, is often unscalable due to high volume data

plane traffic. Even when there is a packet trace avail-

able, it typically only contains the traffic of a single

VLAN or switch port. It is thus difficult to infer tempo-

ral or causal relationships between messages exchanged

between multiple ports or devices.

Previous attempts have not significantly improved the

situation. Tracing frameworks such as XTrace [35] and

Netreplay [11] enhance debugging capabilities by per-

vasively instrumenting the entire network ecosystem,

but face serious deployment hurdles due to the scale

of changes involved. There are powerful tools avail-

able in the context of distributed applications that enable

fully deterministic recording and replay, oriented toward

end hosts [16, 24]. However, overhead for the fully-

deterministic recording of a large network with high

data rates can be prohibitive and the instrumentation of

’black’ middleboxes and closed source software often re-

mains out of reach.

1
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desired, Ofrecord translates control messages to instruct

the relevant switches to selectively mirror guest traffic to

the Datarecord modules. OFRewind supports dynamic

selection of the substrate or guest network traffic to re-

cord. In addition, flow-based-sampling can be used to

record only a fraction of the data plane flows.

Replay: Ofreplay re-injects the traces captured by

Ofrecord into the network, and thus enables domain-

wide replay debugging. It emulates a controller towards

switches or a set of switches towards a controller, and di-

rectly replays substrate control plane traffic. Guest traffic

is replayed by the Datareplay modules, which are orches-

trated by Ofreplay.

2.4 Ofrecord Traffic Selection

While it is, in principle, possible to collect full data

recordings for every packet in the network, this intro-

duces a substantial overhead both in terms of storage as

well as in terms of performance. Ofrecord , however, al-

lows selective traffic recording to reduce the overhead.

Selection: Flows can be classified and selected for

recording. We refer to traffic selection whenever we

make a conscious decision on what subset of traffic to

record. Possible categories include: substrate control

traffic, guest network control traffic, or guest data traf-

fic, possibly sub-selected by arbitrary match expressions.

We illustrate an example selection from these categories

in Figure 1(c).

Sampling: If selection is unable to reduce the traffic

sufficiently, one may apply either packet or flow sam-

pling on either type of traffic as a reduction strategy.

Cut-offs: Another data reduction approach is to re-

cord only the first X bytes of each packet or flow. This

often suffices to capture the critical meta-data and has

been used in the context of intrusion detection [26].

2.5 Ofreplay Operation Modes

To support testing of the different entities involved

(switches, controller, end hosts) and to enable different

playback scenarios, Ofreplay supports several different

operation modes:

ctrl: In this operation mode, replay is directed towards

the controller. Ofreplay plays the recorded substrate con-

trol messages from the local storage. This mode enables

debugging of a controller application on a single devel-

oper host, without need for switches, end-hosts, or even

a network. Recorded data plane traffic is not required.

switch: This operation mode replays the recorded sub-

strate control messages toward the switches, reconstruct-

ing each switch’s flow table in real time. No controller is

needed, nor is guest traffic replayed.

datahdr: This mode uses packet headers captured by

the Datarecord modules to re-generate the exact flows

encountered at recording time, with dummy packet pay-

loads. This enables full testing of the switch network,

independent of any end hosts.

datafull: In this mode, data traffic recorded by the

DataStores is replayed with complete payload, allowing

for selective inclusion of end host traffic into the tests.

In addition to these operation modes, Ofreplay enables

the user to further tweak the recorded traffic to match the

replay scenario. Replayed messages can be sub-selected

based on source or destination host, port, or message

type. Further, message destinations can be re-mapped on

a per-host or per-port basis. These two complementary

features allow traffic to be re-targeted toward a particular

host, or restricted such that only relevant messages are

replayed. They enable Ofreplay to play recorded traffic

either toward the original sources or to alternative de-

vices, which may run a different firmware version, have

a different hardware configuration, or even be of a dif-

ferent vendor. These features enable OFRewind to be

used for regression testing. Alternately, it can be useful

to map traffic of multiple devices to a single device, to

perform stress tests.

The pace of the replay is also adjustable within Of-

replay, enabling investigation of pace-dependent perfor-

mance problems. Adjusting replay can also be used to

“fast-forward” over portions of a trace, e.g., memory

leaks in a switch, which typically develop over long time

periods may be reproduced in an expedited manner.

2.6 Event Ordering and Synchronization

For some debugging scenarios, it is necessary to pre-

serve the exact message order or mapping between guest

and substrate flow data to be able to reproduce the prob-

lem. In concrete terms, the guest (data) traffic should

not be replayed until the substrate (control) traffic (con-

taining the corresponding substrate actions) has been re-

played. Otherwise, guest messages might be incorrectly

forwarded or simply dropped by the switch, as the nec-

essary flow table state would be invalid or missing.

We do not assume tightly synchronized clocks or low

latency communication channels between our OFRe-

wind and the DataStores components. Accordingly, we

cannot assume that synchronization between recorded

substrate and guest flow traces, or order between flows

recorded by different DataStores is guaranteed per se.

Our design does rely on the following assumptions: (1)

The substrate control plane channel is reliable and order-

preserving. (2) The control channel between OFRe-

wind and each individual DataStore is reliable and order-

preserving, and has a reasonable mean latency lc (e.g., 5

ms in a LAN setup.) (3) The data plane channel from

OFRewind to the DataStores via the switch is not neces-

sarily fully, but sufficiently reliable (e.g., 99.9% of mes-
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sages arrive). It is not required to be order-preserving

in general, but there should be some means of explicitly

guaranteeing order between two messages. We define the

data plane channel mean latency as ld.

Record: Based on these assumptions, we define a log-

ical clock C [25] on Ofrecord , incremented for each sub-

strate control message as they arrive at Ofrecord . Ofre-

cord logs the value of C with each substrate control mes-

sage. It also broadcasts the value of C to the DataStores

in two kinds of synchronization markers: time binning

markers and flow creation markers.

Time binning markers are sent out at regular time in-

tervals it, e.g., every 100ms. They group flows into bins

and thus constrain the search space for matching flows

during replay and help reconstruct traffic characteristics

within flows. Note that they do not impose a strict order

on the flows within a time bin.

Flow creation markers are optionally sent out when-

ever a new flow is created. Based on the previous as-

sumptions, they induce a total ordering on all flows

whose creation markers have been successfully recorded.

However, their usage limits the scalability of the system,

as they must be recorded by all DataStores .

Replay: For synchronization during replay, Ofreplay

assumes the role of a synchronization master, reading the

value of C logged with the substrate messages. When a

DataStore hits a synchronization marker while replaying,

it synchronizes with Ofreplay before continuing. This

assures that in the presence of time binning markers, the

replay stays loosely synchronized between the markers

(within an interval I = it + ld + lc). In the presence

of flow creation markers, it guarantees that the order be-

tween the marked flows will be preserved.

2.7 Typical Operation

We envision that users of OFRewind run Ofrecord in

an always-on fashion, always recording selected sub-

strate control plane traffic (e.g., OpenFlow messages)

onto a ring storage. If necessary, selected guest traffic

can also be continuously recorded on Datarecord . To

preserve space, low-rate control plane traffic, e.g., rout-

ing announcements, may be selected, sampling may be

used, and/or the ring storage may be shrunk. When

the operator (or an automated analytics tool) detects an

anomaly, a replay is launched onto a separate set of hard-

ware, or onto the production network during off-peak

times. Recording settings are adapted as necessary un-

til the anomaly can be reproduced during replay.

During replay, one typically uses some kind of debug-

ging by elimination, either by performing binary search

along the time axis or by eliminating one kind of message

at a time. Hereby, it is important to choose orthogonal

subsets of messages for effective problem localization.

3 Implementation

In this section, we describe the implementation of OF-

Rewind based on OpenFlow, selected for currently be-

ing the most widely used split forwarding architecture.

OpenFlow is currently in rapid adoption by testbeds [20],

university campuses [1], and commercial vendors [3].

OpenFlow realizes split forwarding architecture as an

open protocol between packet-forwarding hardware and

a commodity PC (the controller). The protocol allows

the controller to exercise flexible and dynamic control

over the forwarding behavior of OpenFlow enabled Eth-

ernet switches at a per-flow level. The definition of a

flow can be tailored to the specific application case—

OpenFlow supports an 11-tuple of packet header parts,

against which incoming packets can be matched, and

flows classified. These range from Layer 1 (switch

ports), to Layer 2 and 3 (MAC and IP addresses), to

Layer 4 (TCP and UDP ports). The set of matching rules,

and the actions associated with and performed on each

match are held in the switch and known as the flow table.

We next discuss the implementation of OFRewind,

the synchronization among the components and dis-

cuss the benefits, limitations, and best-practices of using

OpenFlow to implement our system. The implementa-

tion, which is an OpenFlow controller in itself, and based

on the source code of FlowVisor [36] is available under

a free and open source license at [4].

3.1 Software Modules

To capture both the substrate control traffic and guest

network traffic we use a hybrid strategy for implement-

ing OFRewind. Reconsider the example shown in Fig-

ure 1(a) from an OpenFlow perspective. We deploy

a proxy server in the OpenFlow protocol path (labeled

OFRewind) and attach local DataStore nodes to the

switches. The OFRewind node runs the Ofrecord and

Ofreplay modules, and the DataStore nodes run Datare-

cord and Datareplay, respectively. We now discuss the

implementation of the four software components Ofre-

cord , Datarecord , Ofreplay and Datareplay.

Ofrecord : Ofrecord intercepts all messages passing

between the switches and controller and applies the se-

lection rules. It then stores the selected OpenFlow con-

trol (substrate) messages to locally attached data stor-

age. Optionally, the entire flow table of the switch can

be dumped on record startup. If recording of the guest

network control and/or data traffic is performed, Of-

record transforms the FLOW-MOD and PACKET-OUT

commands sent from the controller to the switch to du-

plicate the packets of selected flows to a DataStore at-

tached to a switch along flow path. Multiple DataStores

can be attached to each switch, .e.g., for load-balancing.

The order of flows on the different DataStores in the sys-

5
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tem is retained with the help of synchronization markers.

Any match rule supported by OpenFlow can be used for

packet selection. Additionally, flow-based-sampling can

be used to only record a fraction of the flows.

Datarecord : The Datarecord components located

on the DataStores record the selected guest traffic, as

well as synchronization and control metadata. They are

spawned and controlled by Ofrecord . Their implemen-

tation is based on tcpdump, modified to be controlled

by Ofrecord via a TCP socket connection. Data reduc-

tion strategies that cannot be implemented with Open-

Flow rules (e.g., packet sampling, cut-offs) are executed

by Datarecord before writing the data to disk.

Ofreplay: Ofreplay re-injects OpenFlow control

plane messages as recorded by Ofrecord into the network

and orchestrates the guest traffic replay by the Datare-

play components on the DataStores . It supports replay

towards the controller and switches, and different lev-

els of data plane involvement (switch, datahdr, datafull,

see Section 2.5.) Optionally, a flow table dump created

by Ofrecord can be installed into the switches prior to

replay. It supports traffic sub-selection and mapping to-

wards different hardware and time dilation.

Datareplay: The Datareplay components are respon-

sible for re-injecting guest traffic into the network. They

interact with and are controlled by Ofreplay for tim-

ing and synchronization. The implementation is based

on tcpreplay. Depending on the record and replay

mode, they reconstruct or synthesize missing data before

replay, e.g., dummy packet payloads, when only packet

headers have been recorded.

3.2 Synchronization

As we do not assume precise time synchronization be-

tween Ofrecord and the DataStores , the implementation

uses time binning markers and flow creation markers, as

discussed in Section 2.6. These are packets with unique

ids flooded to all DataStores and logged by Ofrecord .

The ordering of these markers relative to the recorded

traffic is ensured by OpenFlow BARRIER messages1.

We now discuss by example how the markers are used.

Record synchronization: Figure 2(a) illustrates the

use of flow creation markers during recording. Consider

a simple Ofrecord setup with two hosts c1 and s1 con-

nected to switch sw. The switch is controlled by an

instance of Ofrecord , which in turn acts as a client to

the network controller ctrl. Ofrecord records to the lo-

cal storage of-store, and controls an instance of Datare-

cord running on a DataStore . Assume that a new TCP

connection is initiated at c1 toward s1, generating a tcp

1A BARRIER message ensures that all prior OpenFlow messages

are processed before subsequent messages are handled. In its absence,

messages may be reordered.

syn packet (Step 1). As no matching flow table entry

exists, sw sends msg1, an OpenFlow PACKET-IN to

Ofrecord (Step 2), which in turn relays it to ctrl (step

3). Ctrl may respond with msg2, a FLOW-MOD message

(step 4). To enable synchronized replay and reassem-

bly of the control and data records, Ofrecord now cre-

ates a flow creation marker (sync), containing a unique

id, the current time, and the matching rule of msg1 and

msg2. Both msg1 and msg2 are then annotated with the

id of sync and saved to of-store (step 5). Ofrecord then

sends out 3 messages to sw1: first, a PACKET-OUT mes-

sage containing the flow creation marker sent to all Data-

Stores in step 6. This prompts the switch to send out sync

to all its attached DataStores (step 7). The second mes-

sage sent from Ofrecord is a BARRIERmessage (step 8),

which ensures that the message from step 7 is handled

before any subsequent messages. In step 9, Ofrecord

sends a modified FLOW-MOD message directing the flow

to both the original receiver, as well as one DataStore at-

tached to the switch. This prompts the switch to output

the flow both to s1 (step 10a) and DataStore (step 10b).

Replay synchronization: For synchronizing replay,

Ofreplay matches data plane events to control plane

events with the help of the flow creation markers re-

corded by Ofrecord . Consider the example in Fig-

ure 2(b). Based on the previous example, we replay the

recording in data plane mode towards the switch sw and

host s1. To begin, Ofreplay starts Datareplay playback

on the DataStore in step 1. Datareplay hits the flow cre-

ation marker sync, then sends a sync wait message

to the controller, and goes to sleep (step 2). Ofrecord

continues replay operation, until it hits the corresponding

flow creation marker sync on the of-store (step 3). Then,

it signals Datareplay to continue with a sync ok mes-

sage (step 4). Datareplay outputs the packet to the switch

(step 5), generating a PACKET-IN event (step 6). Ofre-

play responds with the matching FLOW-MOD event from

the OpenFlow log (step 7). This installs a matching flow

rule in the switch and causes the flow to be forwarded as

recorded (step 8).

3.3 Discussion

We now discuss the limitations imposed by OpenFlow

on our implementation, and best practices for avoiding

replay inaccuracies.

OpenFlow limitations: While OpenFlow provides a

useful basis for implementing OFRewind, it does not

support all the features required to realize all opera-

tion modes. OpenFlow does not currently support sam-

pling of either flows or packets. Thus, flow sampling

is performed by Ofrecord , and packet sampling is per-

formed by Datarecord . This imposes additional load

on the channel between the switches and the DataStores

6



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 333

(a) Ofrecord (b) Ofreplay

Figure 2: DataStore synchronization mechanism in OFRewind

for data that is not subsequently recorded. Similarly,

the OpenFlow data plane does not support forwarding

of partial packets2. Consequently, full packets are for-

warded to the DataStore and only their headers may be

recorded. OpenFlow also does not support automatic

flow cut-offs after a specified amount of traffic3. The

cut-off can be performed in the DataStore . Further op-

timizations are possible, e.g., regularly removing flows

that have surpassed the threshold.

Avoiding replay inaccuracies: To reliably reproduce

failures during replay in a controlled environment, one

must ensure that the environment is properly initialized.

We suggest therefore, to use the flow table dump feature

and, preferably, reset (whenever possible) the switches

and controller state before starting the replay operation.

This reduces any unforeseen interference from previ-

ously installed bad state.

When bisecting during replay, one must consider the

interdependencies among message types. FLOW-MOD

messages are for example, responsible for creating the

flow table entries and their arbitrary bisection may lead to

incomplete or nonsense forwarding state on the switch.

Generally speaking, replay inaccuracies can occur

when: (a) the chain of causally correlated messages

is recorded incompletely, (b) synchronization between

causally correlated messages is insufficient, (c) timers

influence system behavior, and (d) network communi-

cation is partially non-deterministic. For (a) and (b), it

is necessary to adapt the recording settings to include

more or better-synchronized data. For (c) a possible ap-

proach is to reduce the traffic being replayed via sub-

selection to reduce stress on the devices and increase ac-

curacy. We have not witnessed this problem in our prac-

tical case studies. Case (d) requires the replayed traffic

to be modified. If the non-determinism stems from the

transport layer (e.g., TCP random initial sequence num-

2It does support a cut-off for packets forwarded to the controller.
3Expiration after a specified amount of time is supported.

bers), a custom transport-layer handler in Datareplay can

shift sequence numbers accordingly for replay. For ap-

plication non-determinism (e.g., cryptographic nonces),

application-specific handlers must be used.

When the failure observed in the production network

does not appear during replay, we call this a false nega-

tive problem. When the precautions outlined above have

been taken, a repeated false negative indicates that the

failure is likely not triggered by network traffic, but other

events. In a false positive case, a failure is observed dur-

ing replay which does not stem from the same root cause.

Such inaccuracies can often be avoided by careful com-

parison of the symptoms and automated repetition of the

replay.

4 Case Studies

In this section, we demonstrate the use of OFRewind for

localizing problems in black box network devices, con-

trollers, and other software components, as summarized

in Table 1. These case studies also demonstrate the bene-

fits of bisecting the control plane traffic (4.2), of mapping

replays onto different pieces of hardware (4.3), from a

production network onto a developer machine (4.5), and

the benefit of a temporally consistent recording of multi-

ple switches (4.6).

4.1 Experimental Setup

For our case studies we use a network with switches

from three vendors: Vendor A, Vendor B, Vendor C.

Each switch has two PCs connected to it. Figure 3 il-

lustrates the connectivity. All switches in the network

have a control-channel to Ofrecord . DataStores running

Datarecord and Datareplay are attached to the switches

as necessary. We use NOX [31], unless specified oth-

erwise, as the high level controller performing the actual

routing decisions. It includes the routing module, which

7
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Case study Class OF-specific

Switch CPU Inflation black box (switch) no

Anomalous Forwarding black box (switch) yes

Invalid Port Translation OF controller yes

NOX Parsing Error OF controller yes

Faulty Route Advertisements software router no

Table 1: Overview of the case studies

Figure 3: Lab environment for case studies

performs shortest path routing by learning the destination

MAC address, and the spanning − tree module, which

prevents broadcast storms in the network by using Link

Layer Discovery Protocol (LLDP) to identify if there is

a loop in the network. All OpenFlow applications, viz.

NOX, FlowVisor, Ofreplay , and Ofrecord , are run on the

same server.

4.2 Switch CPU Inflation

Figure 4 shows our attempt at reproducing the CPU os-

cillation we reported in Section 1. As stated earlier, there

is no apparent correlation between the ingress traffic and

the CPU utilization. We record all control traffic in the

production network, as well as the traffic entering/exiting

the switch, while the CPU oscillation is happening. Fig-

ure 4(a) shows the original switch performance during

recording. We, then, iteratively replay the correspond-

ing control traffic over a similar switch in our isolated

experimental setup. We replay the recorded data traf-

fic to 1 port of the switch and connect hosts that send

ICMP datagrams to the other ports. In each iteration,

we have Ofreplay bisect the trace by OpenFlow message

type, and check whether the symptom persists. When re-

playing the port and table statistic requests, we observe

the behavior as shown in Figure 4(b). Since the data traf-

fic is synthetically generated, the amplitude of the CPU

oscillation and the flow setup time variation is different

from that in the original system. Still, the sawtooth pat-

tern is clearly visible. This successful reproduction of

the symptom helps us identify the issue to be related to

port and table statistics requests. Note that these mes-

sages have been causing the anomaly, even though their

Counts Match

duration=181s in port=8

n packets=0 dl type=arp

n bytes=3968 dl src=00:15:17:d1:fa:92

idle timeout=60 dl dst=ff:ff:ff:ff:ff:ff

hard timeout=0 actions=FLOOD

Table 2: Vendor C switch flow table entry, during replay.

arrival rate (24 messages per minute) is not in any way

temporally correlated with the perceived symptoms (30-

minute CPU sawtooth pattern). We reported this issue to

the vendor, since at this point we have no more visibility

into the switch software implementation.

OFRewind thus, has proved useful in localizing the

cause for the anomalous behavior of a black box com-

ponent that would otherwise have been difficult to de-

bug. Even though the bug in this case is related to a

prototype OpenFlow device, the scenario as such (misbe-

having black box component) and approach (debugging

by replay and bisection of control-channel traffic) are ar-

guably applicable to non-OpenFlow cases as well.

4.3 Anomalous Forwarding

To investigate the performance of devices from a new

vendor, Vendor C, we record the substrate and guest traf-

fic for a set of flows, sending 10 second delayed ping

between a pair of hosts attached to the switch from Ven-

dor B (of-sw3 in Figure 3). We then use the de-

vice/port mapping feature of Ofreplay to play back traf-

fic from c7 to c8 over port 8 and port 42 belonging to the

switch from Vendor C, in Figure 3.

Upon replay, we observe an interesting limitation of

the switch from Vendor C. The ping flow stalls at the

ARP resolution phase. The ARP packets transmitted

from host c7 are received by host c10, but not by c8 nor

c9. The flow table entry created in of-sw4 during re-

play, is shown in Table 2, similar to that created during

the original run. We conclude that the FLOOD action is

not being properly applied by the switch from Vendor C.

Careful observation reveals that traffic received on a

“low port” (one of the first 24 ports) to be flooded to any

“high ports” (last 24 ports) and vice-versa is not flooded

correctly. Effectively, the flood is restricted within a 24

port group within the switch (lower or higher). This fact

has been affirmed by the vendor, confirming the success-

ful debugging.

We additionally perform the replay after adding static

ARP entries to the host c7. In this case, we observe

that flow setup time for the subsequent unicast ping

traffic on Vendor C is consistently higher than that ob-

served for Vendor B and Vendor A switches. This in-

dicates that OFRewind has further potential in profiling

switches and controllers.

8
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Figure 4: Sawtooth CPU pattern reproduced during replay of port and table STATS-REQUEST messages. Figure (c)

shows no observable temporal correlation to message arrivals.

Figure 5: Debugging of FlowVisor bug #68

4.4 Invalid Port Translation

In this case study, we operate Ofreplay in the ctrl mode

in order to debug a controller issue. The controller we

focus on is the publicly available FlowVisor [36].

FlowVisor (FV) is a special purpose OpenFlow con-

troller that acts as a proxy between multiple OpenFlow

switches and controllers (guests), and thus assumes the

role of a hypervisor for the OpenFlow control plane (see

Figure 3). To this end, the overall flow space is parti-

tioned by FV into distinct classes, e.g., based on IP ad-

dresses and ports, and each guest is given control of a

subset. Messages between switches and controllers are

then filtered and translated accordingly.

We investigate an issue in where the switch from

Vendor C works fine with the NOX controller, but not

through the FV. We record the OpenFlow control plane

traffic from the switch to FV in our production setup, as

seen on the left side of Figure 5. We then replay the

trace on a developer system, running Ofreplay , FV and

the upstream controller on a single host for debugging.

Ofreplay thus assumes the role of the switch.

Through repeated automated replay of the trace on

the development host, we track down the source of the

problem: It is triggered by a switch announcing a non-

contiguous range of port numbers (e.g., 1, 3, 5). When

FV translates a FLOOD action sent from the upstream

controller to such a switch, it incorrectly expands the port

range to a contiguous range, including ports that are not

announced by the switch (e.g., 1, 2, 3, 4, 5). The switch

then drops the invalid action.

Here, OFRewind proves useful in localizing the root

cause for the failure. Replaying the problem in the de-

velopment environment enables much faster turnaround

times, and thus reduces debugging time. Moreover, it can

be used to verify the software patch that fixes the defect.

4.5 NOX PACKET-IN Parsing Error

We now investigate a problem, reported on the NOX [31]

development mailing list, where the NOX controller con-

sistently drops the ARP reply packet from a specific host.

The controller is running the pyswitch module.

The bug reporter provides a tcpdump of the traffic

between their switch and the controller. We verify the

existence of the bug by replaying the control traffic to

our instance of the NOX. We then gradually increase the

debug output from NOX as we play back the recorded

OpenFlow messages to NOX.

Repeating this processes reveals the root cause of

the problem: NOX deems the destination MAC address

00:26:55:da:3a:40 to be invalid. This is because

the MAC address contains the byte 0x3a, which hap-

pens to be the binary equivalent of the character ‘:’ in

ASCII. This “fake” ASCII character causes the MAC ad-

dress parser to interpret the MAC address as ASCII, lead-

ing to a parsing error and the dropped packet. Here, Of-

replay provides the necessary debugging context to faith-

fully reproduce a bug encountered in a different deploy-

ment, and leads us to the erroneous line of code.

9
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Figure 6: Quagga RIPv1 bug #235

4.6 Faulty Routing Advertisements

In a departure from OpenFlow network troubleshooting,

we examine how OFRewind can be used to troubleshoot

more general, event-driven network problems. We con-

sider the common problem of a network suffering from a

mis-configured or faulty router. In this case, we demon-

strate how OFRewind can be advantageously used to

identify the faulty component.

We apply OFRewind to troubleshoot a documented

bug (Quagga Bugzilla #235) detected in a version of

the RIPv1 implementation of the Quagga [34] software

routing daemon. In the network topology given by Fig-

ure 6, a network operator notices that shortly after up-

grading Quagga on software router B, router C subse-

quently loses connectivity to Network 1. As routing con-

trol plane messages are a good example of low-volume

guest control plane traffic, they can be recorded by Ofre-

cord always-on or, alternatively, as a precautionary mea-

sure during upgrades. Enabling flow creation sync mark-

ers for the low-volume routing control plane messages

ensures the global ordering is preserved.

The observation that router C loses its route to Net-

work 1 while router B maintains its route, keys the op-

erator to record traffic arriving at and departing from B.

An analysis of the Ofrecord flow summaries reveals that

although RIPv1 advertisements arrive at B from A, no

advertisements leave B toward C. Host-based debugging

of the RIPd process can then be used on router B in con-

junction with Ofreplay to replay the trigger sequence and

inspect the RIPd execution state. This reveals the root

cause of the bug – routes toward Network 1 are not an-

nounced by router B due to this (0.99.9) version’s han-

dling of classful vs. CIDR IP network advertisements –

an issue inherent to RIPv1 on classless networks.

4.7 Discussion

Without making any claims regarding the representative-

ness of the workload or switch behavior, in this lim-

ited space, we highlight in these case studies, the prin-

ciple power and flexibility of OFRewind. We observe

that OFRewind is capable of replaying subpopulations

of control or data traffic, over a select network topology

of-simple reference controller emulating a learning switch

nox-pyswitch NOX controller running Python pyswitch module

nox-switch NOX controller running C-language switch module

flowvisor Flowvisor controller, running a simple allow-all pol-

icy for a single guest controller

ofrecord Ofrecord with substrate mode recording

ofrecord-data Ofrecord with guest mode recording, with one data

port and sync beacons and barriers enabled

Table 3: Notation of controllers used in evaluation

(switches and ports) or to select controllers, in a sandbox

or production environment.

We further note that OFRewind has potential in

switch (or controller) benchmarking. By creating a sand-

box for experimentation that can be exported to a stan-

dard replay format, a network operator can concretely

specify the desired behavior to switch (or controller) de-

sign engineers. The sandbox can then be run within the

premises of the switch (or controller software) vendor on

a completely new set of devices and ports. On receiving

the device (or software), the network operator can con-

duct further benchmarking to compare performance of

different solutions in a fair manner.

Comparison with traditional recording Based on

the case presented in the last section, we compare the ef-

fort of recording and instrumenting the network with and

without OFRewind. Note that while the specific traf-

fic responsible for the failure is small (RIP control plane

messages), the total traffic volume on the involved links

may be substantial. To attain a synchronized recording

of this setup without OFRewind, and in the absence of

host-based instrumentation, one has to (1) deploy moni-

toring servers that can handle the entire traffic on each

link of interest, e.g., [29], and redeploy as link inter-

ests change. Then, one must either (2a) reconfigure both

switches to enable span ports (often limited to 2 on mid-

range hardware) or (2b) introduce a tap into the physical

wiring of the networks. Manually changing switch con-

figurations runs a risk of operator error and introducing

a tap induces downtime and is considered even riskier.

(3) Additionally, the monitoring nodes may have to be

synced to microsecond level to keep the flows globally

ordered, requiring dedicated, expensive hardware. With

OFRewind, one requires only a few commodity PCs

acting as DataStores , and a single, central configuration

change to record a consistent traffic trace.

5 Evaluation

When deploying OFRewind in a live production envi-

ronment, we need to pay attention to its scalability, over-

head and load on the switches. This section quantifies

the general impact of deploying Ofrecord in a production

network, and analyzes the replay accuracy of Ofreplay at

higher flow rates.
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Figure 7: # Switches vs. median flow rate throughputs

for different controllers using cbench.

5.1 Ofrecord Controller Performance

A key requirement for practical deployment of Ofrecord

in a production environment is recording performance. It

must record fast enough to prevent a performance bottle-

neck in the controller chain.

Using cbench [14], we compare the controller per-

formance exhibited by several well known controllers,

listed in Table 3. Of-simple and NOX are stand-alone

controllers, while flowvisor and ofrecord act as a proxy

to other controllers. Ofrecord is run twice: in substrate

mode (ofrecord), recording the OpenFlow substrate traf-

fic, and in guest mode (ofrecord-data), additionally per-

forming OpenFlow message translations and outputting

sync marker messages. Note that no actual guest traffic

is involved in this experiment.

The experiment is performed on a single commod-

ity server (Intel Xeon L5420, 2.5 GHz, 8 cores, 16

GB RAM, 4xSeagate SAS HDDs in a RAID 0 setup).

We simulate, using Cbench, 1-64 switches connect-

ing to the controller under test, and send back-to-back

PACKET-IN messages to measure the maximum flow

rate the controller can handle. Cbench reports the cur-

rent flow rate once per second. We let each experiment

run for 50 seconds, and remove the first and last 4 results

for warmup and cool-down.

Figure 7 presents the results. We first compare the

flow rates of the stand-alone controllers. Nox-pyswitch

exhibits a median flow rate of 5,629 flows/s over all

switches, nox-switch reports 42,233 flows/s, and of-

simple 78,908 flows/s. Consequently, we choose of-

simple as the client controller for the proxy controllers.

We next compare flowvisor and ofrecord. Flowvisor

exhibits a median flow throughput of 35,595 flows/s.

Ofrecord reports 42,380 flows/s, and ofrecord-data re-

ports 41,743. There is a slight variation in the perfor-

mance of ofrecord, introduced by the I/O overhead. The

minimum observed flow rates are 28,737 and 22,248. We

note that all controllers exhibit worse maximum through-

put when only connected to a single switch, but show

similar performance for 2− 64 switches.

We conclude that Ofrecord , while outperformed by of-

simple in control plane performance, is unlikely to create

a bottleneck in a typical OpenFlow network, which of-

ten includes a FlowVisor instance and guest domain con-

trollers running more complex policies on top of NOX.

Note that all controllers except nox-pyswitch perform an

order of magnitude better than the maximum flow rates

supported by current prototype OpenFlow hardware im-

plementations (max. 1,000 flows/s).

5.2 Switch Performance During Record

When Ofrecord runs in guest mode, switches must han-

dle an increase in OpenFlow control plane messages

due to the sync markers. Additionally, FLOW-MOD and

PACKET-OUT messages contain additional actions for

mirroring data to the DataStores . This may influence the

flow arrival rate that can be handled by a switch.

To investigate the impact of Ofrecord deployment on

switch behavior, we use a test setup with two 8-core

servers with 8 interfaces each, wired to two prototype

OpenFlow hardware switches from Vendor A and Ven-

dor B. We measure the supported flow arrival rates by

generating minimum sized UDP packets with increas-

ing destination port numbers in regular time intervals.

Each packet thus creates a new flow entry. We record

and count the packets at the sending and the receiving

interfaces. Each run lasts for 60 seconds, then the UDP

packet generation rate is increased.

Figure 8 presents the flow rates supported by the

switches when controlled by ofrecord, ofrecord-data,

and of-simple. We observe that all combinations of con-

trollers and switches handle flow arrival rates of at least

200 flows/s. For higher flow rates, the Vendor B switch

is CPU limited and the additional messages created by

Ofrecord result in reduced flow rates (ofrecord: 247

flows/s, ofrecord-data: 187) when compared to of-simple

(393 flows/s). Vendor A switch does not drop flows up to

an ingress rate of 400 flows/s. However, it peaks at 872

flows/s for ofrecord-data, 972 flows/s for ofrecord and

996 flows/s for of-simple. This indicates that introducing

Ofrecord imposes an acceptable performance penalty on

the switches.

5.3 DataStore Scalability

Next we analyze the scalability of the DataStores . Note

that Ofrecord is not limited to using a single DataStore .

Indeed, the aggregate data plane traffic (Ts bytes in

cF flows) can be distributed onto as many DataStores

as necessary, subject to the number of available switch

ports. We denote the number of DataStores with n and

enumerate each DataStore Di subject to 0 ≤ i < n. The

traffic volume assigned to each DataStore is Ti, such that

Ts =
∑

Ti. The flow count on each DataStore is ci.

11
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Figure 8: Mean rate of flows sent vs. successfully re-

ceived with controllers ofrecord, ofrecord-data, and of-

simple and switches from Vendor A and B.

The main overhead when using Ofrecord is caused by

the sync markers that are flooded to all DataStores at

the same time. Thus, their number limits the scalability

of the system. Flow-sync markers are minimum-sized

Ethernet frames that add constant overhead (θ = 64B)

per new flow. Accordingly, the absolute overhead for

each DataStore is: Θi = θ · ci. The absolute overhead

for the entire system is Θ =
∑

Θi = θ · cF , the relative

overhead is: Θrel =
Θ

Ts

.

In the Stanford production network, of four switches

with one DataStore each, a 9 hour day period on a work-

day in July 2010 generated cF = 3, 891, 899 OpenFlow

messages that required synchronization. During that pe-

riod, we observed 87.977 GB of data plane traffic. Thus,

the overall relative overhead is Θrel = 1.13%, small

enough to not impact the capacity, and allow scaling up

the deployment to a larger number of DataStores .

5.4 End-to-End Reliability And Timing

We now investigate the end-to-end reliability and tim-

ing precision of OFRewind by combining Ofrecord and

Ofreplay . We use minimum size flows consisting of sin-

gle UDP packets sent out at a uniform rate to obtain a

worst-case bound. We vary the flow rate to investigate

scalability. For each run, we first record the traffic with

Ofrecord in guest mode with flow sync markers enabled.

Then, we play back the trace and analyze the end-to-end

drop rate and timing accuracy. We use a two-server setup

connected by a single switch of Vendor B. Table 4 sum-

marizes the results. Flow rates up to 200 Flows/s are

handled without drops. Due to the flow sync markers, no

packet reorderings occur and all flows are replayed in the

correct order. The exact inter-flow timings vary though,

upwards from 50 Flows/s.

To investigate the timing accuracy further, we analyze

the relative deviation from the expected inter-flow delay.

Rate (Flows/s) Drop % sd(timing, in ms)

5 0 % 4.5

10 0 % 15.6

20 0 % 21.1

50 0 % 23.4

100 0 % 10.9

200 0 % 13.9

400 19% 15.8

800 41 % 21.5

Table 4: OFRewind—end-to-end measurements with

uniformly spaced flows consisting of 1 UDP packet
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Figure 9: End-to-end flow time accuracy as a boxplot of

the relative deviation from expected inter-flow delay.

Figure 9 presents the deviations experienced by the flows

during the different phases of the experiment. Note that

while there are certainly outliers for which the timing is

far off, the median inter-flow delay remains close to the

optimum for up to 100 Flows/s. Higher rates show room

for improvement.

5.5 Scaling Further

We now discuss from a theoretical standpoint the limits

of scalability intrinsic to the design of OFRewind when

scaling beyond currently available production networks

or testbeds. As with other OpenFlow-based systems, the

performance of OFRewind is limited by the switch flow

table size and the switch performance when updating and

querying the flow table. We observe these to be the most

common performance bottlenecks in OpenFlow setups

today. Controller domain scalability is limited by the ca-

pacity of the link that carries the OpenFlow control chan-

nel, and the network and CPU performance of the con-

troller. Specific to OFRewind, the control plane compo-

nents require sufficient I/O performance to record the se-

lected OpenFlow messages – not a problem in typical de-

velopments. When recording data plane network traffic,

DataStore network and storage I/O capacity must be suf-

ficient to handle the aggregate throughput of the selected

flows. As load-balancing is performed over DataStores

at flow granularity, OFRewind cannot fully record indi-

vidual flows that surpass the network or storage I/O ca-

pacity of a single DataStore . When flow creation mark-

ers are used for synchronization, the overhead grows lin-

12



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 339

early with the number of DataStores and the number of

flows. Thus, when the average flow size in a network

is small, and synchronization is required, this may limit

the scalability of a controller domain. For scaling further,

OFRewind may in the future be extended to a distributed

controller domain. While a quantitative evaluation is

left for future study, we note that the lock-step approach

taken to coordinate the replay of multiple instances of

Datarecord and Datareplay (see Section 2.6) can be ex-

tended to synchronize multiple instances of OFRewind

running as proxies to instances of a distributed controller.

The same trade-offs between accuracy and performance

apply here as well.

6 Related Work

Our work builds on a wealth of related work in the areas

of recording and summarizing network traffic, replay de-

bugging based on networks and on host primitives, auto-

mated problem diagnosis, pervasive tracing, and testing

large-scale systems.

Recording/summarizing network traffic: Apart

from the classical tool tcpdump[5], different approaches

have been suggested in the literature to record high-

volume network traffic, by performance optimiza-

tion [12, 18], by recording abstractions of the network

traffic [19, 27, 15], or omitting parts of the traffic [21,

26]. Our selection strategies borrow many of their ideas,

more can be incorporated for improved performance.

Note that these systems do not target network replay, and

that all integrated control and data plane monitoring sys-

tems face scalability challenges when monitoring high-

throughput links as the monitor has to consider all data

plane traffic, even if only a subset is to be recorded. Simi-

lar to our approach of recording in a split-architecture en-

vironment, OpenSafe [13] leverages OpenFlow for flex-

ible network monitoring but does not target replay or

provide temporal consistency among multiple monitors.

Complementary to our work, OpenTM [39] uses Open-

Flow statistics to estimate the traffic matrix in a con-

troller domain. MeasuRouting [37] enables flexible and

optimized placement of traffic monitors with the help of

OpenFlow, and could facilitate non-local DataStores in

OFRewind.

Network replay debugging: Tcpdump and tcpre-

play [6] are the closest siblings to our work that tar-

get network replay debugging. In fact, OFRewind uses

these tools internally for data plane recording and replay,

but significantly adds to their scope, scalability, and co-

herence: It records from a controller domain instead of a

single network interface, can select traffic on the control

plane and load-balance multiple DataStores for scalabil-

ity, and can record a temporally consistent trace of the

controller domain.

Replay debugging based on host primitives: Com-

plementary to our network based replay, there exists a

wealth of approaches that enable replay debugging for

distributed systems on end-hosts [8, 17, 30]. DCR [9], a

recent approach, emphasizes the importance of the con-

trol plane for debugging. These provide fully determin-

istic replay capabilities important for debugging com-

plex end-host systems. They typically cannot be used

for black box network components.

Automated problem diagnosis: A deployment of

OFRewind can be complemented by a system that fo-

cuses on automated problem diagnosis. Sherlock di-

agnoses network problems based on passive monitor-

ing [32], and other systems infer causality based on col-

lected message traces [7, 38]. They target the debugging

and profiling of individual applications while our pur-

pose is to support debugging of networks.

Pervasive tracing: Some proposals integrate im-

proved in-band diagnosis and tracing support directly

into the Internet, e.g., by pervasively adding a trace ID to

correlated requests [35] or by marking and remembering

recently seen packets throughout the Internet [11]. We

focus on the more controllable environment of a single

administrative domain, providing replay support directly

in the substrate, with no changes required to the network.

Testing large-scale networks: Many approaches ex-

perience scalability issues when dealing with large net-

works. The authors of [22] suggest to scale down large

networks and map them to smaller virtualized testbeds,

combining time dilation [23] and disk I/O simulation to

enable accurate behavior. This idea may aid scaling re-

play testbeds for OFRewind.

7 Summary

This paper addresses an important void in debugging

operational networks – scalable, economically feasible

recording and replay capabilities. We present the design,

implementation, and usage of OFRewind, a system ca-

pable of recording and replaying network events, moti-

vated by our experiences troubleshooting network device

and control plane anomalies. OFRewind provides con-

trol over the topology (choice of devices and their ports),

timeline, and selection of traffic to be collected and then

replayed in a particular debugging run. Using simple

case studies, we highlight the potential of OFRewind

for not only reproducing operational problems encoun-

tered in a production deployment but also localizing the

network events that trigger the error. According to our

evaluation, the framework is lightweight enough to be

enabled per default in production networks.

Some challenges associated with network replay are

still under investigation, including improved timing accu-

racy, multi-instance synchronization, and online replay.

OFRewind can preserve flow order, and its timing is ac-

13
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curate enough for many use cases. However, further im-

provements would widen its applicability. Furthermore,

synchronization among multiple Ofrecord and Ofreplay

instances is desirable, but nontrivial, and might require

hardware support for accurate time-stamping [29].

In a possible extension of this work, Ofrecord and

Ofreplay are combined to form an online replay mode.

Recorded messages are directly replayed upon arrival,

e.g., to a different set of hardware or to a different sub-

strate slice. This allows for online investigation and trou-

bleshooting of failures in the sense of a Mirror VNet [40].

Our next steps involve gaining further experience with

more complex use cases. We plan to collect and maintain

a standard set of traces that serve as input for automated

regression tests, as well as benchmarks, for testing new

network components. Thus, we expect OFRewind to

play a major role in helping ongoing OpenFlow deploy-

ment projects4 resolve production problems.
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Abstract

Deterministic replay systems, which record and replay

non-deterministic events during program execution, have

many applications such as bug diagnosis, intrusion anal-

ysis and fault tolerance. It is well understood how to

replay native (e.g., C) programs on multi-processors,

while there is little work for concurrent java applications

on multicore. State-of-the-art work for Java either as-

sumes data-race free execution, or relies on static instru-

mentation, which leads to missing some necessary non-

deterministic events.

This paper proposes the ORDER framework to record

and reproduce non-deterministic events inside Java vir-

tual machine (JVM). Based on observations of good

locality at object level for threads and frequent object

movements due to garbage collection, ORDER records

and replays non-deterministic data accesses by logging

and enforcing the order in which threads access objects.

This essentially eliminates unnecessary dependencies in-

troduced by address changes of objects during garbage

collection and enjoys good locality as well as less con-

tention, which may result in scalable performance on

multicore. Further, by dynamically instrumenting Java

code in the JVM compilation pipeline, ORDER naturally

covers non-determinism in dynamically loaded classes.

We have implemented ORDER based on Apache Har-

mony. Evaluation on SPECjvm2008, PseudoJBB2005,

and JRuby shows that ORDER only incurs 108% perfor-

mance overhead on average and scales well on a 16-core

Xeon testbed. Evaluation with a real-world application,

JRuby, shows that several real-world concurrency bugs

can be successfully reproduced.

1 Introduction

Deterministic replay has many applications such as di-

agnosing (concurrency) bugs [4, 8, 12, 18, 25, 26, 29],

facilitating fault tolerance [2], forensic analysis [11] and

offloading heavyweight dynamic program analysis [10].

Essentially, it works by recording non-deterministic

events such as data access interleavings and interactions

with external environments of a program during normal

execution, and ensuring the same order of program ex-

ecution by replaying the recorded events and enforc-

ing constraints within the events. Currently, many de-

terministic replay systems for native code (e.g., C or

C++ based programs) use a dependency-based approach

that enforces the accessing order to a specific shared ad-

dress at different granularities such as word [6], cache

line [17, 22], or page [12, 16].

While the approaches to replaying native code have

been studied extensively and relatively well understood,

it is still unanswered question how to efficiently replay

concurrent Java applications on multicore in a scalable

and efficient way. Unlike native code, Java code usually

needs to cooperate with the Java virtual machine (JVM)

to achieve automatic garbage collection and to interact

with the native code. Such runtime features introduce

new non-determinism and more design considerations to

implement a scalable and efficient deterministic replay

system for Java code.

Many state-of-the-art deterministic replay systems for

Java applications record Logical Thread Schedule [28,

9, 30], which assumes that applications are running

on uni-processor platforms. Such a strategy is unsuit-

able for replaying concurrent Java applications running

on multi-processor platforms. JaRec [13] records non-

determinism in lock acquisition, but cannot reproduce

buggy execution caused by data race. LEAP [15] uses

static instrumentation for Java code to replay interleaved

data accesses, thus it cannot reproduce non-determinism

introduced by external code, such as libraries or class

files dynamically loaded during runtime. Furthermore,

LEAP does not distinguish different instances of the

same class, and false dependencies between different ob-

jects of the same class may lead to large performance

overhead when a class is massively instantiated.

Record time and log size are two critical performance

metrics for deterministic replay systems, which can typ-
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ically be optimized by applying transitive reduction in

dependency-based address tracking approaches [6, 12,

17, 23]. However, these techniques may not be suit-

able for Java applications, due to frequent object move-

ments by garbage collector. According to our evaluation

results, with word or cache-line level address tracking

approaches, garbage collection of JVM will introduce 7

times more unnecessary dependencies for SPECjvm2008

and SpecJBB2005. Furthermore, many Java programs

have good locality on accessing a single object for Java

threads.

Based on the observation above, this paper proposes

ORDER, Object centRic DEterministic Replay, to iden-

tify data access dependencies at object granularity. Such

an object-centric technique can avoid recording massive

unnecessary dependencies introduced by object move-

ments from garbage collector, reduce contention on ac-

cessing shared metadata due to the low probability of

object-level interleavings, and improve recording local-

ity by inlining shared-memory access information within

object headers. By dynamically instrumenting Java code

during JVM compilation pipeline, ORDER naturally

covers non-determinism caused by dynamically loaded

classes and libraries.

We have implemented ORDER based on Apache Har-

mony, to record and replay non-deterministic events

for concurrent Java applications on multicore. To fur-

ther improve the performance of ORDER, we have also

implemented a compiler analysis algorithm based on

Soot [31] to avoid tracking dependencies for thread-local

and assigned-once objects. Besides, we implement an of-

fline log compressor algorithm to filter out remaining un-

necessary dependencies from thread-local and assigned-

once objects caused by imprecise compiler analysis.

Performance evaluation results show that ORDER

has relatively good and scalable performance on a 16-

core Intel machine for SPECjvm2008, PseudoJBB2005,

and JRuby. The average overhead for recording non-

determinism is around 108%. ORDER is also with good

scalability on a 16-core platform. Performance compari-

son with LEAP [15] shows that ORDER is 1.4X to 3.2X

faster than LEAP. We also show that ORDER can suc-

cessfully reproduce several real-world concurrency bugs

in JRuby.

In summary, the contribution of this paper includes:

• Two observations (i.e., GC-introduced dependen-

cies and object access locality) for deterministically

replaying Java applications based on a study of Java

runtime behavior.

• The case for object-centric deterministic replay,

which leverages the object granularity to record

non-deterministic data access events using dynamic

instrumentation.

• The implementation and evaluation of ORDER

based on a real-world JVM platform, which demon-

strate the efficiency and effectiveness of ORDER.

This paper is organized as following. In next section,

we will present our study with evaluation results on the

runtime behavior of Java programs on multicore plat-

forms. In Section 3, we describe the main idea and de-

sign of our object-centric deterministic replay approach.

The implementation details of our prototype ORDER are

presented in Section 4. Section 5 shows the evaluation

results in terms of performance, scalability, log size and

bug reproducibility of ORDER. Finally, section 6 sum-

marizes related work in deterministic replay and section

7 concludes our work with a brief overview of possible

future work.

2 Java Runtime Behavior

In Java runtime environment, garbage collection (GC) is

commonly used to automatically reclaim non-reachable

memory spaces. The use of GC enables automatic mem-

ory management and avoids many memory-related bugs

such as dangling pointers, double free, and memory leak-

age. GC usually requires moving or modifying objects in

heap, which may cause additional dependencies for de-

terministic replay. In this section, we evaluate the impact

of GC and describe two major observations that may af-

fect the scalability and performance of deterministic re-

play systems.

2.1 Environment Setup and Workloads

The experimental results listed below are all gener-

ated on a machine with 4 quad-core Xeon processors

(1.6GHz) and 32 GB physical memory. The Linux ker-

nel version is 2.6.26 and the version of Apache Har-

mony is m12. We evaluate 21 parallel Java applica-

tions from SPECjvm2008, SPECjbb2005, and JRuby.

SPECjvm2008 is a general-purpose benchmark suite

composed of a number of multithreaded applications.

We omit the result for sunflow because it failed to be

compiled by Apache Harmony m12 on our evaluation

platform. SPECjbb2005 is a server-side Java application

that simulates an online marketing system. It emulates a

common 3-tier system, and focuses on the business logic

and object manipulation. JRuby is a Java implementation

of the Ruby Programming language and provides a Ruby

Interpreter entirely written in Java.

Each benchmark of SPECjvm2008 is configured to run

a single iteration, which ensures a fixed workload. Re-

sults of JRuby are collected on the most recent stable ver-

sion of JRuby (JRuby 1.6.0) and a multi-threaded Ruby

benchmark provided by it (i.e., bench threaded reverse).

If the number of threads is not specifically mentioned, all

results are collected with 16 threads. All tests are tested

three times and we report the average of them.
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2.2 Dependency-based Replay

Many dependency-based deterministic replay techniques

record data dependencies according to data addresses.

They record data dependencies when two instructions ac-

cess the same address [6], cache line [17], or page [12,

16]. Dependencies, conflicts or constraints [6, 12, 17,

23] a -> b in these systems indicate that 1) instruction a

and b both access the same memory location; 2) at least

one of them is a write; and 3) a happens before b. To

make execution deterministic, a replay run ensures that b

does not happen until a has been executed.

1:if(entry.klass.get()==this && 
name.equals(entry.name))

2:entry.method.get()

Thread 1

3:entry.method=...

Thread 2
1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1

3:entry.method=...

Thread 2

true
true

Figure 1: A real-world concurrency bug reported in

JRuby community (JRuby-1382). Application crashes

when statement 3 is executed between statements 1 and

2.

Figure 1 shows a real-world bug in JRuby. In this

example, JRuby maintains a method cache. Thread 1

checks whether the required method resides in the cache.

In correct execution (1 to 2 to 3), after the comparison

code (statement 1) returns true, JRuby obtains the corre-

sponding method from the cache, which is supposed to

be the required method. However, if the content of the

global variable “entry” is modified between statements 1

and 2 (1 to 3 to 2), the method obtained in statement 2

may be unexpected and crash the program. Suppose we

treat reads/writes to each object as accesses to the same

memory location, then there are two data conflicts in this

example, 1,3 and 2,3. Dependency-based systems record

the order of conflicted data instead of the order of all ex-

ecuted statements. For example, in Figure 1, if the appli-

cation executes correctly, (2->3) is recorded. In buggy

execution, (1->3) and (3->2) is recorded.

The number of recorded dependencies relies on the

granularity chosen by deterministic replay systems. For

example, if a deterministic replay system traces data de-

pendencies according to the real address of data, depen-

dency (1->3) in the given example may not be recorded.

Specifically, statement 1 and 3 do not access the same

memory location of data because entry.klass and en-

try.name have a different address from entry.method.

Likewise, whether dependency (1->3) is recorded in

page-level dependency-based replay relies on whether

entry.klass or entry.name resides in the same page as en-

try.method. Though the granularity of recording depen-

dency does not affect the correctness of a replay strategy,

large performance overhead will be introduced if it is ei-

ther too small(large disk operations), or too large (false

sharing).

Instead of directly recording dependencies,

BugNet [22] and PinPlay [27] log the value of

load instruction after another thread modifies the same

location. In these deterministic replay systems, the

number of logged values depends on the number of con-

flicts occurred in the execution of programs. Although

their logging approaches are different from recording

dependencies, their performance is also affected by the

Java runtime behavior we list below.

2.3 Observation 1: Dependencies from GC

In JVM, GC is triggered if the memory management

scheme indicates that performing GC is beneficial. Each

time GC is triggered, it will scan the entire heap space,

mark the reachable objects, remove non-reachable ob-

jects from heap, and possibly move reachable objects to

achieve better cache locality and fewer heap fragments.

Both marking and moving reachable objects will intro-

duce a large amount of write operations in the heap.

Thus, when using data addresses or cache-lines to iden-

tify dependencies in Java applications, there are a lot of

extra dependencies introduced by GC. Most of these de-

pendencies do not truly affect the behavior of Java appli-

cations, thus they are not necessary to be recorded. Fur-

thermore, the dependency boost will cause a long pause

time in GC and deteriorate application performance.

Figure 2 shows the ratio of dependencies generated

by two widely-used garbage collectors to those gener-

ated by an application itself. In Apache Harmony, when

using the popular generational garbage collector, depen-

dencies introduced by garbage collection are about 8

times the dependencies introduced by original Java ap-

plications. The dependency boost even exceeds 16 times

the dependencies introduced by original application in

scimark.sor.large, xml.validation, scimark.fft.small, and

SPECjbb2005. Results of Mark-Sweep garbage collec-

tor are similar to those of Generational GC, which indi-

cates that such a phenomenon is likely to be a common

case.

GC itself is a non-deterministic event in the JVM. Ob-

ject allocation order, total heap size, garbage collection

algorithm, and many other runtime events will affect the

behavior of GC. Thus, deterministic replay system can-

not ignore the influence from GC. However, recording

garbage collection behavior may cost much and worsen

program performance.

2.4 Observation 2: Interleavings of Object

Accesses

Within JVM, object, a new candidate of granularity for

recording dependencies, is introduced by the managed
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memory strategy. According to our experiments, objects

accessed by a thread are very likely to be accessed by

the same thread at the next time. Hence, interleavings1

seldom happen at object level. As depicted in Table 1,

the ratio of interleavings at object level is less than 7%.

This ratio is extremely low in scientific applications (fft,

lu, sor, sparse, monte carlo). This implies that recording

dependencies among threads at object level will likely

result in better locality and less contention.
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Figure 2: Dependencies introduced by GC when using

data address to identify dependencies in Java applica-

tions. The base line is the number of dependencies in-

troduced by Java applications themselves. Number of

dependencies is calculated according to the CREW pro-

tocol in SMP-Revirt [12].

3 Object-centric Deterministic Replay

Based on the two observations, we propose an Ob-

ject centRic DEterministic Replay (ORDER) scheme to

record and replay concurrent Java applications. OR-

DER uses object as the granularity to record interleav-

ings of data accesses. In the rest of this section, we

first discuss why object would be a proper granularity of

tracking dependencies, and then illustrate the sources of

non-determinism within JVM and how ORDER handles

them.

3.1 Why Object Centric?

whole heap page object word/
cache line

new granularity revealed by JVM,
conform to OOprogram logic

possibility of
contention

memory overhead/
log size

Figure 3: Spectrum of granularity in deterministic re-

playing Java applications.

Case Interleaving Access Rate(%)

compiler.compiler 53997073 3.7E+9 1.46

compiler.sunflow 159104781 7.6E+9 2.09

fft.small 6281 1.2E+10 <0.01

fft.large 3447 1.6E+10 <0.01

lu.small 6500 3.4E+10 <0.01

lu.large 3311 2.87E+11 <0.01

sor.small 4446 2.5E+10 <0.01

sor.large 3358 1.0E+11 <0.01

sparse.small 4201 3.0E+10 <0.01

sparse.large 3055 1.1E+11 <0.01

monte carlo 3503 9.6E+10 <0.01

compress 448683851 3.4E+10 1.31

crypto.aes 3.73E+9 6.0E+10 6.21

crypto.rsa 135072884 2.2E+10 0.62

crypto.signverify 33185584 2.3E+10 0.14

derby 2.44E+9 4.9E+10 4.95

mpegaudio 922855001 6.4E+10 1.45

serial 315661230 1.7E+10 1.80

xml.validation 96681920 6.3E+9 1.53

xml.transform 1.41E+9 6.6E+10 2.13

SPECjbb2005 78856923 1.9E+15 <0.01

JRuby 161801036 1.3E+12 0.01

Table 1: Ratio of interleavings at object level: the sec-

ond and third column show the number of interleavings

and total object accesses accordingly. The forth column

shows the percentage of interleavings among the total

number of object accesses.

In object-oriented programming languages like Java,

applications are usually designed around objects. Fig-

ure 3 shows the spectrum of design consideration on the

granularity of deterministic replay for Java. This implies

several advantages of ORDER:

Elimination of GC dependencies: Our first observa-

tion above shows that massive extra dependencies will be

raised by GC if tracking dependencies using addresses.

However, such extra dependencies will naturally be elim-

inated when tracking dependencies at object level, as the

movement of an object does not change its content.

Reduced contention of synchronization: When

recording data dependencies, data content should be pro-

tected through synchronization to avoid possible data

races. Our second observation indicates an object will

likely be accessed consecutively by one thread. This im-

plies less contention over the synchronization construct

protecting the metadata information of an object.

Improved locality: Furthermore, Java does not sup-

port pointer arithmetic, and the memory layout of Java

applications is managed by JVM. By embedding meta-

data information into object headers, there will be good

locality for accessing such metadata information.
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3.2 Recording Data Access Interleavings

As discussed in previous work [4, 8, 12, 18, 25, 26, 29],

many bugs introduced by non-deterministic events in

multi-threaded applications are caused by concurrent

data accesses, i.e., the order that different threads ac-

cess the same data. In Java applications, data are usually

grouped as objects. Thus, access to a memory location

can be considered as access to the corresponding object.

This is a major source of non-determinism.

Instead of recording conflict access pairs, ORDER

only records the object access timeline. The record-

ing/replaying scheme in ORDER is depicted in Figure 4.

ORDER records how many times a thread has accessed

an object before this object is accessed by another thread.

ORDER maintains such access timeline and enforces it

during a replay run.

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

timeline not 
match

2:entry.method.get()

thread 
blocked

entry
(t1,2)

(t2,1)

(t1,1)

Figure 4: The recording/replaying scheme in ORDER.

Each tuple <tn, x> represents a timeline record, which

indicates that the object is accessed by thread tn for x

times.

3.2.1 Metadata

We extend the header of each object with five fields to

record the timeline of object accesses:

Object identifier (OI): Information in the original ob-

ject header cannot uniquely identify an object. ORDER

extends the original 32-byte hash-code to 64-byte so that

it can uniquely identify an object in long-term execution.

This new identifier is generated according to the identi-

fier of the allocating thread and the index that indicates

the object allocation order in this thread.

Accessing thread identifier (AT) and access counter

(AC): Accessing thread identifier and access counter

maintain current status of object access timeline. Every

timeline recorded by ORDER can be interpreted as “this

object (OI) is accessed by some thread (AT) for some

times (AC)”. In record phase, these two fields record: (1)

which thread is now accessing this object; (2) how many

times this thread has accessed it. In replay phase, they

maintain: (1) which thread is expected to access this ob-

ject; (2) how many times this thread will further access

such an object before an expected interleaving is encoun-

tered.

Object-level lock: When recording/replaying object

accesses, the accessed content as well as access thread

(AT)/access counter (AC) should be synchronized. OR-

DER uses an object-level lock to protect the whole ob-

ject (including fields, array elements and object header)

when a certain access to this object is recorded/replayed.

Using object granularity, our approach only needs to syn-

chronize the accessed object instead of the whole heap or

page, which may reduce the strength of synchronization.

Read-Write flag: The Read-Write flag records

whether the current timeline record is read-only or read-

write. This information is used in the timeline filter to

reduce log size.

3.2.2 Recording/Replaying Object Access Timelines

ORDER contains two modes corresponding to the record

and replay phase of deterministic replay systems respec-

tively. Each mode contains an instrumentation action

added to compilation pipeline of JVM. We also modify

garbage collector to record the final state of timelines.

Record mode: Figure 5 illustrates how ORDER

records object access timeline. In record mode, when

an object is about to be accessed by a certain thread, OR-

DER compares AT in object header with the identifier

of current accessing thread (CTID). If this access is a

continuous access (AT == CTID) (Figure 5.a), ORDER

updates the access counter (AC = AC + 1). When an in-

terleaving is encountered (AT != CTID) (Figure 5.b and

5.c), ORDER puts the timeline record to log and resets

timeline record in the object header (AT = CTID, AC =

1). When JVM is terminated, or objects are collected

by GC, ORDER records the final timeline record of each

object to log (Figure 5.d). Besides, the record operations

as well as the original object access are enclosed by an

object-level lock acquire/release pair, which ensures the

atomicity of the record process. The Read-Write flag is

set to read-write if a write operation is encountered.

Replay mode: Figure 6 illustrates how ORDER repro-

duces the recorded timeline. In replay mode, when OR-

DER is about to reproduce timeline record for a certain

object, it loads the timeline record (AT and AC) into the

object header. When a thread is about to access this ob-

ject, the code instrumented by ORDER will compare its

identifier (CTID) with expected thread identifier (AT) in

object header. If the requesting thread is the expected ac-
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1:if(entry.klass.get()==this 
&& name.equals(entry.name))

Thread 1(t1) Thread 2(t2)

timeline (entry)

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

header
AT:1
AC:1

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

(t1,2)

header
AT:1
AC:2

(t1,2)
(t2,1)

(t1,1)

header
AT:2
AC:1

GC

CTID: 1

CTID: 2

CTID: 1

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

header
AT:1
AC:1

(t1,2)
(t2,1)

(a)

(b)

(c)

(d)

timeline (entry)

timeline (entry)

timeline (entry)

timeline (entry)

Figure 5: Record mode of ORDER.

cess thread (CTID == AT) (Figure 6.a, 6.b), ORDER up-

dates the access counter (AC = AC - 1). When a recorded

interleaving is about to occur (AC == 0), ORDER loads

the next timeline record into the object header. If a re-

questing thread is not the expected access thread (CTID

!= AT), it will be blocked until a recorded interleaving

updates the timeline record (Figure 6.c). If the blocked

thread no longer violates the recorded timeline, it will be

woken up and continue its execution (Figure 6.d). Like

the record mode, a similar object-level lock is used to

protect the whole object when certain access to this ob-

ject is replayed.

3.2.3 Eliminating Unnecessary Timeline Records

Though object-level locks cause less contention than

page/heap-level locks, recording object access timelines

still incurs notable performance slowdown. According to

our study, much of the recording overhead comes from

instrumentation to the following objects, which never

cause non-determinism:

Thread-local objects: Many objects allocated by

JVM are thread-local objects. These objects are accessed

in a certain thread and never shared with other threads.

Assigned-once objects: Assigned-once objects have

continuous write operations in their initialization meth-

ods. After initialization, the assigned-once objects are

shared among different threads but no thread will write

the fields of these objects. Such objects do not really in-

troduce non-determinism to Java applications. Accord-

ing to our evaluation, assigned-once objects are very

common in the JVM. For example, the switch table ob-

jects generated by Javac, class objects, string objects, and

most of the final arrays are assigned-once objects.

To eliminate such unnecessary recording of object ac-

cess timelines, an offline preparation phase is introduced

to analyze the target application and annotate the Java

bytecode. Recording/replaying phase of ORDER can

adopt annotations from bytecode and eliminate unnec-

essary recordings.

Accesses to these two kinds of objects can be iden-

tified by inter-procedure analysis. We use escape anal-

ysis [7] to find thread-local objects. The original es-

cape analysis algorithm introduces three escape states.

Each state represents a certain kind of object: NoEscape

means that objects allocated by a certain allocation site

are method-local objects, which do not escape outside

this method. ArgEscape represents the objects that are

exposed to other functions, but they are not visible to

different threads. GlobalEscape means that objects are

shared among threads. However, because GlobalEscape

does not contain read/write information, the original es-

cape analysis cannot identify assigned-once objects. In

ORDER, we apply the following modifications to the

original algorithm so that assigned-once objects can be

identified:

• A new escape state Shared-Write is introduced. Ob-

ject nodes in the connection graph are set to such a

state when: 1) Objects allocated by the correspond-

ing new site can be global escaped; 2) Write opera-

tions may be applied to these objects after they are

shared among threads.

• The read/write states of phantom object nodes,

which represent the reference to object nodes that

are not allocated in the local method, are traced.

It can be Read-Only or Read-Write which means

whether the corresponding objects can be written
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1:if(entry.klass.get()==this 
&& name.equals(entry.name))

Thread 1(t1) Thread 2(t2)

timeline (entry)
(t1,2)

(t2,1)

(t1,1)

header
AT: 1
AC: 1

timeline (entry)

(t2,1)

(t1,1)

header
AT: 2
AC: 1

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1) Thread 2(t2)

thread 
blocked

1:if(entry.klass.get()==this
&& name.equals(entry.name))

Thread 1(t1) Thread 2(t2)

timeline (entry)
(t1,2)

(t2,1)

(t1,1)

header
AT: 1
AC: 2

1:if(entry.klass.get()==this 
&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

2:entry.method.get()

timeline (entry)

(t1,1)

header
AT: 1
AC: 1

CTID: 1

CTID: 1

CTID: 1 CTID: 1

(a)

(b)

(c) (d)

Figure 6: Replay mode of ORDER.

in the current method. When a new phantom node

is created, its read/write state is set to Read-Only.

In intra-procedure analysis, if a write operation is

applied to p, the read/write states of all phantom

object nodes pointed by p are switched to Read-

Write. Because read/write state is only attached to

phantom object nodes, they are finally marked as

assigned-once objects if their read/write states are

Read-Write.

• The read/write information is used to identify

assigned-once objects. It affects the escape state

in the following way. First, we modify the transfer

function of escape state in intra-procedure analysis

that if a certain node is already Global-Escape and

a write operation is encountered, its escape state is

set to Shared-Write. Second, in the inter-procedure

merge function, when a Read-Write phantom object

node is merged to a Global-Escape normal object

node, which means that globally shared objects can

be modified outside the allocation function, the es-

cape state of this normal object node is changed to

Shared-Write.

To avoid eliminating necessary timeline records, our

offline analysis algorithm is conservative. Specifically,

when an object node might possibly be exposed to exter-

nal code, its escape state is automatically set to Shared-

Write.

3.2.4 Log Compression

The raw log recorded by ORDER contains object ac-

cess timelines of all recorded objects. Although inter-

procedure escape analysis can eliminate some unneces-

sary timeline records, ORDER still records many thread-

local or assigned-once objects due to the imprecision of

the analysis algorithm. Timeline records of such objects

does not help to correct deterministic replay in the re-

play phase. Thus, we apply a timeline filter to eliminate

these unnecessary object access timelines. The timeline

filter analyzes the timeline information in the log and fil-

ters out the following ones: a) Timeline that has only one

occurrence; b) Timeline that has only one occurrence of

read-write in the beginning. Besides, timelines which

have several occurrences of read-write in the beginning

are partially eliminated. We reserve the leading read-

write occurrences and eliminate the following read-only

ones. The log compressor costs short time and can be

processed by an idle core, and it can be applied either

offline or online in GC. Currently, ORDER applies it of-

fline and we plan to apply this filter online in the future.

3.3 Other Non-determinism in JVM

Some sources of non-determinism are common for both

Java and native code, while the JVM additionally in-

troduces sources of non-determinism such as garbage

collection, adaptive compilation and class initialization.

In the following, we describe each source of non-

determinism and how ORDER handles it.

3.3.1 Common Non-determinism in Java and

Native Code

Lock acquisition: When two threads are competing on

the same lock, the order of lock acquisition is an im-

portant source of non-determinism. Thus, it is neces-
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sary to record/replay the lock acquisition/release order.

The Java programming language provides two basic syn-

chronization idioms: synchronized methods and syn-

chronized statements, each of which is ensured by main-

taining a corresponding critical section in the JVM. In

ORDER, entering a critical section is treated as an ac-

cess to the corresponding object. Besides, JVM also

provides explicit locks and atomic operations in pack-

age java.util.concurrent. Likewise, ORDER treats these

operations as accesses to the lock objects.

Signal: Similar to C/C++ programs, signals also cause

non-deterministic behavior in Java applications. In JVM,

they are usually wrapped to wait, notify, and interrupt

operations for threads. Leveraging their non-preemptive

nature, ORDER records the return values and status of

the pending queue instead of the triggering time. Java

developers can write preemptive signal handlers by using

the “sun.misc.SignalHandler” interface, though they are

neither officially supported according to Sun, nor sup-

ported by many state-of-the-art Java Virtual Machines.

By tracing and recording the timeline status of the cur-

rent active object, which is the last accessed object in

the current thread, non-determinism in such libraries can

also be reproduced by ORDER.

Program Input: Different input may generate dif-

ferent program behavior. ORDER records this non-

determinism by logging the content of input to Java pro-

grams.

Library invocation : Some methods of the Java

library, like System.getCurrentTimeMillis() and meth-

ods in Random/SecureRandom classes, generate non-

deterministic return values. ORDER logs the return val-

ues of these methods to ensure determinism. Besides,

non-deterministic events in native libraries are exposed

to Java applications through lock acquisition, signal, in-

put, garbage collection, class initialization, and the non-

deterministic Java libraries. They are handled in OR-

DER as we covered in the corresponding sources of non-

determinism.

Configuration of OS/JVM : To ensure that the envi-

ronment setting of a record run is consistent with that

of a replay run, ORDER records the configuration of

OS/JVM and reproduces the recorded configuration in

the replay run.

3.3.2 Unique Non-determinism in JVM

Garbage collection: Garbage collection is another

source of non-determinism in the JVM. In multi-threaded

Java applications, different order of object allocations

across threads may cause different heap layout in mem-

ory, which then causes different collector behavior. As

a result of the object-centric recording of data accesses,

ORDER does not need to record dependencies intro-

duced by GC. However, GC can affect the behavior of

Java applications through several interfaces. To record

such non-determinism, ORDER logs interfaces between

GC threads and Java threads. Since most interface invo-

cations are triggered by JVM, non-determinism should

be recorded according to the JVM inner mechanism. We

will discuss the detail later in section 4.

Adaptive Compilation : Adaptive compilation,

which is also known as incremental compilation, recom-

piles methods if they are frequently invoked. Behav-

ior of adaptive compilation relies on the profiling re-

sult of program execution. Because the profiling result

varies in different executions, the behavior of adaptive

compilation is also non-deterministic. Reproducing non-

determinism caused by adaptive compilation can be sup-

ported by recording virtual machine states and profiling

results introduced by Ogata et al. [24].

Class Initialization : When JVM resolves and initial-

izes a class, static fields of this class are commonly ini-

tialized by the thread resolving the class. Thus, which

thread first invokes the class resolution method may af-

fect the behavior of Java applications. ORDER records

the resolution and initialization thread identifier, and en-

sures that the same thread first enters the class resolution

method in the replay run.

3.4 Discussions

Coverage of non-determinism: To our knowledge,

ORDER is the first deterministic replay system which

records non-determinism introduced by the Java run-

time, such as GC, class initialization, etc. Moreover,

unlike JaRec and LEAP, ORDER not only captures non-

deterministic lock acquisition or data access interleaving

outside JVM library, but also records non-deterministic

events inside the library. Although recording such non-

deterministic events incurs additional runtime overhead,

we believe they are necessary and essential to deter-

ministic replay systems. As discussed in LEAP, some

bugs may not be reproducible due to the ignoring of

these non-deterministic events. More importantly, loss of

such non-determinism may unexpectedly deadlock nor-

mal program execution due to the inconsistent execution

between recorded execution and replaying one. When

replaying long-running Java applications, the replay sys-

tem may deadlock itself before the buggy instruction is

encountered.

Transitive log reduction: The timeline recorded by

ORDER is already the smallest set of object access in-

terleavings, which does not need to be further optimized

by transitivity reduction [23]. Currently, ORDER does

not separate conflicts from read-read dependencies. Our

evaluation results in section 5 show that tracing timeline

incurs much more overhead than swapping logs to disk.

Though identifying conflicts from read-read dependen-

cies can further reduce log swapping overhead, which
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is already very small, it will notably increase the com-

plexity of timeline tracing logic. Thus, ORDER does not

apply complex conflict-based reduction algorithm like

SMP-Revirt [12].

4 ORDER Implementation

We have implemented a prototype of ORDER based on

Apache Harmony [1]. We add several new instrumen-

tation phases into Harmony compilation pipeline to sup-

port deterministic replay. Besides, the default garbage

collector of Harmony (Generational GC with default

configuration for each object space) is modified to record

final timeline of each object. We also modify Soot[31] to

annotate thread-local or assigned-once object accesses in

methods. Such annotation is attached to Java bytecode

as a new attribute, which can be simply discarded if the

target JVM does not support ORDER. Thus, it does not

affect the portability of original Java application. Be-

cause preemptive handlers are currently not implemented

in Apache Harmony, the current version of ORDER

does not handle the corresponding non-determinism. In

the following sections, we discuss how ORDER records

non-determinism and cooperates with native code in Har-

mony.

4.1 Modification to Harmony Compilation

Pipeline

Harmony uses pipelines to manage compilation configu-

ration of Java methods. In Harmony, every pipeline con-

tains a set of actions each of which represents a single

analysis or optimization of Java methods. The instru-

mentation processes of record and replay phase are im-

plemented as two actions separately in ORDER. Besides,

if adaptive compilation is enabled, two or more pipelines

can be assigned to a single method. Then, when a method

is frequently invoked, it can be recompiled with a more

aggressive pipeline. Whether adaptive compilation is en-

abled or not only affects the performance of Java ap-

plication and does not affect the bug reproducibility of

ORDER. Thus, the current prototype of ORDER dis-

ables adaptive compilation to reduce engineering effort

and uses a single compilation pipeline. Type/copy prop-

agation, constant folding, dead/unreachable code elimi-

nation, devirtualization and all platform dependent opti-

mizations except peephole and fast array filling [3] are

enabled in the selected pipeline.

4.2 Recording GC in Harmony

Although garbage collection is an important source of

non-determinism in the JVM, it rarely affects the be-

havior of Java applications. ORDER does not record

garbage collection activity in Harmony, but only records

the following interfaces between garbage collection

threads and Java threads:

1. After garbage collection, dead objects that have fi-

nalization methods should be finalized. The order

that the finalization methods are invoked depends

on heap layout and garbage collection algorithm.

In Harmony, finalizable objects are enqueued to a

specific object queue after garbage collection. Fi-

nalizing threads extract objects from the queue and

invoke their finalize methods. ORDER records the

order they are extracted from the queue and repro-

duces the recorded order in replay run.

2. In Java, weak/soft/phantom reference represents

several strengths of ”non-strong” object instances,

and they are collected in GC according to the mem-

ory usage. After GC, JVM notifies the queue of

weak reference objects that the status of corre-

sponding weak objects may be changed by garbage

collection. Likewise, queues of soft/phantom ref-

erence objects are notified in the same way. The

size of weak/soft/phantom reference set depends

on runtime heap status. Like finalization, Har-

mony maintains a references to enqueue queue to

link the reference enqueue thread with Java threads.

The order these objects are extracted from refer-

ences to enqueue queue is recorded.

3. Java applications can explicitly invoke method Run-

time.freeMemory to query the size of free memory

from JVM. Different heap layouts result in different

free memory sizes during execution. Because this

method has no side effect, ORDER only records the

return value of it.

4.3 Cooperating with JVM Native Code

ORDER uses dynamic instrumentation to guarantee that

the replay run has the same object access timeline as the

recorded run has. Although execution behavior of Java

code is deterministic with the help of instrumentation,

the execution behavior of JVM native code is still non-

deterministic. ORDER records non-deterministic events

of JVM native code that will cause non-deterministic be-

havior of Java applications, and ignores those not really

affecting Java applications. ORDER should cooperate

properly with ignored JVM native code so that the in-

consistency between them will not introduce deadlock.

The internal suspend-resume mechanism of Harmony

does not affect application behavior. Thus, it is ignored

by ORDER. In Harmony, when enumerating the root

set of the Java heap, GC threads suspend Java threads

in order to get a consistent snapshot of the Java heap.

When Java threads are about to enter enable-suspend

state (named safe-point or safe-region), it must record

the status of the current stack frame so that GC threads

can obtain a complete set of live objects. However,

frequently recording stack frame information is costly
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and worsens performance. In Harmony, safe-point/safe-

region is only invoked at call sites or certain system calls

(e.g., sleep). ORDER blocks Java threads when they

are about to violate the recorded object access timeline.

When the blocked time of a Java thread is beyond a

threshold (500ms), it prepares its own stack frame in-

formation and enters the enable-suspend state. When a

Java thread enters the enable-suspend state, it can be eas-

ily suspended by other threads. The Java thread exits the

enable-suspend state when it does not violate recorded

timeline further.

5 Evaluation Results

In this section, we evaluate the performance slowdown

of ORDER. We use an Intel Xeon machine with 4 quad-

core 1.6Ghz CPUs and 32 GB physical memory, which

runs a Linux with kernel version 2.6.26. We show the

results for the SPECjvm2008 suite except sunflow, derby

and xml.transform. One of them, sunflow, failed to be

compiled by original Apache Harmony m12, and two of

them (derby and xml.transform) failed to be compiled

because adaptive compilation is disabled. The original

SPECjbb2005 runs for a fixed amount of time and is not

suitable for evaluating performance slowdown. To en-

sure a fixed workload, we evaluate a variant one called

Pseudojbb2005, which runs for a fixed number of trans-

actions (100000).

5.1 Slowdown in Record Phase

Figure 7 depicts the performance slowdown of record

phase in ORDER. All benchmarks are run with 16

threads to evaluate the performance slowdown. To show

the effect of eliminating unnecessary timeline recording,

performance before and after this optimization are both

presented (before-opt vs. after-opt). In the raw recording

system, although most of the applications have perfor-

mance slowdown of less than 8 times and overhead of

some benchmarks is even lower than 100%, the slow-

down rises up to 82x in an extreme case (compress).

Compared to the raw system, performance after elimi-

nating unnecessary timeline recording is much better. As

shown in Figure 7, after optimization, the record over-

head of ORDER is less than 8 times in all cases, even in

compress. ORDER incurs an average of 108% overhead

compared to the original execution run. Actually, the op-

timized version of ORDER introduces less than 100%

overhead for most of the benchmarks, which means that

it may be efficiently used for many applications. If not

specifically mentioned, all results below are collected un-

der optimized ORDER system.

Moreover, we evaluated three more configurations of

ORDER to investigate the source of overhead in OR-

DER: raw Apache Harmony without adaptive compila-

tion (wo adaptive), ORDER without recording timeline

(wo timeline), and ORDER without swapping timeline

log to disk, i.e., the timeline records are stored only

in memory (wo disk). As shown in Figure 7, the per-

formance of most applications (except JRuby) after dis-

abling adaptive compilation is very close to the original

JVM. On average, there is a 5.8% performance differ-

ence, which means performance impact of adaptive com-

pilation is insignificant in most cases. Besides, the per-

formance of ORDER is similar whether disabling disk

operations for timeline logs or not. These two configu-

rations introduce a slowdown of about 104% and 108%

correspondingly. This shows that overhead of disk op-

eration is also small. Further, when disabling timeline

recording as a whole, ORDER introduces only 16% over-

head on average. This confirms that the major perfor-

mance overhead of ORDER comes from tracing timeline

in memory.
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Figure 8: Performance slowdown of record phase in OR-

DER and LEAP. 16 threads are used to evaluate the per-

formance slowdown.

Figure 8 depicts the performance of ORDER com-

pared to LEAP[15]. Because the static instrumentation

approach does not support reflection, LEAP cannot prop-

erly instrument Java code of original SPECjvm2008 or

SPECjbb2005. To evaluate the performance of LEAP, we

manually replace the reflection mechanism in scimark,

mpegaudio, and compress with direct method invocation.

We found that when recording mpegaudio, compress,

scimark.monte carlo or scimark.fft.large, LEAP either

throws an OutOfMemoryError or does not finish in two

hours. Results of JRuby are also not presented here be-

cause LEAP throws NULLPointerException in static in-

strumentation phase. The performance result just serves

as a reference because LEAP records non-determinism in

neither library code nor Java runtime. As shown in Fig-

ure 8, although ORDER records more non-deterministic

events than LEAP, ORDER is still 1.4x to 3.2x faster than

LEAP in the evaluated benchmarks.

By reducing the strength of synchronization, ORDER

notably improves the scalability of recording interleaved

object accesses in Java applications. Figure 9 shows the

performance slowdown of ORDER when the number of

threads varies from 1 to 16. Overall, ORDER scales well.
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Figure 9: Performance slowdown of record phase when the number of threads varies from 1 to 16.

Most of the cases have similar performance slowdown

while the number of threads increases. With the number

of threads increasing, only one case in SPECjvm2008

(mpegaudio) has an obvious increase of performance

slowdown. The increased number of object access inter-

leavings degrades the performance in this case. Mean-

while, we observed that there are still many assigned-

once objects recorded in this case, which is caused by the

conservativeness of assigned-once analysis, and they can

be further eliminated by improving the precision of anal-

ysis algorithm. For some applications such as compiler

and crpto.aes, when we increase the number of threads,

the recording overhead even decreases. Despite the re-

duced contention of ORDER, this anomaly is also af-

fected by the following two reasons: 1) As discussed

in Yi et al. [34], some benchmarks themselves are not

scalable, like compiler; 2) Instrumentation of ORDER

increases the complexity of intermediate representation,

thus introduces additional overhead to analysis and opti-

mizations in Harmony; such overhead is amortized when

the number of threads increases.

5.2 Slowdown in Replay Phase

Similarly, ORDER uses dynamic instrumentation in Har-

mony to implement the replay phase. Thus, instrumen-

tation of replay phase causes similar performance slow-

down to record phase. Besides, blocking threads to en-

sure correct timeline will introduce additional overhead.

Figure 10 depicts the replay slowdown of ORDER. For

most of the selected benchmarks, the performance of re-

play phase is scalable from 1 to 16 threads, with four

exceptions(xml.validation, serial, mpegaudio, and Pseu-

dojbb2005). In these four applications, with the num-

ber of threads increasing, performance slowdown also

increases because Java threads are frequently blocked.

Currently the prototype of ORDER uses a naive imple-

mentation of thread scheduler, which can be further en-

hanced to speedup replay phase performance.

5.3 Log Size

Besides the performance overhead, many state-of-the-

art deterministic replay systems also suffer from large

space overhead. To record interleaved data accesses on
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Figure 10: Performance slowdown of replay phase when the number of threads varies from 1 to 16.

multi-processor architecture, deterministic replay sys-

tems usually need to record tens of Gigabytes logs per

Hour(g/h) [12, 15]. Although the disk capacity today is

large enough to store log files, it is hard to share such

large data on network. If we want to report a concur-

rency bug to the corresponding community, uploading a

log file with tens of gigabytes is obviously not attractive.

Table 2 shows that the log size of ORDER is very

small. In most cases, it generates a log file less than

100 Megabytes per Hour(m/h), which is considerably

smaller than those reported in other deterministic replay

systems[12, 15]. Only two cases (serial and Pseudo-

jbb2005) generate log files that are greater than 1 Giga-

bytes per Hour. We notice that most of the logged inter-

leavings of serial relate to contention for a single global

buffer in the original application, which is introduced

by a producer-consumer scenario. Most of the logged

interleavings in Pseudojbb2005 are caused by the false

sharing between different static fields in the same class,

which occurs because prototype of ORDER does not dis-

tinguish accesses to the same class object. However, such

a log size is still much smaller than those reported in pre-

vious literatures [12, 15].

5.4 Concurrency Bug Reproducibility

To confirm the reproducibility of ORDER on concur-

rency bugs, we reproduce six real-world concurrency

bugs from open source projects with ORDER. The char-

acteristics of these concurrency bugs are listed in Table

3. These cases cover three major categories of concur-

rency bugs reported by Lu et al. [18]. By replaying the

recorded logs, the buggy executions are successfully re-

produced in replay phase. Among the bugs, JRuby-2483

is caused by using thread unsafe library code, which

fails to be reproduced in a static instrumentation ap-

proach [15].

Case Log Size Log Size

(timeline) (others)

compiler.compiler 88(m/h) 35(m/h)

compiler.sunflow 61(m/h) 58(m/h)

scimark.fft.small 0.60(m/h) 10(m/h)

scimark.fft.large 0.47(m/h) 7(m/h)

scimark.lu.small 0.37(m/h) 6(m/h)

scimark.lu.large 0.35(m/h) 5(m/h)

scimark.sor.small 2(m/h) 40(m/h)

scimark.sor.large 0.68(m/h) 11(m/h)

scimark.sparse.small 2(m/h) 36(m/h)

scimark.sparse.large 0.56(m/h) 10(m/h)

scimark.monte-carlo 0.013(m/h) 0.22(m/h)

compress 4(m/h) 44(m/h)

crypto.aes 1.4(m/h) 9(m/h)

crypto.rsa 26(m/h) 6(m/h)

crypto.signverify 10(m/h) 8(m/h)

mpegaudio 511(m/h) 2(m/h)

serial 1553(m/h) 121(m/h)

xml.validation 632(m/h) 31(m/h)

Pseudojbb2005 1085(m/h) 550(m/h)

JRuby 0.8(m/h) 170(m/h)

Table 2: Log size of ORDER, in 16-thread execution.

6 Related Work

State-of-the-art deterministic replay for Java: State-

of-the-art deterministic replay systems for Java applica-

tions use the strategy called “logical thread scheduling”

to record multi-threaded Java execution [28, 9, 30]. As

mentioned in Dejavu [9], “logical thread scheduling” is

based on a global clock (i.e., time stamp) for the en-

tire application. This strategy works efficiently in uni-

processor platforms. However, global clock among cores

needs to be synchronized frequently, which imposes con-

tention to a single global lock. There are currently no

scalable deterministic replay systems based-on such an

approach for multi-processor platforms.

JaRec [13] assumes that Java applications are data-
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Bug ID Category Bug description

JRuby-931 atomic Non-atomic traversing

violation of container triggers

ConcurrentModification-

Exception.

JRuby-1382 atomic Non-atomic read from

violation memory cache causes

system crash.

JRuby-2483 atomic Concurrency bug caused by

violation using thread unsafe library

code.

JRuby-879 order Listing threads before thread

JRuby-2380 violation is registered causes

non-deterministic result.

JRuby-2545 deadlock Lock on the same object

twice causes deadlock.

Table 3: Real-world concurrency bugs reproduced by

ORDER. Each of them comes from open source com-

munities and causes real-world buggy execution.

race free programs and records only the lock acquisition

order, which cannot be used to reproduce concurrency

bugs caused by data races. LEAP [15] records non-

determinism introduced by data accesses through static

recompilation and instrumentation, which cannot cover

external code, such as libraries or class files dynamically

loaded during runtime. Thus, it cannot reproduce con-

currency bugs caused by these missing parts. None of

the existing deterministic replay systems can reproduce

bugs caused by non-determinism inside JVM. Further-

more, LEAP does not distinguish instances of the same

class, and the false sharing between different objects may

lead to large performance overhead when a class is mas-

sively instantiated.

There are also several proposed approaches to improve

efficiency and scalability of deterministic replaying na-

tive code written in C/C++. They can be grouped into

two sets according to how they record non-deterministic

data accesses:

Software deterministic replay for native code: Uni-

processor deterministic replay systems [5, 33] record in-

terrupt boundaries and input payloads, which are proven

useful in bug diagnosis and intrusion detection. How-

ever, state-of-the-art systems use multiple CPUs with

shared memory data access. Such an additional source of

non-determinism makes efficient recording difficult for

software.

Several approaches are proposed to reduce the syn-

chronization overhead and performance slowdown in-

troduced by memory race recording. Transitive Reduc-

tion [23] is proposed to reduce the log size by apply-

ing transitivity-based log reduction to log files generated

by deterministic replay system. It can also reduce the

synchronization overhead in the replay phase. However,

such an approach still needs to use global clock and can-

not reduce synchronization overhead in record phase.

SMP-Revirt [12] modifies the page protection mecha-

nism for recording non-deterministic data access events.

By using page as the granularity to track dependencies,

SMP-Revirt achieves a low performance overhead in ar-

chitectures with 1 to 2 cores. However, because they

record a very large granularity of data sharing, its per-

formance drops significantly when number of cores is

increased to 4. In order to mitigate thrashing caused by

frequent transfers of page ownership, SCRIBE [16] de-

fines a minimal ownership retention interval and disal-

lows ownership transitions until the interval expires. Al-

though it notably relieves the contention among threads,

the extended interval of page ownership makes it difficult

to capture atomic violation bugs in record run.

PRES and ODR [26, 4] record partial information

in record phase and use an offline reproducer to infer

the race occurred in the record phase. Because only a

part of the execution information is recorded, they can

achieve a low performance slowdown. However, the re-

producibility depends heavily on how much information

is recorded, and the proper scheme to record information

is hard to decide. Although recording less information

can reduce performance overhead, the recorded execu-

tion may not be reproducible.

Hardware-assisted deterministic replay: Since soft-

ware based deterministic replay systems usually impose

large performance overhead, hardware-assisted deter-

ministic replay systems [6, 14, 17, 19, 20, 21, 22, 32]

are proposed to modify hardware components for record-

ing data access conflicts efficiently. Many such systems

apply optimizations to further reduce record overhead

and log size. However, they impose non-trivial hardware

complexity and there are still no commercially available

processors built with these features.

7 Conclusion and Future work

This paper presented ORDER, the first object-centric de-

terministic replay system for concurrent Java applica-

tions on multicore. ORDER recorded interleaved data

accesses in Java applications by tracking how each thread

accesses each object and enforced such a constraint dur-

ing replay. By dynamically instrumenting Java code in

the compilation pipeline, ORDER naturally covered non-

determinism in dynamically loaded classes and libraries.

Evaluation results showed that ORDER achieved good

performance and scalability for a range of benchmarks,

which notably outperformed LEAP, a state-of-the-art de-

terministic replay system for Java. Bug reproducibility

study further showed that ORDER successfully repro-

duced several real-world concurrency bugs.

While ORDER has demonstrated the efficiency and



354 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

effectiveness of recording and replay concurrent Java

programs, there are still plenty of optimization spaces,

which will be our future work. First, timeline filter of

unnecessary dependencies is currently applied offline,

and applying it online can reduce space overhead and

eliminate unnecessary disk operations in the recording

phase. Second, we plan to combine ORDER with tech-

niques that cover the non-determinism in adaptive opti-

mization [24] to enable adaptive optimization for JVM.

Finally, we plan to combine ORDER with an object-level

checkpointing mechanism to further reduce log size, and

extend ORDER with some selective tracking mecha-

nisms to focus on only interested objects, to further re-

duce performance overhead.
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Abstract
Several cloud storage systems exist today, but none of

them provide security guarantees in their Service Level
Agreements (SLAs). This lack of security support has
been a major hurdle for the adoption of cloud services,
especially for enterprises and cautious consumers. To fix
this issue, we present CloudProof, a secure storage sys-
tem specifically designed for the cloud. In CloudProof,
customers can not only detect violations of integrity,
write-serializability, and freshness, they can also prove
the occurrence of these violations to a third party. This
proof-based system is critical to enabling security guar-
antees in SLAs, wherein clients pay for a desired level
of security and are assured they will receive a certain
compensation in the event of cloud misbehavior. Further-
more, since CloudProof aims to scale to the size of large
enterprises, we delegate as much work as possible to the
cloud and use cryptographic tools to allow customers to
detect and prove cloud misbehavior. Our evaluation of
CloudProof indicates that its security mechanisms have
a reasonable cost: they incur a latency overhead of only
∼15% on reads and writes, and reduce throughput by
around 10%. We also achieve highly scalable access
control, with membership management (addition and re-
moval of members’ permissions) for a large proprietary
software with more than 5000 developers taking only a
few seconds per month.

1 Introduction
Storing important data with cloud storage providers

comes with serious security risks. The cloud can leak
confidential data, modify the data, or return inconsistent
data to different users. This may happen due to bugs,
crashes, operator errors, or misconfigurations. Further-
more, malicious security breaches can be much harder
to detect or more damaging than accidental ones: exter-
nal adversaries may penetrate the cloud storage provider,
or employees of the service provider may commit an in-
sider attack. These concerns have prevented security-
conscious enterprises and consumers from using the
cloud despite its benefits [16].

These concerns are not merely academic. In June
2008, Amazon started receiving public reports that data

on its popular Simple Storage Service (S3) had been cor-
rupted due to an internal failure; files no longer matched
customers’ hashes [11]. One day later, Amazon con-
firmed the failure, and cited a faulty load balancer that
had corrupted single bytes in S3 responses “intermit-
tently, under load.” Another example of data security
violation in the cloud occurred when Google Docs had
an access-control bug that allowed inadvertent sharing of
documents with unauthorized readers [28]. Even worse,
LinkUp (MediaMax), a cloud storage provider, went out
of business after losing 45% of client data because of ad-
ministrator error.

None of today’s cloud storage services—Amazon’s
S3, Google’s BigTable, HP, Microsoft’s Azure, Nirvanix
CloudNAS, or others—provide security guarantees in
their Service Level Agreements (SLAs). For example,
S3’s SLA [1] and Azure’s SLA [23] only guarantee avail-
ability: if availability falls below 99.9%, clients are re-
imbursed a contractual sum of money. As cloud storage
moves towards a commodity business, security will be
a key way for providers to differentiate themselves. In
this paper, we tackle the problem of designing a cloud
storage system that makes it possible to detect violations
of security properties, which in turn enables meaningful
security SLAs.

The cloud security setting is different from the set-
ting of previous secure storage or file systems research.
The first difference is that there is a financial contract
between clients and the cloud provider: clients pay for
service in exchange for certain guarantees and the cloud
is a liable entity. In most previous work [3, 4, 10, 20],
the server was some group of untrusted remote machines
that could not guarantee any service. The second differ-
ence is that scalability is more important, as it is one of
the primary promises of the cloud. Enterprises are impor-
tant customers for the cloud; they have many employees
requiring highly scalable access control and have large
amounts of data.

We identify four desirable security properties of cloud
storage: confidentiality, integrity, write-serializability,
and read freshness (denoted by C, I, W, F). If a cus-
tomer has such security guarantees, his data is confiden-
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tial, cannot be modified by any unauthorized party, is
consistent among updates made by authorized users, and
is fresh as of the last update.

We design, build, implement, and evaluate Cloud-
Proof, a secure and practical storage system specifically
designed for the cloud setting. Our first novelty is the
idea and the mechanism of enabling customers to prove
to third parties when the cloud violates the IWF proper-
ties. (Confidentiality is not included because customers
can provide it to themselves by encrypting the data they
store on the cloud.) This enabling of proofs is in ad-
dition to detecting the violations and is not present in
previous work. It includes the fact that the cloud can dis-
prove false accusations made by clients; that is, in Cloud-
Proof, clients cannot frame the cloud. We believe that
such proofs are key to enabling security in SLAs with re-
spect to these three properties. Customers and cloud can
now establish a financial contract by which clients pay
a certain sum of money for the level of security desired;
customers have assurance that the cloud will pay back
an agreed-upon compensation in case their data security
is forfeited because they can prove this violation. With-
out such proofs, the cloud can claim a smaller amount of
damage to protect itself against significant financial loss
and clients can falsely accuse the cloud. These proofs
are based on attestations, which are signed messages that
bind the clients to the requests they make and the cloud
to a certain state of the data. For every request, clients
and cloud exchange attestations. These attestations will
be used in a lightweight auditing protocol to verify the
cloud’s behavior.

The second novelty is CloudProof, the system as a
whole, in which we put engineering effort to maintain
cloud scalability while detecting and proving violations
to all three IWF properties and providing access control.
Previous work did not provide detection for both write-
serializability and freshness at the same time. In addi-
tion, most related work has not been designed with cloud
scalability in mind and we argue that they are not read-
ily extendable to provide it. Our design principle is to
offload as much of the work as possible to the cloud,
but verify it. Therefore, access control, key distribu-
tion, read, write, file creation, and ensuring the afore-
mentioned security properties are delegated to the cloud
to the extent possible. To enable this delegation, we em-
ploy cryptographic tools from the literature: to achieve
scalable access control, we use in a novel way key rolling
and broadcast encryption. We also have a novel way to
group data by access control list into “block families”
that allows us to easily handle changes in access control.

CloudProof targets most applications that could bene-
fit from the cloud: large departmental or enterprise file
systems, source code repositories, or even small, per-
sonal file systems. These tend to be applications that can

tolerate larger client-cloud latency (which is an inher-
ent result of the different geographic locations of various
clients/organizations with respect to the cloud). Yet, a
surprising number of applications benefit from the cloud.
For example, the Dropbox service uses S3 storage to
provide backup and shared folders to over three million
users. The SmugMug photo hosting service has used S3
since April 2006 to hold photos, adding ten terabytes of
data each month without needing to invest in dedicated
infrastructure. AF83 and Indy500.com use S3 to hold
static web page content.

Any security solution for cloud storage must have a
limited performance impact. We have prototyped Cloud-
Proof on Windows Azure [22]. In Section 9 we report ex-
periments that measure the latency and throughput added
by CloudProof compared to the storage system without
any security. In microbenchmarks, for providing all four
of our properties, we add ∼0.07s of overhead (∼15%)
to small block reads or writes, and achieve only ∼10%
throughput reduction and 15% latency overhead for mac-
robenchmarks. One can audit the activity of a large com-
pany during a month in 4 min and perform membership
changes (adding and revoking member permissions) for
a source code repository of a very large proprietary soft-
ware that involved more than 5000 developers in a few
seconds per month. Overall, our evaluations show that
we achieve our security properties at a reasonable cost.

2 Setting
CloudProof can be built on top of conventional cloud

storage services like Amazon S3 or Azure Blob Storage.
The storage takes the form of key-value pairs accessed
through a get and put interface: the keys are block IDs
and the values are the contents of the blocks. Blocks can
have any size and can vary in size.
There are three parties involved in CloudProof:
1. (Data) owner: the entity who purchases the cloud

storage service. A data owner might be an enterprise
with business data or a home user with personal data.

2. Cloud: the cloud storage provider.
3. (Data) users: users who are given either read or write

access to data on the cloud. A user might be an em-
ployee of an enterprise or family members and friends
of a home user.
The data owner is the only one allowed to give ac-

cess permissions to users. The access types are read and
read/write. Each block has an access control list (ACL),
which is a list of users and their accesses to the block.
(One can easily implement a group interface by organiz-
ing users in groups and adding groups to ACLs.) When
talking about reading or modifying a block, a legitimate
user is a user who has the required access permissions to
the block. We assume that the data owner and the cloud
have well-known public keys, as is the case with existing
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providers like Amazon S3.

2.1 Threat Model
The cloud is entirely untrusted. It may return arbitrary

data for any request from the owner or any user. Further-
more, the cloud may not honor the access control lists
created by the owner and send values to a user not on the
corresponding access control list. A user is trusted with
the data he is given access to. However, he may attempt
to subvert limits on his permission to access data, possi-
bly in collusion with the cloud. An owner is trusted with
accessing the data because it belongs to him. However,
the users and the owner may attempt to falsely accuse the
cloud of violating one of our security properties.

We make standard cryptographic assumptions for the
tools we use: existential unforgeability under cho-
sen message attack for public-key signature schemes,
collision-resistance and one-way function property for
hash functions, and semantic security for symmetric en-
cryption schemes.

2.2 Goals
Let us first define the security properties CloudProof

provides. Confidentiality (C) holds when the cloud or
any illegitimate user cannot identify the contents of any
blocks stored on the cloud. Integrity (I) holds when each
read returns the content put by a legitimate user. For
example, the cloud cannot replace some data with junk.
Write-serializability (W) holds when each user commit-
ting an update is aware of the latest committed update to
the same block. W implies that there is a total order on
the writes to the same block. Freshness (F) holds if reads
return the data from the latest committed write. Note that
we cannot guarantee that each block retrieved was the
most recently received by the cloud, because, upon two
parallel writes to the block, the cloud can pretend to have
received them in a different order or network delays can
arbitrarily reorder such requests. Instead, we aim to guar-
antee that the last committed write (for which the cloud
acknowledged receipt to the client, as we will see) will
be visible during read. A violation to the security of a
user is when the IWF properties do not hold.

CloudProof has the following four goals.
Goal 1: Users should detect the cloud’s violations

of integrity, freshness, and write-serializability. Users
should provide confidentiality to themselves by encrypt-
ing the data they store on the cloud.

Goal 2: Users should be able to prove cloud viola-
tions whenever they happen. Any proof system has two
requirements: (1) the user can convince a third party of
any true cloud violation; and (2) the user cannot convince
a third party when his accusation of violation is false.

Goal 3: CloudProof should provide read and write ac-
cess control in a scalable (available) way. Since we are
targeting enterprise sizes, there may be hundreds of thou-

sands of users, many groups, and terabytes of data. We
want to remove data owners from the data access path
as much as possible for performance reasons. Owners
should be able to rely (in a verifiable way) on the cloud
for key distribution and access control, which is a highly
challenging task.

Goal 4: CloudProof should maintain the performance,
scalability, and availability of cloud services despite
adding security. The overhead should be acceptable com-
pared to the cloud service without security, and concur-
rency should be maintained. The system should scale to
large amounts of data, many users per group, and many
groups, since this is demanded by large enterprise data
owners.

In the remainder of this paper, we show how Cloud-
Proof achieves these goals.

3 System Overview
In this section, we present an overview of our system;

we will elaborate on each component in later sections.
CloudProof’s interface consists of get(BlockID

blockID) and put(BlockID blockID, byte[] content).
BlockID is a flat identifier that refers to a block on the
cloud. The get command reads content of a block,
while the put command writes in the block identified
by blockID. Creation of a block is performed using a
put with a new blockID and deletion is performed by
sending a put for an empty file. CloudProof works with
any cloud storage that exports the following key/value
store interface and can sign messages verifiable by other
parties using some known public key.

The design principle of CloudProof is to offload as
much work as possible to the cloud, but be able to verify
it. The cloud processes reads and writes, maintains data
integrity, freshness, and write-serializability, performs
key distribution (protected by encryption), and controls
write accesses. Users and the owner verify the cloud per-
formed these operations correctly.

We put considerable engineering effort into keeping
the system scalable. The data owner only performs group
membership changes and audits the cloud. Both tasks
are offline actions and lightweight, as we will see in Sec-
tion 9. Thus, the data owner is not actively present in
any data access path (i.e. put or get), ensuring the ser-
vice is scalable and available even when the data owner
is not. Moreover, access control is delegated to the cloud
or distributed. As part of access control, key distribution
is delegated in a novel way using broadcast encryption
and key rolling to the cloud: the data owner only needs
to change one data block when a user is revoked rather
than all the blocks the user had access to. Most data reen-
cryption is distributed to the clients for scalability. Im-
portantly, we strived to keep accesses to different blocks
running in parallel and avoided the typical serialization
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Figure 1: Layout of block formats in a family and of the key block. K
is the read access key, KS is the signing key, and KV is the verification
key. EF () means broadcast encryption to the authorized users in the
ACL of a certain block family. The block version is an integer for
each block that is incremented by one with every update to the block
committed on the cloud.

so often encountered in security protocols (e.g., compu-
tations of Merkle trees over multiple blocks upon data
write).

The key mechanism we use is the exchange of attes-
tations between the owner, users, and the cloud. When
users access cloud storage through the get or put inter-
face, each request and response is associated with an at-
testation. Attestations keep users and the cloud account-
able and allow for later proofs of misbehavior, as we dis-
cuss in Section 5.

We divide time into epochs, which are time periods
at the end of which data owners perform auditing. At
the end of each epoch, owners also perform membership
changes such as addition or removal of members. (Own-
ers can also change membership during an epoch and
clients will have to check if any keys have changed due
to revocations.) Each epoch has a corresponding epoch
number that increases with every epoch. If the system
uses fixed-length epochs, clients can easily derive the
current epoch identifier independently from the current
time.

Briefly, CloudProof detects and proves IWF violations
as follows. Clients check data integrity based on attesta-
tions they get from the cloud, as described in Section 6.
The owner checks W and F during the auditing process.
For auditing efficiency, each block has a certain proba-
bility of being audited in an epoch. During the epoch,
users send the attestations they receive from the cloud to
the owner. If they are disconnected from the owner, they
can send these attestations any time before the epoch’s
end; if they are malicious or fail to send them for any
reason, there is no guarantee that their gets returned cor-
rect data or their puts took effect. The owner uses these
attestations to detect any violations of WF and construct
a proof that convinces a third party whenever the cloud
misbehaved, as we will discuss in Section 7.

4 Access Control
In this section, we focus only on access control; as

such, we consider that the cloud does not modify the data
placed by authorized users and does not provide stale or
inconsistent views to users: we provide mechanisms to
enforce these properties separately in Sections 6 and 7.

If the owner adds or removes a user from the ACL of
a block, then that user gains or loses access to that block.

We introduce the term block family to describe the set

of all blocks that have the same ACL. If the owner of a
block changes its ACL, the block will switch to a differ-
ent family. Since all blocks in a family have identical
ACLs, when we need a key to enforce access control we
can use the same key for every block in a family.

As mentioned, the cloud is not trusted with access con-
trol. At the same time, having the owner perform ac-
cess control checks for every user get or put would be
costly and unscalable. We thus follow our design princi-
ple of verifiably offloading as much work as possible to
the cloud.

Read Access Control. To prevent unauthorized reads,
all the data stored on the cloud is encrypted with a secure
block or stream cipher, e.g., AES in counter mode. We
denote the secret key of the cipher as the read/get access
key. Clients with read access will have the key for de-
cryption as described in Section 4.1 and thus will be able
to access the data. Blocks in the same block family will
use the same read access key.

Write Access Control. We achieve write access con-
trol with a public key signature scheme, as follows. For
each block family, we have a public verification key and a
private signing key. The verification key is known to ev-
eryone, including the cloud, but the signing key is known
only to users granted write access by the ACL. Each time
a user modifies a block, he computes its integrity signa-
ture, a signature over the hash of the updated block us-
ing the signing key. He sends this signature along with
his write request, and the cloud stores it along with the
block. The cloud provides it to readers so they can verify
the integrity of the block.

Since the verification key is known to the cloud, it can
perform write access control, as follows. Whenever a
user attempts to update a block, the cloud verifies the sig-
nature and only allows the update if the signature is valid.
Note that, if the cloud mistakenly allows a write without
a valid signature, this failure will be detected by future
data users reading the block. The mechanism of attesta-
tions, described later, will allow those users to prove this
cloud misbehavior.

4.1 Key distribution
Our key distribution mechanism ensures that users can

acquire the keys they need to access the blocks they
are authorized to access. To offload as much work
as possible to the cloud, the cloud performs this key
distribution verifiably. We achieve this goal by em-
ploying in a novel way broadcast encryption and key
rolling. Broadcast encryption([5, 12]) allows a broad-
caster to encrypt a message to an arbitrary subset of a
group of users. Only the users in the subset can de-
crypt the message. Encrypting creates a ciphertext of size
O(

√
total no. of users in the group). Key rotation [18]

is a scheme in which a sequence of keys can be produced
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from an initial key and a secret master key. Only the
owner of the secret master key can produce the next key
in the sequence, but any user knowing a key in the se-
quence can produce all earlier versions of the key (for-
ward secrecy).

For each block family, the owner places one block on
the cloud containing the key information for that family.
This block is called the family key block. Only the data
owner is allowed to modify the family key block. Re-
call that all blocks in a family share the same ACL, so
each key block corresponds to a particular ACL that all
blocks in its family share. Figure 1 illustrates the layout
of blocks in a family and of the key block. The purposes
of the various terms in the figure are explained in the rest
of this section.

Using broadcast encryption, the data owner encrypts
the read access key so that only users and groups in the
ACL’s read set can decrypt the key. This way, only those
users and groups are able to decrypt the blocks in the
corresponding family. The data owner also uses broad-
cast encryption to encrypt the signing key so that only
users and groups in the ACL’s write set can decrypt the
key. This way, only those users and groups can generate
update signatures for blocks in the corresponding family.

We do not try to prevent a data user giving his read
access key for a block family to a data user who is not
authorized for that block family. The reason is that au-
thorized data users can simply read the information di-
rectly and give it to others. Solving this problem, e.g.,
with digital rights management, is beyond the scope of
this paper.

4.2 Granting/revoking access
The owner may want to revoke the access of some

users by removing them from certain groups or from in-
dividual block ACLs. When the owner revokes access
of a user, he should make sure that the data user cannot
access his data any more. For this goal, there are two op-
tions, each appropriate for different circumstances. Im-
mediate revocation that the revoked user should not have
access to any piece of data from the moment of the re-
vocation. Lazy revocation means that the revoked user
will not have access to any data blocks that have been
updated after his revocation. The concept of lazy revoca-
tion is in [13] and is not new to us.

When a block’s ACL changes, that block must un-
dergo immediate revocation. That is, the block must
switch to a new family’s key block, the one correspond-
ing to its new ACL, and the block needs to be immedi-
ately re-encrypted with that new key block.

In contrast, when a group’s membership changes, then
all blocks with ACLs that include that group must un-
dergo revocation. Using immediate revocation in this
case would be too expensive, as it would involve imme-

diately re-encrypting all the blocks in one or more block
families, a potentially immense amount of data. Further-
more, such an approach may be futile because a mali-
cious revoked data user could have copied all the blocks
for which he had access. Instead, we use lazy revocation,
as follows.

Using key rotation, the owner rolls the keys forward
to a new version for each of the families corresponding
to the affected ACLs. However, the blocks with those
ACLs do not need to be re-encrypted right away; they
can be lazily re-encrypted. The owner only needs to up-
date the family key blocks with the new key informa-
tion. This means the work the owner has to do upon a
membership change is independent of the number of files
in the block family. Broadcast encryption has complex-
ity O(

√
no. of members in ACL), which we expect to be

manageable in practice, as we will show in Section 9.
When a user accesses a block, he checks whether the

version of the read access key in the family key block is
larger than the version of the key with which the current
block was encrypted. If so, the data user re-encrypts the
block with the new key. Re-encrypting with a different
key does not incur any overhead since all writes require
a re-encryption. Therefore, the burden of the revocation
is pushed to users, but without them incurring any addi-
tional re-encryption overhead.

We can see that our division of storage into block fam-
ilies makes revocation easier. If, in contrast, there were
multiple Unix-like groups for a block, one would need to
store encryptions of the signature and block encryption
key for every group with each block. Besides the storage
overhead, this would require many public key operations
whenever a member left a group because the key would
need to be changed for every regular group. This process
would be slower and more complex.

5 Attestations
In this section, we describe the structure and exchange

of the attestations1. The attestations are key components
that allow the clients to prove cloud misbehavior and the
cloud to defend himself against false accusations.

Every time the client performs a get, the cloud will
give the client a cloud get attestation. Every time a client
performs a put, the client will give the cloud a client put
attestation and the cloud will return a cloud put attesta-
tion. Intuitively, the role of the attestations is to attest to
the behavior of each party. When the client performs a
get, the cloud attaches to the response an attestation; the
attestation is similar to the cloud saying “I certify that I
am giving you the right data”. When the client performs
a put, he must provide a client put attestation which in-
tuitively says “I am asking you to overwrite the existing

1CloudProof’s attestations should not be confused with attestations
from trusted computing, which are different mechanisms.
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Figure 2: The structure of the attestations. The elements listed
in each attestation are concatenated, a hash is computed over
the concatenation and the result is signed as shown in the figure.
The first field indicates the type of the attestation. The hash in
client attestations is a hash over the block content and metadata,
while the hash in the cloud attestation includes the integrity
signature as well; the new hash is the value of this hash after an
update. The nonce is a random value given by the client.

data with this content”. The cloud must answer with a
cloud put attestation saying “The new content is com-
mitted on the cloud”.

5.1 Attestation Structure
Each attestation consists of concatenating some data

fields, and a signed hash of these data fields. Since we
are using signatures as proofs, it is important that they
be non-repudiable (e.g. unique signatures [21]). Figure
2 illustrates the structure of the attestations. The block
version number and current hash are used for write-
serializability and the chain hash is used for freshness.
The chained hash of an attestation is a hash over the data
in the current attestation and the chain hash of the previ-
ous attestation.

chain hash= hash(data,previous chain hash) (1)

It applies to both put and get attestations. The chain hash
thus depends not only on the current attestation but also
on the history of all the attestations for that block so far
(because it includes the previous chain hash).

We say that that two attestations A and B chain cor-
rectly if the chain hash in B is equal to the hash of B’s
data and A’s chain hash. The chain hash creates a cryp-
tographic chain between attestations: it is computation-
ally infeasible to insert an attestation between two attes-
tations in a way that the three attestations will chain cor-
rectly. We can see that the client put attestation is the
same with the integrity signature described in Section 4
and provided with every write.

The purpose of the nonces is to prevent the cloud from
constructing cloud attestations ahead of time before a
certain write happens. Then the cloud could provide
those stale attestations to readers and thus cause them
to read stale data. Because of the cryptographic chain
induced in the attestations by the chain hash, the cloud
cannot insert an attestation C between two other attesta-
tions A and B; thus, the cloud can give stale data to a
client and pass the attestation audit test only if he pro-

duced and saved attestation C before he gave out B. A
client gives a nonce to the cloud only upon making a re-
quest; the cloud cannot know this nonce before request
C is made (the nonce is randomly chosen from a large
field) so the cloud will not have been able to construct an
attestation for this nonce ahead of time.

The structure of the attestation depends on the se-
curity level desired. If the user does not want write-
serializability and freshness, the attestations are not
needed at all. If the user does not want freshness, the
chain hash can be removed.

The attestation data is the data in the put client attes-
tation before the hash and signature are computed. Note
that the integrity signature discussed in write access con-
trol (Sec. 4) and stored with each block in Figure 1 is the
last client put attestation to that block.

5.2 Protocols for Exchange of Attestations
Get:

1. Client: Send the get request, block ID and a random
nonce to the cloud.

2. Cloud: Prepare and send back the entire block (in-
cluding metadata and the attached integrity signa-
ture) from Fig. 1, the new chain hash, and the cloud
get attestation.

3. Client: Verify the integrity signature and the cloud
attestation (it was computed over the data in the
block, chain hash, and nonce). Do not consider the
get finished until all these checks succeed.

Put:
1. Client: Send the entire new block (content and

metadata) and the client put attestation.
2. Cloud: If the client’s attestation is correct (new hash

is a hash of block content, datagroup verification
key verifies the signature), send back the chained
hash and put attestation. Store the new block (to-
gether with the client attestation).

3. Client: Verify the attestation. Consider a write com-
mitted only when this check succeeds.

6 Confidentiality and Integrity
In this section, we describe the techniques we use to

ensure confidentiality and integrity. These techniques
have been extensively used in previous work so we will
not linger on them; rather, we explain how to integrate
them in our proof mechanism and formalize the guaran-
tees they provide.
Confidentiality (C). As mentioned earlier, we achieve
confidentiality by having the clients encrypt the content
placed on the cloud. Note that even though the cloud can-
not gain information from the encrypted data, the cloud
can deduce some information from the access patterns of
the users to the data (e.g., frequency of reading a certain
block). There has been significant theoretical work on
masking access patterns [15, 27], but efficient such pro-
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tocols are yet to be found so we do not make an attempt
to mask them.
Integrity (I). As mentioned in write access control (Sec-
tion 4), each time a user puts a block on the cloud, he
must provide a signed hash of the block. Similarly, each
time a user reads a block, he checks the signed hash us-
ing the public verification key available in the key block.
Note that the special blocks used to store keys are also
signed in this way, so their integrity is assured in the
same way that all blocks are.
Detection of I Violation: the integrity signature on a
block does not match the block’s contents.
Proof of Violation of I: the block with violated integrity
and the attestation from the cloud.

Recall that the get attestation from the cloud contains
a hash of the block content with the integrity signature
and is authenticated with the cloud’s signature. If this
hash of the block content does not verify with the hash
from the integrity signature, it means that the cloud al-
lowed/performed an invalid write, and the attestation it-
self attests to the cloud’s misbehavior.

A client cannot frame an honest cloud. When the
cloud returns an attestation, it is signed by the cloud so
the client cannot change the contents of the attestation
and claim the cloud stored a tampered block. Also, if
a client falsely claims that a different verification key
should be used, the cloud can exhibit the owner’s signed
attestation for the key block. This suffices because the
data block and the key block include the version of the
verification key.

7 Write serializability and Freshness
To detect deviations from W and F, the data owner pe-

riodically audits the cloud. The owner performs the au-
diting procedure at the end of each epoch.

A successful audit for a certain block in an epoch
guarantees that the cloud maintained freshness and write-
serializability of that block during the particular epoch.

The data owner assigns to each block some probability
of being audited, so an audit need not check every block
in every epoch. If a block is very sensitive, the owner
can assign it a probability of one, meaning that the block
will be audited in every epoch. If a block is not very
important, the owner can assign it a smaller probability.

We cannot hide the rate at which a block is audited,
since the cloud can simply observe this. However, the
cloud cannot be allowed to know exactly which epochs
will feature a block’s audit, since if it did, it could unde-
tectably misbehave with regard to that block during other
epochs. Users, in contrast, need to be able to figure out
these epochs because they need to send cloud attestations
to the data owner in exactly these epochs. Thus, we use
a technique that ensures that only users who know the
read access key for a block can determine the epochs in

which it will be audited. Specifically, we audit a block
whenever:
prfread key(epoch number, blockID) mod N = 0,

where prf is a pseudorandom function [14], N is an in-
teger included in plain text in the block metadata by the
owner. If a probability of audit p is desired, the data
owner can achieve this by setting N = �1/p�. Note that
while hashes are used in practice for the same purpose
as we use a prf, hashes are not secure for such usage be-
cause their cryptographic specification only guarantees
collision-resistance and not necessarily pseudorandom-
ness, as needed here.

We do not try to prevent against users informing the
cloud of when a block should be audited (and thus, the
cloud misbehaves only when a block is not to be audited).
Auditing is to make sure that the users get correct data
and their puts are successful. If they want to change the
data, they can do so using their access permissions and
do not have to collude with the cloud for this. As men-
tioned before, the owner should ensure (via other means)
that users do not use their access permissions on behalf
of unauthorized people.

When a block is meant to be audited, clients send
the owner the attestations they receive from the cloud.
Clients do not need to store attestations. The owner sep-
arates these attestations by block and sorts them by ver-
sion number. This generally requires little processing
since the attestations will arrive in approximately this or-
der. The attestations for the same version number are
sorted such that each two consecutive attestations sat-
isfy Equation (1); we envision that the cloud could at-
tach a sequence number to the attestations to facilitate
this sorting. If some clients do not send attestations be-
cause they fail or are malicious, they have no guarantees
on whether they read correct data or their put got com-
mitted. All clients sending attestations will have such
guarantees. The clients cannot frame the cloud by not
sending attestations. The owner will ask the cloud to pro-
vide cloud attestations for any missing attestations in the
sequence and an honest cloud will keep copies for the
duration of an epoch. Alternatively, the cloud can only
keep copies of the attestations’ data without signatures,
which it can reconstruct on-demand, thus storing less. If
the cloud cannot provide these, the cloud is penalized for
non-compliance with the auditing procedure.

Once the owner has the complete sequence of attes-
tations, it performs checks for write-serializability and
freshness, as we describe in the subsections below. After
auditing, the owner and the cloud create a Merkle hash
tree of the entire storage, exchange attestations that they
agree on the same Merkle value, and discard all attesta-
tions or attestation data from the epoch that just ended.
The Merkle hash can be computed efficiently using the
hashes of the blocks that were modified and the hashes
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of the tree roots of the blocks that were not modified in
this epoch. The owner updates the family key block if
there were any membership changes.

Interestingly, we will see that auditing only makes use
of public keys. As such the owner can outsource the au-
diting tasks (e.g. to a cloud competitor).

Due to space constraints, the presentation of the theo-
rems and proofs below is in high-level terms, leaving a
rigorous mathematical exposition for a longer paper.

7.1 Write-serializability (W)
Requirement on the cloud. During the epoch, the cloud
is responsible for maintaining the write-serializability of
the data. That is, the cloud must make sure that every put
advances the version number of the most recently stored
block by exactly one. If a client provides a put for an
old version number, the cloud must inform the client of
such conflict. It is now the client’s choice to decide what
action to take: give up on his own change, discard the
changes the cloud informs him of, merge the files, etc.

One attack on write-serializability is a fork attack
(introduced in [20]). The cloud provides inconsistent
views to different clients, for example, by copying the
data and placing certain writes on the original data and
other writes on the copy. If two clients are forked, they
will commit two different updates with the same version
number on the cloud.

A correct write chain of attestations is a chain of put
cloud attestations where there is exactly one put for ev-
ery version number between the smallest and the largest
in the sequence. Moreover, the smallest version number
must be one increment larger than the version number of
the block at the beginning of the epoch.
Detection of W Violation: The sequence of put attesta-
tions do not form one correct write chain.

The following theorem clarifies why this statement
holds. It assumes that users send all the write attestations
they get from the cloud to the owner. If they do not send
all these attestations, the theorem holds for every com-
plete interval of version numbers for which attestations
were sent.

Theorem 1. The cloud respected the write-
serializability requirement for a block in an epoch
iff the cloud’s put attestations form one correct write
chain.

Proof. First, let us argue that write-serializability im-
plies one chain. If the cloud respects write-serializability,
it will make sure that there are no multiple writes for the
same version number and no version number is skipped;
therefore, the attestations form a correct chain.

Now, let us prove that one chain implies write-
serializability. A violation of this property occurs when
a client performs an update to an old version of the data.
Suppose the current version of the data on the cloud is n

and the client is aware of m < n. When the client places
a put, the version number he uses is m+ 1 ≤ n. Sup-
pose the cloud accepts this version and provides a cloud
attestation for m+1. Since m+1 ≤ n, another put with
version m+ 1 committed. If that put changed the block
in a different way (thus inducing a different new hash in
the attestation), the owner will notice that the attestations
split at m+1. �

Note that for W, the auditor does not check chain
hashes and thus it does not need get attestations.
Proof of Violation of W: The broken sequence of write
attestations as well as the cloud attestation for the cur-
rent family key block.

This constitutes a proof because cloud attestations are
unforgeable. A client cannot frame an honest cloud. A
proof of violation consists of attestations signed by the
cloud; thus the client cannot change the contents of the
attestations and create a broken sequence.

7.2 Freshness (F)
Requirement on the cloud. During the epoch, the cloud
must respond to each get request with the latest com-
mitted put content and compute chain hashes correctly
(based on the latest chain hash given) for every cloud at-
testation.

A correct chain of attestations is a correct write chain
with two additional conditions. First, the hash in each
read attestation equals the new hash in the write attesta-
tion with the same version number. Second, the chain
hash for an attestation and the chain hash of the previous
attestation in the sequence satisfy Eq. (1).
Detection of F Violation: The attestations do not form
one correct chain.
Theorem 2. The cloud respected the freshness require-
ment iff the attestations form one correct chain.

Proof. It is easy to see that if the cloud respected the
freshness requirement, the attestations will form one
chain. Each attestation will be computed based on the
latest request.

Let us show that if the freshness requirement is vio-
lated, we do not have a correct chain. We proceed by con-
tradiction assuming that we have a correct chain. There
are two key points we will use. The first is that each
chain hash the cloud gives to a client is dependent on
some randomness the client provides. This is the random
nonce for get or the new hash for put. The cloud cannot
compute the chain hash before it has this randomness.
The second point is that the value of a chain hash recur-
sively depends on all the history of chain hashes before
it.

Let A be an attestation, and B the attestation preceding
it in the chain. Assume the cloud violated the freshness
requirement when answering the request corresponding



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 363

to A, but the attestations form a correct chain for con-
tradiction purposes. Thus, B was not the latest request
performed before A; instead, let C be this request. Thus,
the cloud gave out attestations B, C, and A in this or-
der. C must come somewhere in the correct attestation
chain. It cannot come after A because the chained hash
of C will have to depend on the chain hash of A. Due
to the client-supplied randomness and hardness assump-
tions on the hash function (random oracle), the cloud can
compute the chain hash for A only when he gets the A
request which happens after the C chain hash was given
out. If C comes before A in the sequence, it must come
before B because we assumed that the freshness require-
ment was violated at the time of this request. This means
that B’s chain hash depends on C’s chained hash, which
is not possible because the cloud would not know C’s
client-provided randomness when he has to answer to B.
Therefore, we see that the chain cannot be correct when
freshness is violated. �

Proof of Violation of F: The broken sequence of attesta-
tions as well as the cloud attestation for the current fam-
ily key block.

A client cannot frame an honest cloud. A proof of vi-
olation consists of attestations signed by the cloud; thus,
the client cannot change the contents of the attestations
and create a broken sequence.

7.3 Discussion
For efficiency, many storage servers allow gets to pro-

ceed in parallel, while serializing puts. CloudProof also
allows the bulk of the get operations to happen concur-
rently, and serializes only the computation of the chain
hash for gets to the same block. For example, consider
multiple concurrent gets for the same block. These gets
can proceed in parallel (e.g., contacting nodes in the data
center, performing disk accesses, preparing result); the
cloud only needs to make sure that updates to the chain
hash for the same block do not happen concurrently. Up-
dating a hash takes very little time, so the loss in concur-
rency is small.

CloudProof protects W, F, and I with respect to each
block in part. In some cases, one might want these prop-
erties to be satisfied with respect to a collection of blocks,
for example, so that different blocks are updated consis-
tently. CloudProof can satisfy this requirement by view-
ing the block collection of interest as one block and hav-
ing one attestation for this collection of blocks. Cloud-
Proof will serialize accesses to this collection of blocks
in the same way as for one block.

The protocol for freshness requires the cloud to up-
date a chain hash and store some metadata upon any get
operation, so a malicious client unauthorized to read the
data can DoS a server computationally and storage-wise.
A solution to this attack is to require each client to pro-

vide a correct “client get attestation” signed with the read
access key to the cloud when performing a get. An eval-
uation of this scenario is future work.

8 Implementation
We implemented CloudProof on top of Microsoft’s

Windows Azure [22] cloud platform. Our implemen-
tation consists of about 4000 lines of C#. CloudProof
only relies on a get/put and sign/verify interface from the
cloud, which makes it easy to adapt to other cloud sys-
tems.

Background on Azure. First, we give the needed
background on Azure [32]. Azure contains both a stor-
age component and a computing component. Cloud-
Proof uses the blobs and queues storage services. Blobs
are key/value stores mapping a blob identifier to a value.
Queues are used for reliable messaging within and be-
tween services.

The compute component consists of web and worker
roles, which run on virtual machines with different im-
ages of Windows Server 2008. The web roles are in-
stances that can communicate with the outside world and
receive HTTP requests. The worker roles are internal
running instances which can communicate with the web
roles (via storage nodes) and access storage. There is no
guarantee whether the worker, web or storage nodes are
collocated on the same machine. Furthermore, the stor-
age and compute components are provided as different
services so they may be located in different data centers,
although Azure allows us to specify an affinity group for
our storage and compute nodes.

CloudProof consists of four modules. The data
user/client is a client-side library that exports get and put
interface. A data user uses this library to perform get and
put calls to the cloud. It exchanges blocks and attesta-
tions with the cloud. The cloud runs on top of Azure and
responds to get and put requests and exchanges attesta-
tions with the client. The data owner/enterprise runs on
a data owner’s premise. This is a library to be used by
the data owner. It serves to add or remove permissions
to users or groups and for auditing. It interacts with the
cloud component to update family key blocks. If the data
owner wants to get or put data blocks, it needs to create
a client instance for itself. As mentioned, the owner can
outsource the auditing task to another party, the auditor.
It collects attestations and audits them according to the
algorithms in Section 7.

Let us explain how a request processing proceeds. The
clients and the owner send HTTP requests to the web
roles, which then place the requests in a queue, together
with a blobID. The workers poll the queue for requests
to process. The worker roles place the response into the
blob with the given blob ID. Web roles poll response
blobs periodically to get the reply for the request they
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Figure 3: End-to-end and effective read and write latency.
Each bar indicates the end-to-end latency incurred, with the
lower section showing the effective latency.

made.
The cryptographic algorithms used are the .NET im-

plementations of SHA-1 for hashing, AES for symmetric
encryption and 1024 bit RSA for signing. Any of these
schemes can be easily substituted with more secure or
faster ones.

9 Evaluation
In this section, we evaluate the performance of Cloud-

Proof. We investigate the overhead CloudProof brings to
the underlying cloud storage system without security to
establish whether the security benefits come at a reason-
able cost. We are not interested in examining or optimiz-
ing the performance of Azure itself because CloudProof
should be applicable to most cloud storage systems.

CloudProof targets large enterprise storage systems,
source code repositories, and even small, personal file
systems. These tend to be applications that can tol-
erate larger client-cloud latency (which is an inherent
result of the different geographic locations of various
clients/organizations with respect to the cloud).

The design of CloudProof allows separability to five
security modes, each corresponding to the addition of
a new security property: no security, just confidential-
ity (C), confidentiality and integrity (CI), the previous
two with write-serializability (CIW), and full security
(CIWF). We will see how performance is impacted by
adding each security property. For these experiments,
the client-side machine is an Intel Duo CPU, 3.0 GHz,
and 4.0 GB RAM.
Microbenchmarks. We observed that a large factor
of performance is given by the latency and bandwidth
between the client and the cloud’s data center (which
seems to be on the other coast from the data we get),
which do not depend on our system. Therefore, we will
also include “effective” measurement results which are
computed by subtracting the client-cloud round-trip time
from the end-to-end latency.

To evaluate latency, we perform 50 reads and 50 writes
to different blocks (4 KB) and compute the average time
per operation. Figure 3 shows our latency results. We
can see that the overhead increases with every addition
of a security requirement. The overhead added by W is

Figure 4: Effective read and write throughput.

caused by the creation, verification and handling the at-
testations; adding a chain hash for F causes a small over-
head increase. The overhead of our scheme (CIWF) as
compared to the no security case is ≈ 0.07s which cor-
responds to 17%. With respect to confidentiality only
(minimal security), CIWF is ≈ 14%.

Let us understand which components take time. Each
request consists of client preprocessing (0.5%), network
round trip time between server and client (36%), cloud
processing (62%), and client postprocessing (1.5%). We
can see that most time is spent at the server. This is
because the web and worker roles communicate with
each other using the storage nodes, and all these nodes
are likely on different computers. We specified affinity
groups to colocate nodes close to each other, but we do
not have control over where they are actually placed.

Figure 4 shows the effective throughput incurred in
our system. The graphs are generated by reading and
writing a large file (sent to one cloud worker), 50 MB,
and dividing its size by the effective duration of the re-
quest. We generated effective measurements because the
throughput between the client and the cloud was a bottle-
neck and the results were similar for and without secu-
rity (almost no overall overhead). We can see that the
throughput overhead (due to cryptographic operations
mostly) for write is 11% and for read is 12%, which we
find reasonable.

An important measure of scalability is how the system
scales when workers are added. We obtained a VIP token
for Azure that allows creation of 25 workers (given the
early stage of Azure deployment, it is hard to get more
workers for free). We spawn 25 clients that can run in
parallel and each such client sends two requests to the
cloud (a request is sent only after the previous request
finished); this experiment is repeated many times. We
measure how many pairs of requests are satisfied per sec-
ond as we increase the number of worker roles. Figure 5
shows our results. We can see that each pair of requests is
satisfied in about 1s which makes sense given the latency
results presented above. We can see that the scaling is
indeed approximately linear. This makes sense because
we designed our security protocols to allow all requests
to proceed in parallel if they touch different blocks.

Moreover, for scalability, our access control scheme
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Figure 6: Auditing performance for one
owner node.
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should be able to support efficiently many members and
blocks. Our scheme has the benefit that revocation and
addition do not depend on the number of blocks in a fam-
ily. It only depends on the square root of the number of
members with access to the block family. As we can see
in Figure 7, the square root factor is almost irrelevant; the
reason is that the constants multiplying the square root
are much smaller than the constant latency of read and
write. We can see that for large enterprises with 100,000
employees, group addition and revocation remain afford-
able even if every single employee is present on an access
control list.

A block family is created when a block’s ACL is
changed to an ACL that no other block has. The owner
must put a new family key block on the cloud. If the
membership change from the previous ACL (if one ex-
isted) to the current one is not large, the owner can just
copy the family key block for the previous ACL and per-
form the appropriate revocations and additions. Other-
wise, the owner should choose new keys, compute broad-
cast encryptions to the new members, and put the result-
ing data on the cloud. For an ACL of 1000 new mem-
bers, these operations sum up to ≈ 20s. Any blocks
added to the block family will not require key block fam-
ily changes. The block just needs to be encrypted with
the proper key.

Figure 6 shows the performance of auditing. For ex-
ample, it takes about 4 minutes to verify 108 attestations.
This number corresponds to a large company of 105 em-
ployees each making about 1000 changes in an epoch
of a month. Furthermore, auditing can be easily paral-
lelized because it just involves checking each consecu-
tive pairs of attestations in a chain so the chain can be
split in continuous sections, each being distributed to a
different core. In fact, auditing can be performed on an
alternate cloud, which, due to market competition, will
have incentive to run the audit correctly. The duties of
the owner are just auditing and membership changes, so
we can see that, even for enterprise storage, a lightly used
commodity computer would be enough to handle all of
the owner’s duties.
Storage Overhead. The total overhead per block in

CloudProof is 1120 bits if we use RSA signatures
or 256 bits if we use short signatures (Boneh-Lynn-
Shacham). A block in Azure may be arbitrarily large, so
this overhead may be a small percentage of large blocks.
The family key block consists of 1120 + 1024 ∗

√
n +

1024 ∗ n bits, where n is the number of users in a fam-
ily. Had we used a more efficient broadcast encryption
scheme, the linear factor would be removed. In a com-
mercial source repository trace (presented below), we
found that the maximum value of

√
n was 14 and that

there were 30 total groups. Therefore, the storage over-
head for family key blocks is less than 26.4 KB for the
lifetime of the trace. All attestations are about 1300 bits
(or about 400 bits with a short signature). The cloud only
needs to keep the latest put client attestation for each
block and the unsigned attestation data (≈ 258 bits) for
all attestations in an epoch for auditing purposes.
Macrobenchmarks. To determine how many users are
in real enterprise groups and to understand the frequency
of access control changes, we obtained traces of group
membership changes in a version control repository for
a very large widely used commercial software (whose
name we cannot disclose) that has more than 5000 devel-
opers. From these traces, we computed the dates of all re-
vocation events: changes to group membership where at
least one member was deleted from the group. For each
event, we computed the size of the group after deletions
of members. As described, the square root of this group
size controls the time required to compute new keys for
the block family. As we showed in Figure 7, our system
can compute new keys for groups of 100,000 users in
less than 4 seconds. In particular, we found that comput-
ing keys for all revocation events in a month, assuming
all groups in our trace have 250 members, took an aver-
age time of less than 1.6 seconds. This shows that our
system is capable of easily handling the group sizes and
frequency of revocations in this real application.

We looked at the commit histories for two large open
source projects hosted on Github: Ruby on Rails and
Scriptaculous. Both projects are widely used and un-
der active development. Source code repositories require
integrity guarantees: adversaries have broken into such
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week max week avg month max month avg
RoR 55.7 9 93 38
ST 4.2 0.91 8.2 2.4

Table 1: Maximum and average storage requirements in KB
per epoch for all epochs with at least one client put request.
RoR stands for “Ruby on Rails,” while ST stands for “Scrip-
taculous.”

repositories in the past to corrupt software which is then
widely distributed. Distributed development also bene-
fits from F and W.

To create benchmarks, we looked at the history of all
commits to all files in Ruby on Rails for six months from
July 2009 to November 2009, and all files in Scriptac-
ulous for one year from November 2008 to November
2009. Reads are unfortunately not logged in the traces;
however, from microbenchmarks, we can see they have a
similar overhead to writes. We used the history provided
in each repository to identify the size of each file after
each commit and the identity of the committer. We then
replayed this history, treating each commit as a separate
put whose key is equal to the file name and with a value
of the appropriate size. Figure 8 shows the results for the
both traces. The overall overhead for Ruby on Rails is
14% and for Scriptaculous is 13% for providing all secu-
rity properties. These results show that we can achieve
our properties with modest overhead, and that our mi-
crobenchmarks are a good predictor of our overhead for
these applications.

For storage overhead, we first computed the number
of distinct files in each repository in the state it was at
the end of the trace. For Ruby on Rails we find 5898 dis-
tinct files, totaling 74.7 megabytes. At 1120 bits of over-
head per file, CloudProof requires 806 KBs of storage for
metadata, an overhead of roughly 1.1%. For Scriptacu-
lous we find 153 distinct files, totaling 1.57 MB, yielding
a storage overhead for CloudProof of 1.3%.

We then evaluated the cloud storage required to hold
attestations from clients at different epoch lengths for
both traces. We considered the extreme case where the
epoch is equal to the duration of the trace: i.e., the cloud
keeps all attestations from all clients. For the Ruby on
Rails trace we have 71241 total client puts, which re-
quires 2.2MB of storage on the cloud for 258 bits per
attestation. For the Scriptaculous trace, we have 2345 to-
tal client puts, which requires 73KB of storage. We then
looked at two cases: the epoch is one week and 30 days.
Table 1 shows the results. We see that the amount of stor-
age required for attestations in both traces is low, under
100KB, even for a long epoch time of 30 days.

The choice of epoch is a tradeoff between cloud stor-
age overhead and audit time. Our trace results show that
for the source repositories we considered, even an epoch
length of six months to a year requires modest overhead.
Shorter epochs require less than 100 kilobytes of stor-

Figure 8: Runtime for macrobenchmarks.

age. This appears reasonable, especially given that the
storage for attestations may be append-only and need not
be highly available. Other applications, of course, may
require more puts during an epoch and therefore incur
more overhead for storage. With our current implemen-
tation, however, one gigabyte of storage is sufficient to
hold attestations for over 33 million puts; we believe this
should be sufficient to allow a reasonable epoch for most
applications. As we showed, the time to audit is not a
gating factor for the length of an epoch, because audits
can be carried out in a short amount of time.

From the results above, we conclude that CloudProof
has a reasonable overhead and is practical for real storage
applications with security needs.

10 Related Work
The related work can be divided in four parts.

Existing Cloud Systems. Today, there exist a plethora
of cloud storage systems (Amazon S3, Google BigTable,
Microsoft Azure, Nirvanix CloudNAS, etc.); however,
these systems do not guarantee security. The cloud sys-
tem that provides most security, to the best of our knowl-
edge, is Tahoe [31]. It is a peer-to-peer file system that
allows users to check data integrity and provides access
control. However, Tahoe does not detect violations to W
and F, nor does it provide proofs of violation.
Secure File and Data Storage Systems include related
systems [4], [3], [10], [18], [20]. In comparison to these
systems, CloudProof brings the three main contributions
listed below. These systems do not provide these prop-
erties, not because of shortcomings in their design, but
because they were designed for a different setting than
the cloud: mostly for personal storage hosted on some
remote untrusted and not liable servers. We also argue
that they are not easily extendable to achieve our desired
properties, which illustrates that there was a need for a
new design for the cloud setting.
(1) They detect, but do not prove server misbehavior and
do not keep the client accountable to the server. Cloud-
Proof provides such guarantees to enable a financial con-
tract between the client and the cloud regarding security.
(2) CloudProof maintains the high scalability of the
cloud because it is a crucial aspect of the cloud promise
and large enterprises are important customers of the
cloud. Our access control scheme is especially scalable.
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(3) CloudProof provides detection (and proofs) to both
write-serializability and freshness. This is because an
enterprise affords to dedicate a compute node for audit-
ing and membership changes. Most previous work can-
not detect violations to both properties.

SiRiUS [10] is perhaps the most related previous work
to CloudProof. In SiRiUS, each user stores his file sys-
tem on a remote untrusted server and can detect integrity
violations to his data. SiRiUS does not guarantee write
serializability: two users can read a file at the same time,
place updates subsequently with the second user igno-
rantly overwriting the first user’s update. SiRiUS does
not offer freshness as we define it in Section 2. It offers
a weaker type of F: fetched data can be stale if it is not
older than a certain time interval. Furthermore, SiRiUS
does not scale to enterprise sizes. Each user has a sepa-
rate file system that also contains files from other user’s
file systems for which the user has write access. When
checking the freshness of a file upon read, users need
to check the file system of each user with write access,
verify a Merkle tree for that access, and decide who has
the newest version. In an enterprise setting, some files
can be accessed by thousands of users so this approach
would not scale. Moreover, to ensure freshness, SiRiUS
requires each user to re-sign the top of his Merkle hash
every few minutes or seconds. This is not a reasonable
assumption we believe, because the users are not neces-
sarily online all the time. Moreover, in SiRiUS, users
can defeat their access permissions. Unauthorized users
can delete data or seize unattained permissions by over-
writing the metadata of some files with their own. These
attacks occur because Sirius’s premise is not to change
the server software and allow it to run on any remote file
system implementation such as NFS. In contrast, cloud
providers can always install software of their choice on
their nodes if they want to provide security. Finally, SiR-
iUS does not provide proofs needed in our cloud setting.

Plutus [18] uses key rolling, but every time a user re-
alizes that the key has changed, he contacts the owner
to ask the key. This approach would demand more re-
sources from an enterprise to satisfy the requests of all
their employees. We combine key rolling with broadcast
encryption and the notion of block families to achieve
key distribution without involving the owner/enterprise.

SUNDR [20] is a secure file system that offers fork
consistency by having clients check histories of snap-
shots of file versions (VSLs). First, SUNDR does not
provide read access control and it is not clear how to
enhance it with scalable read access control. Our key
distribution protocol uses broadcast encryption and key
rolling to support fast and scalable read access, and han-
dles user read access revocation efficiently. Second, a
straightforward addition of W to SUNDR, would be un-
scalable. If SUNDR sends all VSLs to the owner for au-

diting, SUNDR could achieve write-serializability easily
because the owner would notice a fork attack. However,
each VSL entry includes version numbers for all files in
the file system, and there can be many such files. In con-
trast, CloudProof’s attestations only contain information
about the block accessed. On the other hand, one posi-
tive aspect of SUNDR in this regard is that it can order
updates across files, whereas CloudProof can only order
updates within a file. We made this tradeoff for scalabil-
ity. Third, CloudProof provides improvements regarding
freshness over SUNDR. Even with auditing at the owner,
SUNDR would not achieve freshness for clients that are
only readers. The server can give a client a prefix of the
current history, thus not informing him of the latest write.
Since the reader will not perform a write, a fork will not
occur. SUNDR can be easily extended to provide proofs
of integrity violation, but providing freshness violation
proofs seems harder. Finally, SUNDR does not scale
to enterprise-sizes because of the long history chain of
signatures that clients must check for every fetch. For
highly-accessed files or many users and files, version
snapshots can grow large and many.
Cryptographic Approaches. Kamara and Lauter [19]
investigate cryptographic techniques useful in the cloud
setting. They mention proofs of data possession or re-
trievability (POR) [17], [2], [25], [9], which allow a
server to prove to the owner of a file (using sublinear or
even constant space usage) that the server stores the file
intact (the file has integrity) and can retrieve it. HAIL [6]
allows a distributed set of servers to prove file integrity
and retrievability. [29] allows updates and enables public
verifiability of the integrity of the data at the cloud.

Such work is very useful for proving integrity of
archived data; however, it is not sufficient as a holistic
cloud systems solution. The fact that the file is correct
and retrievable on the cloud does not mean that the cloud
will respond with correct data upon a request. For ex-
ample, suppose that the user requests the cloud to prove
that the file is intact and the cloud successfully does so.
Then, a few users request various blocks of the file; the
cloud can return incorrect data (junk or stale) and there
is no mechanism in place for checking this. Having each
client ask the cloud for a POR before a get is too expen-
sive. Also, most of these schemes deal with archived data
and are not efficient on updates. They either require some
non-negligible overhead of preprocessing when placing a
file on the server [17] or that all updates be serialized [29]
and thus have poor scalability. Moreover, they do not
provide write-serializability or freshness (and thus, no
proofs of violations for these properties). For instance,
the cloud can overwrite updates and retrieve stale data
because the integrity checks will not fail. Lastly, these
schemes do not provide access control and are not de-
signed for many concurrent accesses by different users.
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Byzantine Fault Tolerance (e.g., [7]) proves correctness
of query execution at remote server replicas given that
the number of Byzantine (faulty, malicious) replicas is
at most a certain fraction. However, this approach is not
applicable to the cloud setting because all the nodes in a
data center belong to the same provider. If the provider
is malicious, all the nodes are malicious. Furthermore,
most nodes are likely to be collocated geographically
and run the same distribution of software and likely crash
from similar factors. One idea is to use BFT with multi-
ple cloud providers. This approach will indeed decrease
the chance of security problems; however, clients will
have to pay all the cloud providers, and, if the data gets
lost at all parties, the client has no remuneration assur-
ance. Chun et al. [8] also uses the concept of chained
attestations, which they store in a trusted-hardware log;
their goal is to prevent equivocation by Byzantine clients
and ultimately improve performance of commit.
Secure Audit Trails and Logs. Research in secure dig-
ital audits aims to verify the contents of a file system at
a specific time in the past. For example, in [24], a file
system commits to the current version of its contents by
providing a MAC on its contents to a third-party. At a
later time, an auditor can check that the file system still
contains the old version using the MAC token.

There has also been work on secure logging [30], [26].
In this work, a trusted machine writes encrypted logs that
cannot be read or modified undetectably by an outsider.
This work does not consider a large number of users con-
currently accessing the data, there is no read and write
access control (one key allows both read and write), the
log is typically just appendable and it is not optimized for
writing in the middle, and a malicious outsider manipu-
lating the order in which updates and reads are performed
on the logging machine can compromise W and F.

Moreover, in all this work, the owner cannot convince
a third party of some security violation.

11 Conclusions
We propose proofs of security violations for integrity,

write-serializability and freshness as a tool for guaran-
teeing security in SLAs. We build a secure cloud storage
system that detects and proves violations to these prop-
erties by combining cryptographic tools in a novel way
to obtain an efficient and scalable system. We demon-
strate that CloudProof adds reasonable overhead to the
base cloud service.
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Abstract
The Virtual Private File System (VPFS) [1] was built to
protect confidentiality and integrity of application data
against strong attacks. To minimize the trusted com-
puting base (i.e., the attack surface) it was built as a
stacked file system, where a small isolated component
in a microkernel-based system reuses a potentially large
and complex untrusted file system; for example, as pro-
vided by a more vulnerable guest OS in a separate virtual
machine. However, its design ignores robustness issues
that come with sudden power loss or crashes of the un-
trusted file system.

This paper addresses these issues. To minimize dam-
age caused by an unclean shutdown, jVPFS carefully
splits a journaling mechanism between a trusted core and
the untrusted file system. The journaling approach mini-
mizes the number of writes needed to maintain consistent
information in a Merkle hash tree, which is stored in the
untrusted file system to detect attacks on integrity. The
commonly very complex and error-prone recovery func-
tionality of legacy file systems (in the order of thousands
of lines of code) can be reused with little increase of com-
plexity in the trusted core: less than 350 lines of code
deal with the security-critical aspects of crash recovery.
jVPFS shows acceptable performance better than its pre-
decessor VPFS, while providing much better protection
against data loss.

1 Introduction

Both VPFS and its successor jVPFS are built in response
to the observation that the enormous code bases of mono-
lithic OSes (hundreds of thousands to millions of lines of
code) are likely to contain exploitable weaknesses that
jeopardize platform security. Apparently, this observa-
tion is valid especially for mobile devices that currently
have the highest speed of hardware technology innova-
tion. Almost daily reports, for example on successful

attacks on core system components such as drivers [2],
USB stacks [3], passcode protection [4], common appli-
cations such as text messaging [5] or on “jailbreaks” [6],
which consistitute successful attacks, too, substantiate
that claim of significant vulnerability. On the other
hand, as smartphones, tablets and similar appliances
have evolved into powerful and versatile mobile comput-
ers, professional users are starting to use them for criti-
cal data. For example, a doctor making house calls may
use such a device to store patient records, which are not
only sensitive from the patient’s point of view, but also
subject to legal requirements. Or a mobile device may
store documents that are classified or contain trade se-
crets. Mobile payment systems on the other hand have
strong integrity requirements to prevent tampering. Yet
mobile devices are frequently connected to insecure net-
works (public WiFi, etc.) and in certain situations, users
even must hand them over to untrusted third parties (e.g.,
leave them at the reception when visiting a company).

A general approach that so far seems mostly attrac-
tive for safety critical systems and to the miltitary is
based on small isolation kernels or microkernels. Such
kernels strongly separate applications, but also operating
system components. Some of them [7], then called “hy-
pervisors”, contain the basic functionality to support vir-
tual machine (VM) monitors and legacy OSes as guests.
Based on such kernels, critical applications can run in
their own compartments (built on microkernel services
or in their own VMs) that are protected even against suc-
cessful attacks on drivers or other parts of large, insuf-
ficently secure legacy OSes. Related work [8, 9] has
also shown that applications can be split such that their
security-critical cores run isolated, but reuse untrusted
parts of the system for their non-critical functionality,
thereby reducing the trusted computing base (TCB) of
these applications by several orders of magnitude.

VPFS and jVPFS: File Systems for Microkernels. In
previous work on VPFS [1] we built a file-system stack
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that leverages a microkernel-based isolation architecture
to achieve better confidentiality and integrity protection
of application data. We achieved this by splitting the file-
system stack into a small trusted and a larger untrusted
part that reused Linux file-system infrastructure. Only
the former is within the file-system TCB (see Figure 1
for an architectural overview). As VPFS uses untrusted
components, which might be penetrated or otherwise
corrupt data, integrity guarantees can only cover tamper
evidence: manipulated data is detected through check-
sum mismatches and never delivered to applications. Un-
fortunately, better integrity protection also reduces avail-
ability of file-system data in the event of an unclean shut-
down; for example, checksums may no longer match the
corresponding file contents, if the battery of the mobile
device failed unexpectedly or the system crashed.

With jVPFS, we address the problem of ensuring both
robustness and integrity in a split file-system stack as
described above. In monolithic file system stacks, the
code for ensuring consistency of on-disk structures (e.g.,
journaling, soft updates [10]) is rather complex and dif-
ficult to get right [11, 12]. Recent research [13, 14, 15]
has shown that even file system implementations that are
widely used in production environments still have bugs,
commonly found in code paths used for error handling
and post-crash recovery. A subset of these bugs are secu-
rity critical [2]. It is therefore a primary design goal for
us to keep the inherent complexity of consistency mech-
anisms out of the file-system TCB in order to lower the
risk of introducing exploitable design and implementa-
tion errors. Nevertheless, existing file system implemen-
tations are well tested and sufficiently reliable in com-
mon application scenarios (when not subject to sophisti-
cated attacks). For practical reasons, it is therefore desir-
able to reuse this infrastructure in order to reduce engi-
neering effort.

Contribution. The work presented in this paper makes
the following contributions: We extend the file-system
TCB for confidentiality, integrity, and freshness of all
data and metadata such that these protection goals can be
reached even after an unclean shutdown. To this end, we
identify and isolate the security-critical functionality re-
quired to recover a consistent file system after a crash and
discuss how existing, untrusted consistency infrastruc-
ture can be reused to complement the security-critical
part. We devise a novel cooperation scheme that lets
trusted and untrusted components cooperate and discuss
precisely which metadata information must be revealed
to untrusted code in order to facilitate this cooperation.
We evaluate a prototype implementation.

Synopsis. On the following pages, we first provide
required background on our security model and then

Mikrokernel-based OS

Mobile Device

Untrusted Local StorageSealed Memory

jVPFS Core
Trusted

Application
(Isolated, Trusted)

L4Linux Kernel
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L4Linux VM
(Reused Legacy OS)

Application TCB
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Figure 1: jVPFS in a decomposed system architecture
with strong isolation among components.

present our design and optimizations in Sections 3 and 4,
respectively. We evaluate our prototype in Section 5, be-
fore discussing related work in Section 6.

2 Background

Figure 1 gives an overview of the system architecture
into which the split jVPFS stack integrates. Strictly fol-
lowing the principle of least privilege, file-system con-
tents are accessible only to the specific application that
owns them. The small file-system kernel of jVPFS im-
plements all security-critical functionality and reuses the
file system stack provided by an untrusted, virtualized
legacy OS. That is, Linux performs all non-critical tasks
to manage persistent storage.

2.1 Security Model

The jVPFS security model is identical to the one for
the original version of VPFS [1]; we summarize it here.
We consider a strong attacker who is trying to com-
promise confidentiality, integrity, or freshness of criti-
cal data stored in a VPFS file system. Confidentiality
means that, after authorization, the user can access his
data only through a specific application. Our notions of
integrity and freshness apply to both user data (file con-
tents) and metadata (filenames, sizes, timestamps, etc).
The file system provides only complete and correct data
and metadata to the application. We require that VPFS
can detect any tampering and whether data and metadata
are up-to-date, preventing an attacker from rolling back
file-system contents to an older version without being no-
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ticed. We assume that both software and certain hard-
ware attacks are possible. At run time, VPFS relies on
hardware address spaces and virtual-machine boundaries
in order to isolate the trusted and untrusted components
effectively. To counter offline attacks, VPFS requires the
mobile device to enforce a secure startup process of the
application TCB and a small amount of access-restricted,
tamper-resistant memory to store cryprographic keys and
a checksum for integrity checks.

Software-based Attacks. Both software and data
stored in the mobile device may be tampered with. Given
the high complexity and enormous code size of the vir-
tualized legacy OS, we must assume that the attacker can
fully compromise it; hence, untrusted components may
stop working correctly at any time. Nevertheless, we as-
sume that in the common case, when not being attacked,
they function as expected and cooperate with the trusted
part of VPFS. In the case of jVPFS, the untrusted in-
frastructure is expected to store cryptographically pro-
tected file-system contents persistently, taking any nec-
essary consistency constraints into account.

Components within the TCB are considered to be sig-
nificantly harder to attack, because their isolated code-
bases present a smaller attack surface. We assume that
they either work correctly, or not at all, should the secure
boot process of the mobile device detect that their exe-
cutable files or configuration have been tampered with.

Hardware-based Attacks. We assume that an attacker
is able to directly access or manipulate the device’s mass
storage (e.g., a flash memory card), but he cannot suc-
cessfully read or manipulate the contents of the tamper-
resistant memory or break the secure boot process. To
ensure tamper resistance, the device could be equipped
with a trusted platform module (TPM) [16] or a small
amount of secure flash memory that is directly integrated
into the system-on-chip (SoC) package. Access to the se-
cure flash memory must be restricted to certain software
stacks by means of secure boot, possibly augmented with
hardware-based access control as enabled by the ARM
TrustZone [17] technology.

Secret keys stored in a TPM can be extracted with
equipment that costs in the order of hundreds of thou-
sands of dollars, but the process is destructive. Similarly,
we assume that gaining direct access to the secure flash
in the SoC is too hard for the attacker. Making a user-
provided secret such as a PIN code part of the storage
encryption key limits benefits of such an attack further.

2.2 Cryptographic Protection
Earlier work on cryptographic storage systems (e.g.,
[18, 19]) shows how file-system contents can be pro-

tected against offline attacks by using encryption. In
jVPFS, AES-CBC encryption ensures confidentiality at
the block level, thereby enabling efficient partial updates.

The state of the art technique for efficiently ensuring
integrity and freshness is to use a Merkle hash tree [20].
By construction, the tree provides all necessary infor-
mation to verify correctness and completeness of file-
system contents; one can guarantee freshness by stor-
ing the root hash of the tree in tamper-resistent, persis-
tent memory. In our system, the entire file system in-
cluding its metadata (names, etc.) is protected by the
Merkle tree. Simpler approaches without using a tree
structure do not meet our requirements: Single hashes for
large regions or entire files make partial updates expen-
sive; furthermore, storing one independent hash per re-
gion or file requires impracticably much tamper-resistant
storage. Using keyed hashes (e.g., HMACs [21]) in-
stead makes hashed data vulnerable to roll-back attacks,
thereby defeating freshness.

3 Design

In jVPFS, the Merkle hash tree is essential to strong in-
tegrity and freshness guarantees. It must always be pos-
sible to restore it to a consistent state. The design of the
jVPFS consistency mechanism is driven by the princi-
ple of least privilege, aiming at a minimal attack surface
of the implementation in order to increase its trustwor-
thiness. There are two key challenges to reaching these
goals:

1. Making the Cut. Part of our integrity requirement
is that data provided to applications is complete;
freshness demands that the latest file-system state
is available. The consistency mechanism thus has
security-critical functionality that must be identified
and isolated from uncritical, potentially untrusted
components in an efficient and effective way.

2. Secure Cooperation. Despite isolation, the two
parts of the file-system stack must be able to cooper-
ate. Therefore, at least some information describing
consistent sets of updates must be revealed to and
processed by untrusted components whithout jeop-
ardizing confidentiality, integrity, and freshness of
file-system state.

3.1 Consistency Paradigm

After a crash, the on-disk structures in the untrusted
storage must contain enough information to restore the
Merkle hash tree spanning the file system data and meta-
data.



372 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

LN

IN IN

ININ

LN LN LN LN

LNINRN Root
Node

Intermediate
Node

Leaf
Node

Intermediate Hash

Leaf Hash

IN

Journal
Record

RN

Figure 2: Updating the Merkle hash tree: modification
of one leaf node requires the complete chain of interme-
diate nodes up to and including the root node to be up-
dated. Instead, it is more efficient to append leaf-node
hash sums to a growing journal, which is cryptographi-
cally bound to the root hash.

Naive Approach. The naive approach to meet this re-
quirement is to ensure that the untrusted legacy file sys-
tem always holds a consistent snapshot of the Merkle
tree. In such a hash tree, changes are first made to the
leaf nodes and then propagate to the root. Thus, modifi-
cations of the on-disk file system (e.g., writing new data
to a file) must always include updates of all intermediate
Merkle tree nodes up to the root node. This set of up-
dates to the on-disk user data (i.e., file contents) and the
Merkle tree nodes has to be applied atomically. In this
context, atomic means that, after a system crash, either
the complete set of updates is persistent, or the previous
state is accessible—otherwise the hash sums become in-
consistent, breaking the authentication chain. Figure 2
illustrates these update dependencies.

Unfortunately, atomic updates to Merkle trees are ex-
pensive, because small modifications such as writing a
single block of user data involve writing as many tree
nodes (i.e., disk blocks) as there are levels in the tree.
For each of these blocks the trusted part of jVPFS has
to perform cryptographic operations, further increasing
run-time overhead and energy consumption. Also, mod-
ifying file contents might require updates of metadata
such as file-size information, which is stored in an in-
ode that must be protected by the Merkle tree, too. Thus,
the costs of consistent, atomic updates rise even more.

Split Journaling Approach. We therefore explored
design alternatives in order to avoid the performance im-
pact of the naive approach. Being the key reason for
slow performance, the requirement always to have the
on-disk Merkle hash tree in a consistent state needs to
be relaxed. In fact, it is desirable to omit updates of
Merkle tree nodes for short periods of time, for exam-

ple, during high load or to minimize latency. In order to
have the required hash sums available for post-crash in-
tegrity checking nonetheless, they need to be written to
an alternative, more efficient data structure. Journaling
file systems solve this problem: they allow for efficient
and atomic updates of distributed file data and metadata,
which in our case includes hash sums that enable in-
tegrity checking. A growing journal to which hash sums
of updated leaf nodes are appended eliminates the need
to immediately update disk blocks that store higher-level
tree nodes; they may be flushed from the buffer cache
later. This strategy also reduces cryptographic overhead,
as only the leaf nodes of the tree are updated frequently.

Protecting the Journal. As the journal now contains
information that is critical to ensuring integrity, it must
be cryptographically protected, too. To keep the perfor-
mance benefit, appending records to the journal must not
require additional updates of other metadata (e.g., like
the root node of the Merkle tree). We ensure journal
integrity by continously hashing all appended records.
New records are written to the end of the journal together
with a new incremental hash sum that authenticates all
preceding journal content, thereby enabling incremental
integrity checking. To prevent forging of these journal
hash sums, we first hash a random secret that is kept in
tamper-resistent sealed memory and therefore unknown
to an attacker who is trying compute new hashes. Addi-
tionally, we encrypt confidential metadata in the journal
using AES in CBC mode. This incremental, keyed hash-
ing and encryption scheme is well-understood and, for
example, used by Maheshwari et al. in TDB [19].

We will discuss the frequency and granularity of in-
termediate journal hash sums in Section 3.5, following
a detailed discussion of the structure and semantics of
jVPFS journal records in Sections 3.3 and 3.4.

3.2 Architecture Overview
We are building on our previous work on VPFS [1] and
integrate a consistency mechanism into its architecture.
Figure 3 gives an overview of the jVPFS stack. The
three top layers only deal with the concept of files, a
namespace, and per-file security-critical metadata. They
essentially implement a memory file system within the
TCB. Another trusted layer called Sync_manager, which
is located directly underneath this memory file system,
implements support for making jVPFS state persistent.
Sync_manager is called by the buffer cache whenever
data needs to be read into cache buffers or evicted from
them. Applications can influence write back through ex-
plicit operations such as fsync(), if required.

In order to avoid the complexity of managing a physi-
cal storage medium in its own codebase, Sync_manager
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Figure 3: Detailed view of the jVPFS file-system stack:
jVPFS implements a memory-based low-complexity file
system within the TCB of the application using it.
Through Sync_manager, jVPFS reuses an untrusted
Linux file system to make file system contents persistent.

maps files in the virtual private file system (as seen by
the trusted application) to files in an untrusted Linux file
system. To distinguish between these two views of a file,
we shall refer to the latter ones as file containers in the
untrusted storage.

Cooperation. Like the trusted part of the original
VPFS, Sync_manager transparently encrypts and de-
crypts all data and metadata it exchanges with untrusted
components in the storage strack. Furthermore, it calcu-
lates and verifies cryptographic hash sums in order to en-
sure integrity of any data and metadata it receives from
untrusted code. In jVPFS, it also performs a minimal
amount of state tracking so as to ensure that only consis-
tent changesets are written to persistent storage. Coop-
eration between Sync_manager and the Linux infrastruc-
ture it reuses is enabled by the untrusted Txn_manager. It
receives from Sync_manager requests and consistency-
related hints and translates them into Linux file-system
calls. That is, Txn_manager writes cryptographically
protected data to file containers and appends records to
the journal, which is a file in the Linux file system, too.
jVPFS makes extensive use of existing infrastructure,
as it exploits any consistency guarantees the underlying
Linux file system might provide (e.g., write ordering).

Communication Interface. Trusted and untrusted
parts of the jVPFS stack cooperate using a narrow
message passing interface and a ring buffer located in
a shared memory area. Table 3.2 lists all message
types. During normal operation, Sync_manager sends
Read_block and Exec_ops messages to request uncached

Message type Description
Read_block Read a specific data block
Exec_ops Execute buffered operations
Write_checkpoint Create a new journal, which also

marks a new checkpoint
Read_checkpoint Read FS root info from last

consistent checkpoint
Read_journal Read set of complete

transactions from journal
Init_shm Set up shared memory once

Table 1: Complete list of message types that Sync-
manager uses for communication with Txn_manager.

data blocks, or to flush operations and journal records
queued in the ring buffer. Txn_manager handles these
requests and writes back encrypted data blocks that
are referenced by journal records. Messages of type
Read_checkpoint and Read_journal are exchanged at
mount time and, if necessary, during recovery. We shall
explain the semantics of the Write_checkpoint message
in the following section, which covers our approach to
journaling and checkpointing of on-disk state.

3.3 Being Prepared for Crashes

Journaling in jVPFS is done at the level of metadata op-
erations. Starting from a consistent set of file containers,
which contain the latest checkpoint of all file system con-
tents, data blocks are written to untrusted storage and any
associated modifications to metadata are logged to the
journal. We do not log full blocks of metadata, but only
descriptions of specific operations such as updating hash
sums or file sizes. Occasionally, Sync_manager flushes
all cached blocks—containing both data and metadata—
in order to bring all file containers into a consistent state;
this state marks a new checkpoint, at which all previ-
ously written journal records can be discarded. The gen-
eral idea for recovery after an unclean shutdown is to re-
play all journaled operations, iteratively updating meta-
data structures from the latest checkpoint.

Metadata Dependencies. Operation-level journaling
allows for simple tracking of metadata dependencies in
Sync_manager, which is important for our objective to
minimizing complexity within the TCB. Figure 4 illus-
trates the dependencies of standard file-system metadata:

Inode: The inode of a file contains the file size in bytes
that specifies how much data in the last data block
is valid file content. In jVPFS, the inode also stores
the root hash of the Merkle subtree that protects the
file’s contents. The inode itself is stored in the inode
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Figure 4: Dependencies among standard file-system data
structures: entries in directories point to inodes, which
are associated with files. The superblock-like FS info in
jVPFS contains the root hash of the Merkle tree.

file, which is mapped to its own file container that
contains the top levels of the Merkle tree.

Pathname: The inode of a file is referenced by a direc-
tory entry, which is stored in a directory file. Direc-
tory files form a hierarchical namespace, as direc-
tory entries can reference not only regular files, but
also other directory files.

The dependencies described above are critical to the
consistent representation of a file and must be obeyed
by Sync_manager. They translate into the requirement
that, for each newly created file, the corresponding in-
ode and the directory entries along the file’s pathname
need to be written, too. The file and namespace ab-
straction in the upper layers of the jVPFS TCB already
implements most of the required book keeping; a con-
sistent checkpoint will have all this metadata stored in
file containers. However, the consistency mechanism
that Sync_manager contributes to jVPFS maintains ad-
ditional state, such that it can log inode and namespace
updates to the journal. For each newly created file (in-
cluding directory files), it keeps the following informa-
tion in memory:

• A copy of the filename.

• A pointer to the inode of the parent directory.

Sync_manager stores this information in a simple ta-
ble, which is essentially an extension of the file descrip-
tor table. This volatile new-file state is complemented
by a one-bit flag in the inode, indicating whether in-
ode and filename of a file have already been written.
Sync_manager executes Algorithm 1 to make sure that
journal replay restores the inodes and the namespace for
newly created files: for a new file and all directories
along its pathname, it recursively appends to the journal
in reverse path order a File_create record, unless this in-
formation has already been logged (or exists in an older
checkpoint). Once a File_create record containing a copy
of a new file’s inode, a pointer to the parent directory’s

Algorithm 1 Journaling metadata for new files.
function journal_file_create(File *file) {

// check, if file creation has already been logged
if (file.inode.is_logged == true)

return;
// not announced in journal, get “new file info”
struct new_file *info = new_file_info_table[file.fd];
// lookup of file descriptor of parent dir: if it is
// still open, its creation may need to be logged, too
int p_fd = info.parent_file_handle;
int p_iptr = info.parent_inode_ptr;
File *p_dir = get_file_descriptor(p_fd, p_iptr);
if (p_dir != NULL) {

// parent dir still open, make sure it is logged
journal_create_file(p_dir);

}
// announce new file in journal
file.inode.is_logged = true;
File_create_rec rec(file.inode, p_iptr, info.name);
append_to_journal(rec);

}

inode, and the filename has been journaled, data blocks
can be written to the file container (see next paragraph).

Metadata operations such as rename() or unlink() are
logged analogously (i.e., with their parameters). Note
that allocation bitmaps or other free-space information
need not be considered, because the security-critical part
of jVPFS delegates this functionality to the untrusted
legacy file system. Also, no explicit write-barrier op-
erations are required, as partial replay of the generated
journal records may, at worst, recreate an empty direc-
tory or a zero-size file.

Writing User Blocks. The key requirement to be met
when writing a block at the leaf level of the Merkle tree
is that its hash sum needs to be written to the journal first.
Sync_manager prepares write back of user-data blocks;
it performs the following operations:

1. Calculate new hash sum over plaintext of updated
block’s contents.

2. Encrypt block, put ciphertext into free buffer space
in shared memory area.

3. Put Block_update record containing updated hash
sum and new file size into ring buffer.

Actually writing the data block to persistent stor-
age is done by the untrusted parts of the jVPFS stack.
Txn_manager ensures atomicity of block writes by en-
forcing the following three constraints (note that this
scheme is conservative and potentially expensive in



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 375

terms of write barriers; we will discuss optimizations
for the common case, including write batching, in Sec-
tion 4):

1. Updated hash sums must reach the journal before
the actual block is written to the file container. The
underlying legacy file system must be made aware
of this write-before relation, for example, by calling
fsync() on the journal file.

2. Should a system crash interrupt the write back op-
erations initiated by Txn_manager, the aforemen-
tioned order for journal and block writes ensures
that either (a) the new hash sum is persistent in the
journal and can be used to authenticate the updated
block, or (b) the the old version of the block can be
authenticated using the old checksum still available
in the corresponding on-disk Merkle tree node.

3. Before updating the same block a second time,
Txn_manager must make sure that the first update
reached stable storage, because of point 2.

It is assumed that the underlying legacy file system can
guarantee that aligned writes with a size equal to its own
block size are atomic. Most journaling file systems do
meet this requirement in their standard configuration us-
ing ordered or data journaling [14].

Writing Metadata Blocks. Case 2(b) mentioned
above implies that the previous version of a block’s hash
sum is guaranteed to be available during replay. To
meet this requirement at all times, Txn_manager treats
metadata blocks differently from blocks with user data.
Metadata blocks contain either intermediate nodes of
the Merkle tree, or any block from a directory or in-
ode file. Whenever a metadata block is flushed and
would overwrite the latest checkpointed version of it-
self, Txn_manager rescues a copy of the original version
into the journal, thereby preserving it in case replay be-
comes necessary. Consequently, it is not necessary to
log hash sum updates of metadata blocks. Sync_manager
flags Block_update records as user or metadata, such that
Txn_manager can handle the two block types correctly.

Checkpoints. Our split journaling scheme ensures that
critical metadata can be restored after a crash. How-
ever, letting the journal grow indefinitely would effec-
tively make jVPFS a log-structured file system [22]. This
class of file systems requires complicated garbage collec-
tion, which in turn would add considerable complexity to
the TCB (i.e., Sync_manager). Sync_manager therefore
flushes all dirty user and metadata blocks occasionally.
Once no more dirty state is in the trusted buffer cache, it
signals Txn_manager with a Write_checkpoint message

that a new consistent checkpoint can be established. The
untrusted Txn_manager then execute the following steps:

1. Process all journal records still queued in ring
buffer, submit all block updates to legacy FS.

2. When encountering a special Checkpoint record, in-
struct legacy FS to make all file containers persis-
tent.

3. Atomically swap current journal file with newly cre-
ated journal containing just the Checkpoint record.

Note that flushing the buffer cache must be part of
the TCB to support any persistency scheme. However,
the above checkpointing algorithm does not require any
garbage collection in security-critical code, nor does it
have to deal with the complexities of writing data to the
storage medium safely. It is easy to see how a jVPFS in-
stance can be fully reinstantiated from checkpointed file-
system state (in fact, the umount() operation in jVPFS is
identical to the checkpoint operation). In the following
section, we shall discuss how to restore post-checkpoint
state after an unclean shutdown.

3.4 Recovering From Crashes

If the system did indeed crash, the untrusted commodity
file system must recover first. Once the untrusted storage
has been remounted and the virtualized Linux is booted
up, jVPFS can start its own recovery process as we shall
now explain.

Mounting a Checkpoint. At mount time, Sync-
manager requests from Txn_manager the first record
stored in the journal, which is the Checkpoint record
containing the FS root info. Sync_manager decrypts the
FS root info using the platform’s sealed memory imple-
mentation and validates its integrity and freshness. Note
that the write-back strategies explained in the previous
section ensure that this operation succeeds even after an
unclean shutdown. However, this assumption may not
hold, if a successful attack (see attacker model in Sec-
tion 2.1), a hardware failure, or a software issue outside
the TCB damaged the first journal record. If the Check-
point record could not be read or validation fails, an in-
tegrity error is reported to the application and the file
system remains inaccessible. If the journal contains just
the Checkpoint record, Txn_manager switches to normal
operation mode and behaves as described in Section 3.3.
Otherwise it prepares replay.

Preparing Replay. Our operation-level journaling
scheme makes the following assumptions:
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1. To ensure consistency and integrity, operations
specified in journal records must be replayed in the
precise order in which they were logged.

2. Journal records encode incremental updates to
metadata blocks and modify the previous version of
the block, starting with the version that was valid in
the last checkpoint.

Requirement 2 dictates that, if there is a checkpointed
version of a metadata block preserved in the journal,
this version must initially be used during replay—even
if a newer version reached its in-place location in the
file container. To meet this requirement, Txn_manager
copies all metadata blocks it finds in the journal (if any)
back to their in-place locations just before replay starts.

Replaying Metadata Operations. Replay is co-
operatively performed by both Sync_manager and
Txn_manager: the former requests journal records by
sending a Read_journal message. Txn_manager re-
sponds by filling the ring buffer with a set of records that
end with a special record carrying an intermediate keyed
hash, which authenticates all preceding journal records
(see Section 3.1). Sync_manager then executes the fol-
lowing replay algorithm for each set of journal records
provided by the untrusted part:

1. Decrypt all journal records in shared ring buffer,
put decrypted versions into private memory buffer,
which is inaccessible to untrusted code so as to pre-
vent time-of-check-time-of-use (TOCTOU) attacks.

2. Check integrity of decrypted records using keyed
hash sum from last record; in case of mismatch,
abort and report integrity error.

3. Re-execute operations specified in all records.

To replay metadata operations such as creating, mov-
ing, or unlinking files, Sync_manager reuses existing
jVPFS APIs and executes the same code paths that han-
dle calls from an application; the required parameters are
extracted from the respective journal records. Handling
of filenames is slightly different, as those are recorded
relative to their parent directories, which are referenced
by their inode number rather than a full pathname.

Handling File Contents. Replaying update records for
user data blocks is performed similarly as part of the
above algorithm: updated file size information is written
to the inode, the hash-sum update is applied to the di-
rect parent node in the Merkle tree. Note that this parent
node can always be retrieved and authenticated, because
either it was never overwritten or, as a metadata block, it

has been preserved in the journal—or an updated version
has been generated earlier during replay.

However, since user-block contents are not journaled,
file containers always contain the latest version of a block
that reached stable storage. On the other hand, the jour-
nal may contain multiple Block_update records for the
same block. Therefore, Sync_manager skips out-of-date
hash sums until it finds the correct record for the user
block. It eagerly requests each block during replay,
checks its integrity, and applies the hash sum update if
it matches the block’s contents. A correctly behaving
Txn_manager that obeys write-ordering constraints can
always provide the latest matching version; misbehavior
results in a stale hash sum that will be detected eventu-
ally.

We shall evaluate the complexity of jVPFS’ consis-
tency mechanism in Sections 5.1 and 6.

3.5 Journal Details

Now that we introduced the various types of journal
records, we take a closer look at how the journal is pro-
tected in detail.

Confidentiality. The journal contains confidential
metadata information such as filenames, so its contents
must be encrypted. All payload data of the journal
records, including parameters that are passed to inter-
nal jVPFS APIs during replay, are encrypted. However,
as the untrusted Txn_manager must update file contain-
ers in a consistent way based on Sync_manager’s con-
straints, some information cannot be concealed. In par-
ticular, we keep the location of data blocks unencrypted,
such that untrusted code can write them to their correct
locations. Furthermore, we reveal the type of blocks
(user or metadata), so as to enable Txn_manager to pre-
serve consistent checkpoints, which are essential for re-
covery. We consider this an acceptable tradeoff, because
an attacker could also learn this information by observ-
ing access pattern in the Linux VM.

Integrity. The continuously calculated keyed hash that
protects the journal is anchored in the FS root info of
the last checkpoint through a random secret stored in
it. Thus, a journal is bound to exactly one checkpoint.
By embedding intermediate hash sums into the journal,
Sync_manager can designate transactions; records be-
tween two intermediate hashes can only be authenticated
all together, thereby preventing partial replay. We exploit
this construction to ensure that security-critical metadata
operations described by multiple records are replayed
completely or not at all (replay stops in the latter case).
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Freshness. Naturally, incrementally calculated hashes
cannot reliably mark the end of a data stream (as the
HMAC [21] scheme does). As a result, Sync_manager
cannot determine from hash sums in the replayed jour-
nal, if untrusted components withhold any transactions
from the end of the journal; doing so would constitute
an attack on freshness. By storing the latest journal
hash in tamper-resistent sealed memory before a crash
occurs, Sync_manager could detect such an attack dur-
ing replay: the hash marking the last replayed transac-
tion must match the trustworthy copy preserved in sealed
memory. For performance reasons, updates of sealed
memory should be done only once for each checkpoint,
or an application may request a freshness guarantee ex-
plicitely through an fsync()-like operation for transac-
tions between checkpoints.

In our prototype implementation, sealed memory up-
dates are currently dummy operations.

3.6 Managing File Containers
Removal of a file or—in the general case—truncation of
it is a metadata operation that jVPFS must log in the jour-
nal. However, care must be taken when actually trun-
cating the underlying file container. Assume that re-
covery becomes necessary after an unclean shutdown.
Sync_manager can replay the truncate operation, how-
ever, as journal replay always starts relative to a check-
point, other operations need to be re-executed before it.
Some of these operations may depend on file contents
that are to be removed, which must therefore still ex-
ist for replay to succeed. This is particularly important
for metadata files (i.e., the inode file and directories), as
logged operations may need to modify them during re-
play. As a consequence, we must not truncate file con-
tainers in the legacy FS right away—even if file trun-
cation has already been logged. Txn_manager there-
fore builds a list of file truncation requests from trunca-
tion records it receives from Sync_manager; once a new
checkpoint is persistent, truncated parts of files will fi-
nally be obsolete and Txn_manager will garbage collect
them in idle time.

4 Optimizations

Intuitively, one would assume that ordered updates of the
journal and file containers incur significant performance
overhead. However, I/O costs can be reduced drastically
by optimizing untrusted code.

Write Batching. New journal records and encrypted
data blocks are buffered in the shared memory area,
until there is no more space or the application ex-
plicitly requests a synchronous write (e.g., by calling

fsync()). Buffering reduces communication overhead
and enables write batching. Batched writes require fewer
synchronous writes, because Txn_manager can coalesce
a large number of record appends into few journal up-
dates. The benefit is twofold: first, the underlying legacy
file system requires fewer I/O operations and at most one
write barrier to update the journal file. Second, the legacy
file system may write blocks to file containers accord-
ing to its own optimized strategies, potentially achieving
higher performance.

Relaxed Write Order. A write barrier after updat-
ing the journal ensures that user blocks can be updated
safely. Synchronizing in-place updates of user data
blocks that may still be in-flight allows Txn_manager to
submit new updates to those same blocks again. How-
ever, many common write workloads do not perform any
block updates at all (e.g., writing new files or grow-
ing them). For these types of workloads, where no
old state is modified, the consistency-preserving write-
order requirements of jVPFS can be dropped entirely:
Txn_manager and the legacy file system may update un-
trusted storage without enforcing write order, because
new data blocks can only be replayed once both their
hash sums and the content are persistent; it does not mat-
ter which is written first, as long as both are present dur-
ing replay. Incomplete writes of block–hash sum pairs
are treated as if no write operation had been performed
at all. In combination with write batching, jVPFS thus
achieves I/O overheads close to that of the reused legacy
file system, with only few addtional writes to the journal
file and occasional checkpointing of Merkle tree nodes.

Note that the functionality for the just described relax-
ation is implemented almost entirely in untrusted com-
ponents. Sync_manager only provides a hint indicating
whether an older block exists; the hint is trivially com-
puted by checking if the current hash sum in the parent
node is null or not.

Out-of-Order Reads. Many write operations can be
queued in the ring buffer and it may take a long time
to process them. Txn_manager checks if block read
requests it receives asynchronously are independent of
pending writes; if they are, it handles the read requests
immediately without the latency that flushing of pending
writes first would cause.

Exploiting Existing Infrastructure. For our evalua-
tion presented in Section 5, we used ReiserFS [23] and
NILFS [24] as the underlying file system. With Reis-
erFS, Txn_manager can only use the POSIX function
fsync() to order writes for consistency. This POSIX
system call guarantees that all data and metadata of a
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file have reached stable storage upon return. However,
this persistence guarantee is stricter than what jVPFS re-
quires: in the common case, we just require that certain
I/O operations do not overtake each other (e.g., journal
records with updated block hash sums are written before
modifying the file container or not at all).

The log-structured file system NILFS can ensure a
strict order of write operations without calling an ex-
plicit API such as fsync(). NILFS ensures that writes
reach stable storage in the same order in which an ap-
plication issued them. Our prototype implementation of
Txn_manager exploits this behavior to eliminate I/O de-
lays caused by fsync(), if possible. We extend reuse of
existing consistency support even further by leveraging
support for efficient checkpointing of file system state
that is built into NILFS. Whenever Sync_manager wants
to checkpoint its own file system state before starting a
new journal, we create a checkpoint in the underlying
NILFS file system.

5 Evaluation

We built jVPFS on a platform based on the Fiasco.OC [7]
microkernel from the L4 family. The kernel ensures
strong isolation of trusted and untrusted components
and uses kernel-protected capabilities to enable secure
resource access. The trusted part of jVPFS and test
applications utilize libraries and services of the L4Re
user-level environment [25]. jVPFS hooks into the
generic, POSIX-like VFS interface of L4Re. We use
L4Linux [26], a paravirtualized Linux 2.6.36 kernel, to
run the untrusted parts of the jVPFS stack.

5.1 Complexity
Table 2 shows a breakdown of the source complexity of
the jVPFS stack, which is written in C++ (cryptographic
library routines are in C). All figures were generated us-
ing David A. Wheeler’s ’SLOCCount’ [27]. In addition
to the subsystems listed in the table, jVPFS also reuses
an AVL-tree implementation that is part of the TCB of
any L4Re application. It comprises approximately 800
lines of C++ code. The L4Re VFS supports file-system
plugins and is also linked to any L4Re application.

The main contribution of jVPFS compared to VPFS is
its new persistency layer. In our prototype implementa-
tion, it comprises 729 source lines of code (SLOC). The
functionality that implements journaling and replay of
metadata operations requires 325 SLOC, including cryp-
tographic protection as explained in Section 3.5. This
is an order of magnitude smaller than in typical mono-
lithic file systems; for example, the journal block device
layer (JBD2) for Ext4 comprises almost 5,000 SLOC in
Linux 2.6.36. We attribute this significant reduction of

Subsystem SLOC
L4Re: VFS 2,303
jVPFS: memory file system 2,444
jVPFS: Sync_manager (persistency) 404
jVPFS: Sync_manager (journal/replay) 325
L4Re: libcrypto 667

Table 2: Source complexity of jVPFS: Sync_manager
contributes 729 lines of code to the TCB. Only 325 lines
of code are related to journaling and replay.

complexity to key design decisions in jVPFS: First, the
logic to add operation-level journaling is a simple ex-
tension of the code that implements write batching us-
ing the shared ring buffer. We mainly added additional
record types for different operations (e.g., File_create
or File_unlink) and consistency state tracking. Sec-
ond, Sync_manager reuses the same API entry points
as the VFS layer to replay operations; parameters for
API calls are retrieved from journal records. We im-
plemented less than a dozen SLOC for replay of each
type of operation in a switch statement. The remaining
404 SLOC of Sync_manager’s current implementation
would be required for persistency anyway (e.g., transfer
of data blocks, shared memory setup, ring buffer logic).

The functionality in the TCB could only be reduced
this much, because Txn_manager (which is approxi-
mately 1,300 SLOC in size) makes extensive reuse of the
complex untrusted Linux file system stack.

5.2 Write Performance

Due to space constraints, we focus our performance eval-
uation on write and metadata-intensive benchmarks and
recovery. We did all benchmarks on the same hardware
configuration we used for performance evaluation of the
original version of VPFS [1]. The evaluation machine
has two 2.0 GHz dual-core Opteron processors and 2 GB
of DDR RAM. We restricted the hardware resources to
one core and 256 MB of physical RAM in all bench-
marks. We used two storage mediums, a 80 GB SATA
hard disk (Samsung HD080HJ) and a USB flash disk
(Buffalo Firestix, 1 GB).

Using strace, we recorded all file-system calls that
benchmarking tools executed on Linux. Like we did for
VPFS, C++ programs generated from these traces were
compiled for L4Re and used to replay all file-system op-
erations on a jVPFS stack; we also ran Linux versions
of the trace players on native Linux without any encryp-
tion to establish a baseline. Native Linux could use the
full 256 MB of RAM, whereas the jVPFS configuration
allocated 64 MB of it to its trusted buffer cache that is
isolated from L4Linux. Some traces were also used to
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Trace VPFS jVPFS
PM-1 2.52 s 1.02 s (0.16 s)

bonnie++ (encrypted) 32.0 MB/s 38.4 MB/s
bonnie++ (plaintext) 42.0 MB/s 53.1 MB/s

Table 3: Performance comparison between jVPFS and
original version of VPFS using ReiserFS on the hard disk
(VPFS figures taken from [1]).

Trace Storage Base w/o Jrnl w/ Jrnl
PM-2 ReiserFS 5.11 s 6.37 s 9.56 s

HDD (0.10s) (0.14s) (0.27s)
PM-2 NILFS 27.12 s 12.36 s 13.49 s

Flash (0.20s) (0.60s) (0.54s)
untar ReiserFS 1.61 s 2.07 s 2.14 s

HDD (0.06s) (0.02s) (0.03s)
untar NILFS 7.09 s 9.65 s 9.83 s

Flash (0.04s) (0.09s) (0.13s)

Table 4: Execution times and standard deviation for
benchmarks of jVPFS with and without journaling en-
abled, compared against native Linux as a baseline.

benchmark VPFS [1], so we can roughly compare jVPFS
against its predecessor, too. Unless stated otherwise, all
benchmarks were run ten times and the results averaged;
we give standard deviations for increased confidence.

Throughput. We first tested throughput performance
by writing two 1 GB files using a bonnie++ trace (see
Table 3). With metadata journaling, jVPFS achieves 38.4
and 53.1 MB/s for encrypted and for plaintext files, re-
spectively, with ReiserFS on the hard disk. When we
disabled jVPFS journal writes, the underlying legacy
file system was eight percent faster to write the unen-
crypted, but integrity-protected, file containers: effective
throughput was 57.1 MB/s, which is close the 58.1 MB/s
we measured for native Linux (figures not in Table 3).
jVPFS clearly outperforms VPFS (32 and 42 MB/s).

PostMark. PostMark is a synthetic benchmark that
creates, modifies, and then deletes a large number of
files. The PM-1 trace we used to measure the original
VPFS configuration operated on 5,000 files with a size
in the order of a few kilobytes [1]. We replayed this
mostly-cache workload on jVPFS, which shows signif-
icantly better performance than the older VPFS. Another
PostMark trace, PM-2 with ten times as many opera-
tions on 50.000 files, causes a large number of evictions
from the trusted buffer cache and writes to the storage
medium. We used this metadata-intensive trace to mea-
sure the journaling overhead (see Table 4, or Figure 5 for
visual representation). With ReiserFS on the hard disk
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Figure 5: Benchmark results for Postmark and untar
traces; see Table 4 for exact values of execution times
with standard deviation.

providing the untrusted storage, we see a 1.5x overhead
when journaling is enabled, and about a factor of two
compared to the baseline. We expected such a behavior,
because calling fsync() on the journal file when required
for consistency is expensive on magnetic disks.

With NILFS driving the flash disk, we found that
jVPFS can actually perform better than running the
benchmark natively in Linux. We determined the strict
write ordering of NILFS to be the cause for this unintu-
itive result: PostMark frequently modifies the small files
it created, causing a large number of serialized block up-
dates (i.e., log writes) in NILFS. The jVPFS buffer cache
absorbs many of these updates, such that less data actu-
ally reach the legacy file system. On the other hand, our
system greatly benefits from the ordering guarantees of
NILFS, as it does not require synchronous writes to up-
date its journal. Nevertheless, journal writes do cause
increased write traffic, as can be seen in the figures. We
measured 3.5 MB of journal records, but they arrive in
groups smaller than the NILFS block size, thus causing
the 9 percent journal I/O overhead we measured.

Untar. The untar trace simulates unpacking a tar
archive with thousands of small and large files (kilobytes
to megabytes); when done, it flushes all data and meta-
data to stable storage. We measured 3 and 2 percent jour-
naling overhead for the ReiserFS/HDD and NILFS/flash
configuration, respectively. This overhead correlates
well with the actual size of the journal file, which ac-



380 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

counted for 2.3 percent of all data written to the un-
trusted storage. These figures are lower than for the Post-
Mark benchmark, as there is a number of very large files
among the more than 3,000 files and directories that are
created—those files dominate write traffic.

The total overhead of the jVPFS stack over the Linux
baseline in this benchmark is 33 percent for ReiserFS and
39 percent for NILFS. Virtualization, increased commu-
nication costs, and cryptographic operations contribute
to this overhead. While significant, but we believe this
overhead is acceptable considering the security advan-
tages jVPFS has over monolithic systems.

5.3 Recovery Performance
We tested jVPFS’ recovery functionality using the untar
trace both in simulation and on real hardware.

Simulations. In simulation mode, we let Txn_manager
terminate itself after it logged a specific amount of data
to the journal (about 70 percent of the files were written
up to that point). We did not power-cycle the machine,
but only restarted Txn_manager and the trusted com-
ponent of jVPFS. Sync_manager successfully replayed
all records from completed transactions as reported by
Txn_manager. We then ran a test application that tried to
open all files referenced in the journal and read their con-
tents. In total, jVPFS recovered 13 directories containing
1,761 files, which could all be opened and read. Meta-
data for 26 files was not recovered, because the last trans-
action they were part of was incomplete; the application
received an ENOENT error for these files. This test suc-
ceeded reliably and no integrity errors were found.

We repeated the tests with journal writes being dis-
abled, such that jVPFS behaved like the original VPFS.
Txn_manager was allowed to write Checkpoint records
only. After the simulated crash, the file system could be
remounted, but the application received an integrity error
when the trusted file-server component of jVPFS tried to
look up names in the root directory. The file system was
inaccessible afterwards and all data was lost.

Real Hardware. We then tested our system on real
hardware. We power-cycled the machine right in the
middle of the benchmark and let Linux recover the par-
tition containing the legacy file system. Due to its strict
write ordering, NILFS quickly recovered file containers
and a valid jVPFS journal, which could successfully be
replayed. In multiple tests, hundreds to thousands of files
were recovered, depending on the exact moment of the
power loss. For example, in one particular instance our
system restored 2,710 files consisting of 9,826 blocks of
user data within 5.1 seconds; the journal contained 1.2
MB of valid metadata updates. All recovered files could

be read; for all other files, the aforementioned test appli-
cation received an ENOENT error. No corruptions (i.e.,
intergrity errors) were reported, as we expected.

In the configuration utilizing the hard disk, ReiserFS
replayed varying numbers of transactions in its own jour-
nal and jVPFS recovered files with no errors other than
ENOENT for missing files. We did however also use
Ext4 in our experiments and got unexpected results: after
recovering the Ext4 partition, jVPFS found a checkpoint
record in the journal, but no transactions. We determined
an Ext4 optimization called “delayed allocation” to be
the reason for this behavior: it may produce zero-sized
files after recovery, if the application did not call fsync()
on the file descriptor. Due to our own optimization in
jVPFS, which we explained in Section 4, Txn_manager
did not use fsync() in the untar benchmark, except right
after the file system had been created and the Checkpoint
record was written. We are currently investigating ways
to make jVPFS reliable on Ext4, too.

6 Related Work

We shall now discuss other work that relates to the im-
provements we made to VPFS [1] in order to securely
add robustness against unclean shutdowns.

File System Consistency. jVPFS implements journal-
ing and replay of high-level metadata operations. A sim-
ilar approach is used by journaling file systems such as
Windows NTFS. Others, including Ext3/4 and ReiserFS,
instead append complete metadata blocks to their jour-
nal in order to log inode, directory, and allocation up-
dates [11]. They implement full-block journaling. We
considered this approach for jVPFS, but rejected it as we
found it to be more complex in our architecture. Jour-
naling metadata blocks requires much more fine-grained
dependency tracking within the TCB. Operations such as
creating a file modify many metadata structures, which
are distributed across multiple blocks in the buffer cache.
Furthermore, the fact that more than one inode (or direc-
tory entry) is stored in a single metadata block causes ad-
ditional false dependencies. For example, when writing
back metadata for one file, the directory block contain-
ing the filename might contain an entry for another file
that has recently been created, but whose data or inode
has not been written yet. Thus, writing such a directory
block actually creates an inconsistency in the on-disk
state. To avoid having to increase transaction sizes by in-
cluding a potentially large number of unrelated files, sys-
tems that use full-block journaling implement roll-back
mechanisms that temporarily remove incomplete updates
from metadata blocks before they are written. We tried to
integrate such mechansims into jVPFS, but found them
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to add more complexity to the TCB than operation-level
journaling as described in Section 3.

Transactional file systems such as ZFS [28] share the
problem of false metadata dependencies. They use a
copy-on-write approach to prevent inconsistent on-disk
state in the first place. Instead of updating data and
metadata in-place, they write all modified blocks to free
space and then adjust pointers to reference those updated
blocks. In conjunction with a hash tree, updates must al-
ways propagate to the root. As explained in Section 3.1,
the overhead incurred by this approach is significant.

The soft update [10] approach makes sure that a con-
sistent file system can always be restored. The key idea
is to apply in-place updates in such an order that only
minor inconsistencies occur after a crash. Pointers are
guaranteed to be valid, however, old and new metadata
(or blocks with user data) may be mixed. This relaxation
is inherently incompatible with Merkle tree updates. We
therefore did not further consider the soft update ap-
proach for solving the robustness problems of VPFS.

The journaling scheme in jVPFS is related to the log-
structured approach [22]. What sets our system apart
from this type of file systems, is that its consistency
mechanism is split into two isolated parts, with complex
garbage collection not being part of the TCB.

Untrusted Storage. The logging approach the Trusted
Database System (TDB) [19] uses to protect its trans-
action log is similar to that of jVPFS. It also uses a
Merkle tree to ensure integrity. However, jVPFS splits
the implementation of journaling and replay into two
isolated components using a novel cooperation scheme.
jVPFS also reuses existing consistency primitives of an
untrusted file system, whereas TDB implements a com-
plete, new database in the TCB.

The protected file system (PFS) [29] unifies journaling
and hash logging in a way similar to jVPFS in order to
securely use untrusted storage. However, it operates at
the level of file-system blocks rather than metadata oper-
ations and has a monolithic codebase.

SiRiUS [30] is an example for a network file system
that uses untrusted servers. It also stacks onto existing
network file systems such as Sun NFS [31] and delegates
management of persistent file storage to untrusted infras-
tructure. However, to the best of our knowledge, SiRiUS
does not have an integrated recovery mechanism to en-
sure consistency of its metadata freshness files.

Non-standard Consistency Primitives. Systems such
as Featherstitch [32] offer efficient means to applications
to specify write-before constraints. The untrusted part
of jVPFS can benefit from such expressive consistency
primitives in the same way as it benefits from write-order
guarantees in NILFS.

7 Conclusions

We built jVPFS, a secure stacked file system that imple-
ments post-crash recovery with a minimal trusted com-
puting base (TCB): it requires only 325 lines of C++ code
for the security-critical functionality of metadata journal-
ing and recovery, which is an order of magnitude less
than widely-used Linux file systems require to provide
crash resistence. It reuses an untrusted Linux file system,
from which it is strictly isolated through address spaces
and virtual-machine boundaries. jVPFS delegates most
of the work for managing a physical storage medium to
the Linux file system stack, while making extensive use
of existing consistency primitives. For example, it can
exploit strict write-order guarantees offered by NILFS.
Thus, the trusted core of jVPFS can operate at a high ab-
straction level of metadata operations, greatly reducing
the complexity that file-system consistency mechanisms
usually contribute to the TCB.

jVPFS outperforms its predecessor VPFS in all bench-
marks we did and was shown to be much more robust
against unclean shutdowns. It successfully and reliably
recovered from temporary damage after power loss. Its
strong integrity checks did not detect any corruptions
in the recovered secure file system, which was layered
on top of ReiserFS on a hard disk, or NILFS, a log-
structured Linux file system optimized for flash storage.
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Abstract
A key measure for the success of a Content Delivery Net-
work is controlling cost of the infrastructure required to
serve content to its end users. In this paper, we take a
closer look at how Yahoo! efficiently serves millions of
videos from its video library. A significant portion of this
video library consists of a large number of relatively un-
popular user-generated content and a small set of popular
videos that changes over time.

Yahoo!’s initial architecture to handle the distribution
of videos to Internet clients used shared storage to hold
the videos and a hardware load balancer to handle fail-
ures and balance the load across the front-end server
that did the actual transfers to the clients. The front-end
servers used both their memory and hard drives as caches
for the content they served. We found that this simple ar-
chitecture did not use the front-end server caches effec-
tively.

We were able to improve our front-end caching while
still being able to tolerate faults, gracefully handle the
addition and removal of servers, and take advantage
of geographic locality when serving content. We de-
scribe our solution, called SPOCA (Stateless, Propor-
tional, Optimally-Consistent Addressing), which reduce
disk cache misses from 5% to less than 1%, and increase
memory cache hits from 45% to 80% and thereby result-
ing in the overall cache hits from 95% to 99.6%. Unlike
other consistent addressing mechanisms, SPOCA facili-
tates nearly-optimal load balancing.

1 Introduction

Serving videos is an I/O intensive task. Videos are larger
than other media, such as web pages and photos, which
not only puts a strain on our network infrastructure, but
also requires lots of storage.

∗This work was done when the author was employed at Yahoo! Inc.

Our clients access videos using web browsers. They
connect to front-end servers which serve the video con-
tent. The front-end servers cache content, but are not
the permanent content repository. Videos are stored in a
storage farm that is made up of network attached storage
accessible by all front-end servers.

To further complicate things, the video content is
spread around the world. So, when a client requests con-
tent that is non-local, we must decide whether to have the
client pull from the remote cluster that has the content, or
copy the content from the remote cluster and serve it lo-
cally.

Video delivery is fastest and causes the least amount
of load on the rest of the infrastructure if the content
is cached in the memory of a front-end server. If the
content must be accessed from the disk of the front-end
server, the load on the front-end server increases slightly.
It causes significantly more load and slower delivery if
the content must be retrieved from the storage farm. In-
creased load on the serving infrastructure translates into
higher cost to upgrade networking components and to
add more servers and disk drives in the storage farm to
increase the number of operations per second that it can
handle. Thus, good caching at the front-end servers is
important to latency, throughput, and the bottom line.

The Yahoo! Video Platform has a library of over
20,000,000 video assets. From this library, end users
make about 30,000,000 requests per day for over 800,000
unique videos, which creates a low ratio of total requests
to unique requests. Also, because videos are large, a typ-
ical front-end server can hold only 500 unique videos in
memory and 100,000 unique videos on disk. The low ra-
tio of total/unique requests combined with the large size
of video files make it difficult to achieve a high percent-
age of cache hits.

A straightforward architecture, shown in Figure 1,
uses a VIP (Virtual IP) load balancer which distributes
requests in a round-robin fashion among a cluster of
front-end servers. The VIP exposes an IP address that

1
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Load
Balancer

Storage
Farm

Front-end
Servers

Internet

Request for vid1
Request for vid2
Request for vid3

Figure 1: A straightforward content serving architecture
using a hardware load balancer VIP (Virtual IP) with
front-end server that are connected to a shared storage
farm.

the clients connect to. The VIP routes connections to
front-end servers to balance load and mask failures of
front-end servers. Front-end servers manage their cache
by promoting every requested item while demoting the
least recently used item.

This was our initial content serving architecture that
we used in production. Unfortunately, this straightfor-
ward approach results in more requests to the storage
farm, due to cache misses at the front-end servers, than
the farm can handle. Our storage farm has copious space
but limited bandwidth. The front-end server disks are a
secondary bottleneck because memory cache misses ex-
haust the disk throughput before the CPU of the front-
end server can be fully utilized.

In a cluster of front-end servers behind a VIP, each
piece of popular content will end up cached on multi-
ple servers. For example, in Figure 1 vid1 is a popular
video that ends up cached on all the front-end servers.
vid2 and vid3 may have only been requested twice
each, but that resulted in each video being cached on two
nodes.

This is grossly inefficient compared to caching each
piece of content on only one server and routing all re-
quests for that content to the server where it is cached.
If the cluster’s collective cache stores as few copies of
each video as possible, then it will be able to store as
many unique videos as possible, which in turn will drive
down cache misses as low as possible. Eliminating re-
dundant caching of content also reduces the load on the
storage farm. An intelligent request-routing policy can
produce far more caching efficiency than even a perfect
cache promotion policy that must labor under random re-
quest routing.

Maximizing caching efficiency via request routing in-
troduces practical challenges. It is difficult to keep a re-
quest router’s knowledge in synch with the actual cache
of each front-end server. Furthermore, even if a re-
quest router has a real-time database of cache contents, a
database lookup on every user request is a non-trivial la-
tency. Also, most deployments must have more than one
request router, which raises the possibility of two dif-
ferent routers independently making a different decision
of where to place new content that is not yet in cache, or
where to re-locate content when a front-end server leaves
or enters the cluster.

The cache promotion algorithm is a natural place to
look for improvement. A better promotion policy offers
us significantly more memory cache hits and is therefore
a step toward relieving the disk throughput bottleneck.
The accesses to the storage farm, however, are reduced
only marginally by a good promotion policy, because the
disk cache miss percentage is low to start with. In some
circumstances, delaying a page-in from permanent stor-
age to the disk cache until we are confident that a piece of
content is promotion-worthy actually results in more disk
cache misses than automatic promotion does. Therefore,
another solution is necessary.

Of course the above discussion does not consider the
problems arising from the geographic distribution of the
content. Not all content is available at all locations. The
cluster of servers closest to the user, nearest locale, may
not be the cluster storing the content, home locale. So
when we put together the caching discussion and the ge-
olocality, we end up with the following possible user ex-
periences:

1. nearest locale and cached ⇒ excellent experience
2. nearest locale and not cached ⇒ average experience
3. home locale and cached ⇒ average experience
4. home locale and not cached ⇒ below average expe-

rience
To get excellent user experience for the most users we

need to be able to cache popular remote content locally.
In this paper we describe SPOCA, a system for con-

sistent request routing, and Zebra, a system for routing
requests geographically. Both systems have been in pro-
duction for a few years now at Yahoo! The contributions
of this work are:

• We describe a system that is actually used in pro-
duction in a global scenario for web-scale load.

• We show the real world improvements we saw over
the simple off-the-shelf solution in terms of perfor-
mance, management consolidation, and deployment
flexibility.

• SPOCA implements load balancing, fault tolerance,
popular content handling, and efficient cache uti-
lization with a single simple mechanism.

• Zebra handles geographic locality in a way that fits
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nicely with the mechanism used locally in the data
centers.

• We are able to implement all the above with only
soft state.

2 Requirements

Our content distribution network is faced with different
traffic profiles for its various delivery modes. To handle
this, profiles are divided by types of content into pools.
This allowed us to adjust the provisioning and policies of
the pools to accommodate the traffic profiles. The three
main content pools are: Download pools (DLOD), Flash
Media Pools(FLOD), Windows Media Pools(WMOD).
FLOD is made up of a relatively small library of files and
a high average popularity; for DLOD the traffic consists
mostly of a large number of unpopular files; and WMOD
streaming must deal with both a huge library and some
very hot streams. A high level goal for the platform was
to merge these pools and be able to manage the diverse
requirements of the different traffic profiles in an adap-
tive way.

A naı̈ve approach to partitioning a pool among a group
of front-end servers would be to maintain a catalog that
associates each content file with a particular front-end
server. The catalog approach is, however, impractical be-
cause the set of servers in a location is constantly chang-
ing. It would be too time-consuming to re-index the en-
tire content library every time a new front-end server be-
came available, or a current server became unavailable,
or a former server re-entered the pool after having been
temporarily unavailable. Therefore Yahoo! uses a state-
less addressing approach.

For stateless addressing, the inputs are a filename and
a list of currently available servers; the output is a server
from the list. This eliminates the need to maintain and
communicate a catalog. The tradeoff is that Request
Router must recalculate the destination server on every
request, but fortunately the cost is only microseconds
in practice. The same input always produces the same
output, so two different Request Router servers, without
communicating to each other, will address the same file
to the same front-end server within a pool.

We have additional stringent requirements for our ad-
dressing algorithm. First, it must partition the set of
filenames proportional to different weights for different
front-end servers in heterogeneous pools. For example,
a newer server might have twice the capacity of an older
server, and therefore should serve twice as large a portion
of the content library.

The proportionality requirement rules out the use of
a distance-based consistent hashing algorithm, although
such algorithms are consistent and stateless. Such an al-
gorithm assigns an address to each front-end server, and

Figure 2: Distance-based Consistent Hashing

assigns a file to the server with the address closest to the
hash of the filename, according to some distance func-
tion. To see that distance-based consistent hashing does
not respect server weights, suppose to the contrary that
some configuration of front-end server addresses did re-
spect server weights. Suppose that some server then be-
came unavailable. All of the content for which the un-
available server had been responsible would fall to its
nearest neighbors by the distance function. Servers far-
ther away by the distance function would pick up none of
the load. Therefore, the content library would no longer
be partitioned proportional to server weights (see Figure
2).

In some circumstances it might be reasonable to per-
mit the load of a missing server to be redistributed to
its nearest neighbors only. For Yahoo!, however, one
reason for a server to be missing is that the server was
overloaded. If its load then falls entirely on a few neigh-
bors by distance, they may also become overloaded and
fail as well, creating a domino effect that brings down
the entire pool. Therefore it is critical that whenever a
server leaves the pool, its load is distributed among all re-
maining servers, proportional to their respective weights.
(Figure 3 show an acceptable redistribution.)

Our second requirement for our addressing algorithm
is that it be optimally consistent in the following sense:
when an front-end server leaves or enters the pool, as few
files as possible are re-addressed to different servers, so
that caching is disrupted as little as possible.

The two requirements of respecting weight and re-
addressing a minimum number of files are quite limit-
ing. For example, suppose that a pool has three front-end
servers of weight 100, and two servers of weight 200. If
a new server of weight 200 is added to the pool, not only
must the new server be assigned two-ninths of the files in
the content library as a whole, but more specifically for
each of the other servers it must take over two-ninths of
the files that server was handling.

Figure 3 depict roughly what must happen when
servers join and leave the pool if weights are to be re-
spected and a minimum number of files are to be re-
assigned.

A third requirement on our hashing algorithm arises
from the fact that a proportional distribution of files
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Figure 3: Proportional Redistribution of Load

Figure 4: Video popularity follows a power law distribu-
tion.

among servers does not necessarily result in a propor-
tional distribution of requests. Perfect caching is in con-
flict with perfect load balancing, because some files may
be more popular than others. Indeed, a single file may
be hotter than any front-end server in the pool could han-
dle by itself. There must be a way to detect hot files
and/or detect overloaded servers, so that traffic can be
distributed away from affected servers.

The load-balancing requirement could be hacked in to
the distribution system as an exception to our consistent
hashing algorithm, for example simply by saying that
files beyond some popularity threshold are evenly dis-
tributed between all front-end servers.

Instead of distributing popular streams to all front-end
servers, we distribute only to two or three or however
many are necessary to meet demand. The means that our
algorithm must produce more than a consistent server as
output; it must produce a consistent server list.

Figure 4 shows distribution of requests over the con-
tent served by our video service. Most requests are for a

small number of popular or head content; however, there
are still many requests spread over the long tail of less
popular content. Similar distributions of popular content
have been observed for other services as well [18].

The head content served by Yahoo! is so popular that
a single front-end server cannot handle all user requests
for a single video. The request router must have a mech-
anism to distribute hot content to more servers than one
front-end server. A few extra cache misses are less prob-
lematic than a server being completely overwhelmed by
a piece of head content.

The majority of user requests for video, however, are
requests that could (and should) be handled by a single
server. Therefore, it is equally important that the number
of pieces of tail content addressed to each server be pro-
portional to that server’s capacity. Although our front-
end servers are generally homogeneous, new front-end
servers we add to the cluster inevitably have different ca-
pacity than existing servers. As we distribute requests
across the cluster, we need to take into account the dif-
ferent capacities of the front-end servers.

Our platform is deployed as a cluster of video servers
spread across the world, so we need to take geolocal-
ity into account. However for unpopular content, it is
more effective to serve the content from a remote loca-
tion rather than try to make the content geographically
local. As content becomes more popular we want clients
to access them from servers that are close to them.

Finally, our video service is a 24/7/365 operation. We
need it to be elastic: we need to be able to add and re-
move servers from the running system. We also need it
to be fault tolerant: we need to gracefully handle the fail-
ure and recovery of front-end servers.

3 Overview

We drive caching and locality decisions based on content
popularity. Zebra decides which non-local popular con-
tent should be cached closer to the requestor. Local con-
tent will be cached at an optimal number of local servers
based on popularity.

Zebra routes popular requests for popular content to
the cluster closest to the nearest locale and unpopular
content to the home locale. Zebra initially considers all
content as unpopular, so the first request for a particular
video will be directed to the home locale. Subsequent re-
quests for the same content will cause Zebra to consider
the content as popular and direct requests to the nearest
locale. Because of the number of videos served we want
to do this popularity detection in a way that uses only
soft state and can be tracked with a fixed, and relatively
small, amount of memory.

Local content caching uses a Stateless, Proportional,
Optimally-Consistent Addressing Algorithm (SPOCA)

4



USENIX Association  USENIX ATC ’11: 2011 USENIX Annual Technical Conference 387

to route content requests to our front-end servers rather
than simple VIPs. Given the name of a piece of con-
tent and a list of front-end servers, the algorithm deter-
ministically maps the content to a single front-end server.
Two request routers will independently arrive at the same
mapping, and the same request router will make the same
mapping repeatedly without having to remember any-
thing. The computation is faster than database lookups,
and the only communication overhead required is the list
of active front-end servers.

SPOCA is consistent beyond being deterministic.
Front-end servers will occasionally drop out of the clus-
ter due to outages or maintenance, and new servers will
occasionally be added to refresh technology or increase
capacity. When the list of active servers changes, it is
unacceptable for the mapping of content to servers to
wholly change. Indeed, for optimal consistency, content
should never be re-mapped from server A to server B un-
less A left the cluster or B joined the cluster. In other
words, if server A and server B are present both before
and after the cluster changes, then no content can be re-
mapped from one to the other.

To serve content we assign each piece
of content served a unique name the form
Content-ID.domain. The Content-ID is
deterministically derived from the identifier of the
content, the hash of the filename for example. domain
corresponds to the pool to which a piece of content be-
longs. domain also represents a valid DNS subdomain
managed by Yahoo!. Thus, Content-ID.domain
is a valid DNS name that can be resolved by a DNS
server. We have a special DNS server, called Polaris,
that works with Zebra and SPOCA to route a request to
the appropriate server.

During DNS resolution Zebra and SPOCA deter-
mine the front-end server to route the request to;
Polaris directs the client to that server by resolving
the request for Content-ID.domain to the de-
termined front-end server’s IP. Web pages that em-
bed content to be served uses a URL of the form
http://Content-ID.domain to address the con-
tent.

4 The Zebra Algorithm

Zebra handles the geographic component of request rout-
ing and content caching. Its main caching task is to de-
cision out when requests should be routed to content’s
home locale and when the content should be cached in
the nearest locale. Zebra makes this decision based on
content popularity.

Zebra tracks popularity using soft state with a limited
amount of memory. Bloom filters [2] seem like a good
data structure to use for this kind of tracking. As requests

for content come in, we can add them to the bloom filter
to track popularity. Unfortunately, it is not possible to
remove content from the bloom filter. So we need a way
to stop tracking content that is no longer popular.

Rather than using a single bloom filter, Zebra uses a
sequence of bloom filters (we use 17 filters in produc-
tion). Each bloom filter represents requests for a given
interval, on the order of hours. We keep a fixed number
of filters in the sequence and expire older filters as new
are added. Content is considered popular based on the
union of the intervals. We optimize the popularity check
by combining all the bloom filters older than the current
interval into one after the start of a new interval, so that
popularity checks involve lookups in only two bloom fil-
ters.

Note that even if we had used a more sophisticated
bloom filter structure, such as counting bloom filters [7],
we would still need to track entries to be deleted because
they are no longer popular. Our strategy of using a se-
quence of bloom filters both tracks and removes entries
that are no longer popular using simple bloom filters.

If content is deemed popular, it is in one of the two
bloom filters, the content will be cached locally. Not only
does Zebra enable more effective geographic caching, it
also enabled us to decouple delivery from storage. It now
makes sense to have content serving front-ends in a data
center that has no content storage servers. Popular con-
tent will be cached locally at the front-end servers and
unpopular content requests will be routed to its home lo-
cale.

Zebra determines which serving clusters will handle
a given request based on geolocality and popularity.
SPOCA determines which front-end server within that
cluster will cache and serve the request.

5 The SPOCA Algorithm

To maximize the cache utilization at the front-end servers
and thereby minimize the load on our storage farm
SPOCA aims to localize requests for a given video at
a single server. This will allow the best utilization of the
aggregate memory of the front-end servers. We also need
to balance the load across the front-end servers and han-
dle failures and server additions. Requests for a popular
video may overload a single server, so we need to be able
to assign the handling of such content to multiple front-
end servers. Finally, we have serving clusters around the
world, so we need to take geolocality into account.

Figure 5 illustrates how we would like content to be
served. Each video is served by one server. This de-
creases the load on the storage farm and it more effec-
tively uses the cache of the front-end servers. Since
vid1 is a popular video we would like it to be served
by multiple servers.
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Request for vid1
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Request for vid3

Figure 5: SPOCA consistently routes the same video to
the same front-end server. It also increases the number
of servers serving popular content. (e.g. vid1)

SPOCA fulfills our requirements using a simple con-
tent to server assignment function based on a sparse hash
space. Each front-end server is assigned a portion of the
hash space according to its capacity.

The SPOCA routing function takes as input the name
of the requested content and outputs the server that will
handle the request. The SPOCA routing function uses a
hash function to map names to a point in a hash space
as shown in Figure 6. Each front-end server is assigned
a portion of hash space proportional to its capacity. Not
every point in the hash space maps to a front-end server,
so when the hash of the name of a requested video maps
to unassigned space, the result of the hash function is
hashed again until the result lands in an assigned portion
of the hash space.

Using this hashing scheme SPOCA load balances con-
tent requests using random load balancing in such a way
that it can gracefully handle failures, the addition and re-
moval of front-end servers, and popular content.

5.1 Failure handling

If a front-end server fails, the portion of the hash space
that was assigned to the failed server becomes unas-
signed as shown in Figure 7. Requests that would have
been assigned to the failed server are rehashed as normal
until they land in a region assigned to an active server.
This has the nice property that only the content assigned
to the failed server will be re-routed to other servers
in a balanced fashion. Content assigned to the servers
that have not failed will continue to be served by those
servers, which allows us to continue to utilize effectively
the cached content at those servers.

Storage
Farm

H(vid1)

H(H(vid1))

Server 1

Server 2

Server 3

Server 4

Figure 6: An example assignment of the SPOCA hash
map. The name of the requested video initially hashes to
empty space, but when hashed again is assigned to server
3.

Storage
Farm

H(vid1)

H(H(vid1))

Server 1

Server 2

Server 3

Server 4

XX
H(H(H(vid1)))

Figure 7: When server 3 fails, the content handling for
the named video is reassigned to server 2.
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Figure 8: When server 5 is added, the content handling
for the named video is reassigned to server 5.

5.2 Elasticity
New servers are mapped into the unassigned portion of
the hash space as shown in Figure 8. When this hap-
pens a portion of the content assigned to other servers
will now be assigned to the new server. For example, in
Figure 8 the video that was previously handled by server
3 will now be handled by the new server, server 5. Server
3 may have vid1 content in its cache because of previ-
ous requests. Eventually server 3 may end up replacing
vid1 with other content it is serving. If vid1 becomes
popular or server 5 fails, server 3 will again start serving
vid1.

Servers are removed from service by simply remov-
ing their assignments from the hash space. This will
cause the mechanism described in the previous section
to kick in and content served by the removed server will
be spread to other active servers.

5.3 Popular content
SPOCA tries to minimize the number of servers that
cache a particular piece of content to maximize the ag-
gregate number of cached objects across the front-end
servers. This strategy works well with tail content, un-
popular content, but it can cause front-end servers for
head content, popular content, to become overloaded.
So, for head content we need to route requests to mul-
tiple front-end servers. We do this routing using a simple
extension to the SPOCA routing mechanism described
earlier. Popular files are handled by the same algorithm
that deals with missing servers, so a page-in for either
may benefit the other.

To handle popular content, the request router stores the

H(vid1)

H(H(vid1))

Server 1

Server 2

Server 3

Server 4

Popularity Window
Before the Request:
{}

Popularity Window
After the Request:
{(vid1, H(H(vid1)))}

Figure 9: When a request for vid1 is received, SPOCA
routes the request to server 3 and stores the hash in the
popularity window.

hashed address of any requested content for a brief pop-
ularity window, 150 seconds in our case. On every new
request, the request router checks whether it has a saved
hash for the requested content. If no hash is present, the
request is routed to a front-end server using the normal
procedure. If a hash is present, meaning the content has
been served within the popularity window, routing will
start using the stored hash rather than the name of the re-
quested content. In either case, only the final hash (i.e.
the address where the request was ultimately routed) is
saved along with the content name.

Figure 9 shows the routing for vid1 with the popu-
larity window. Because popularity window did not have
a entry for vid1 the request will be routed the same as
Figure 6. If another request is received in the popular-
ity window, as shown in Figure 10, the routing will start
with the hash stored in the popularity window rather than
the hash of vid1. Note that the server that handles over-
flow is the same server as handles requests for vid1 if
server 3 fails as shown in Figure 7.

When the popularity window expires, the stored hash
for each object is discarded regardless of how recently
it was used. It follows that each object may be mapped
to as many different servers as there are requests for that
file within the popularity window. For a given object, the
sequence of servers to which it is routed is the same in
each popularity window, with the number of requests de-
termining how deeply into the sequence the mapping ad-
vances. An object which is never requested twice within
the same popularity window is always mapped to the
same server.
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H(H(H(vid1)))

Server 1

Server 2

Server 3

Server 4

Popularity Window
Before the Request:
{(vid1, H(H(vid1)))}

Popularity Window
After the Request:
{(vid1, H(H(H(vid1))))}

Figure 10: When the next request for vid1 is received,
SPOCA uses the hash in the popularity window to start
the routing and routes to server 2 and stores the updated
hash in the popularity window.

If a file is temporarily popular enough to be distributed
to two servers, both will cache it. If later the first server
is unavailable, the second server will resume primary
responsibility for the file it already has cached, rather
than that file being re-assigned elsewhere. Similarly if
a server goes down for a while, the files for which it is
responsible will be cached elsewhere. If, after that server
has come back on line, one of its files becomes popular
enough to be distributed to a second server, that second
server will already have the file in cache.

The load balancing for hot files is not absolutely state-
less, but the request router does not need to store an entry
for each of the 20,000,000 unique files in the library, or
even the 800,000 unique files requested in a day, merely
the 20,000 unique files it has seen in the last 150 seconds.
This amount of data can easily be held in memory.

The larger the time window, the greater the permitted
load imbalance between servers. The shorter the time
window, the greater the unnecessary duplication of files.
It is a balance between inefficiencies.

Keeping a histogram of recent files would be greater
overhead, and would in any case not answer the impor-
tant question, namely whether we prefer the inefficiency
of load imbalance or the inefficiency of redundant copies.
The information necessary to decide about that tradeoff
is not available to the stream router.

5.4 Memory management
The original media server caching policy waited too long
to bring content from the filers into local cache. We

decided to use a more aggressive policy with SPOCA.
When explaining this policy we use the terms page-in
and page-out to describe the actions of populating the
cache with a piece of content and evicting a piece of con-
tent from the cache. The new caching policy, embodied
in SPOCA, goes to the extreme to correct the problem of
unresponsiveness: SPOCA calls for content to be paged
into local cache as soon as it is requested. This raises
an obvious question: is immediate page-in the right ap-
proach?

The traditional concern with aggressive caching is that
it causes churn, which is to say that a less-popular item
will be brought into cache, forcing a more-popular item
to be deleted from cache. The old caching system re-
flected the traditional mindset: that system was designed
to prevent churn by tracking whether an item was truly
popular before paging it in. In our configuration, how-
ever, churn is not the primary issue.

In light of increasing disk sizes and improvements to
the distribution of requests among media servers, it is
reasonable to suppose that a media server can cache ev-
ery stream that is requested for an entire week. We ob-
served that whenever a file is requested, the probability
that it will be requested again within a week is 69% for
ads, 80% for audio, and 83% for video, so even a random
new file we are getting our first request for is likely to be
more popular than the oldest file in our cache.

However, even if churn is low, even if cache misses
have been reduced to an absolute minimum, there is an-
other potential reason not to page in aggressively, namely
that paging in itself causes load on the filer. If we recall
that the objective of the caching system is to reduce filer
load, then we must reduce both cache misses and page-
ins. The policy of immediate page-in may save less in
cache misses than it costs in page-ins.

Indeed, an average page-in may place a greater bur-
den on a filer than an average cache miss, because in the
case of a cache miss, the user may not view the entire
stream, so the filer can quit serving it partway. We have
a question that cannot be decided in the abstract: It takes
real data to know whether 20% of the average stream is
viewed, or more, or less.

It is possible, however, that a page-in places a lesser
load on a filer than a cache miss. This is because the
filer can serve a page-in request at full speed, reading the
whole file contiguously, whereas to stream a file the filer
has to stream it out byte by byte.

What we observed was that for the video media
servers, the immediate page-in policy is correct. In most
cases we load the filer the least by paging in immediately,
which works very well with our general desire to be as
responsive as possible.

8
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5.5 SPOCA Implementation
SPOCA’s consistent hashing algorithm implementation
is based on the standard C pseudo-random number gen-
erator. In extreme circumstances, linear congruence gen-
erators may have undesirable properties, but for distribut-
ing traffic based on filename they are quite sufficient.

Since each file has a Content-ID this number is
used as the seed for our pseudo-random number genera-
tor. Thus it can generate an arbitrarily-long, determinis-
tic sequence of numbers, uniformly scattered in the unit
interval.

When an front-end server is entered into a pool, it
is assigned a segment of the unit interval that does not
overlap with any other server’s segment. The length of
the segment represents that server’s weight. Upon re-
ceiving a request for a file, SPOCA generates pseudo-
random numbers within the unit interval until one lies
within a segment that has been mapped to a server. Al-
gorithm 1 shows the basic logic to map a request for con-
tent, filename, to a server. At the heart of the algo-
rithm is the function maptoserver(seed), which re-
turns the server whose assigned segment includes seed.
Failures are also reflected in maptoserver(seed).
If SPOCA detects that a front-end server has failed,
maptoserver(seed) will return null for any
seed that falls in the failed servers assigned interval.

When a new server is added to the pool, the load is
evenly distributed among all the servers. What it means
is that the new server takes some load from each of the
existing servers in the pool. On the same lines, when
a server goes down, it takes the load which that server
was handling and re-distributes to the other servers in the
pool.

Algorithm 1 Pseudo-Random Generation Algorithm
1: seed := filename;
2: seed := rand(seed);
3: while maptoserver(seed) = NULL do
4: seed := rand(seed);
5: end while
6: return maptoserver(seed)

In order to allow for the painless addition of future
front-end servers, our servers typically cover only 1% to
25% of the unit interval, depending on our anticipation
of future growth. Note that if the mapping of front-end
servers covers only 1% of the unit interval, then SPOCA
will have to generate an average of 100 pseudo-random
numbers to distribute one request. Even so this algo-
rithm causes negligible latency, because linear congru-
ence generators are so simple.

On the rare occasion that one wishes to add servers
after an interval becomes entirely mapped, it is best to
shrink all existing segments to a some fraction of their

Figure 11: Data Growth

size, causing a corresponding fraction of disruptions in
caching. However, sparsely assigning the unit interval,
creates enough room for years of foreseeable needs. By
starting with only 1% of the unit interval assigned, we
can grow a cluster to almost 100 times its initial size be-
fore worrying about running out of room. In our experi-
ence so far, we have been able to plan ahead and avoid
any such re-mapping.

SPOCA controls distribution of popular files by saving
a seed for each filename for a configurable length of
time T . Every time T elapses, all saved seeds are thrown
away. If a request arrives for a file for which the request
router has a saved seed, that file is deemed to be popu-
lar, and the generation of pseudo-random numbers starts
from the saved seed rather than from the filename.
Algorithm 2 shows how the previous algorithm can be
modified to incorporate this behavior.

Algorithm 2 Distribution Algorithm
1: if savedseed[filename] = NULL then
2: seed := filename;
3: else
4: seed := savedseed[filename];
5: end if
6: while maptoserver(seed) = NULL do
7: seed := rand(seed);
8: end while
9: savedseed[filename] := seed

10: return maptoserver(seed)

A stream requested N times within the interval T may
be distributed to as many as N servers. Every time the
saved seeds are thrown away, the pseudo-random se-
quence starts over from the filename. If a file is never
popular enough to be requested twice within T , the file-
name will always be used as the seed, and thus it will
always be distributed to the same server.

9
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6 Evaluation

We use historical data we have collected over time from
production to evaluate the quality and performance of our
proposed algorithms. The dataset shown in Figure 11
covers Q1 2004 to half of Q1 2007. The amount of con-
tent stored and distributed has been approximately dou-
bling year-over-year.

When storage and distribution each double, requests
served from the filers quadruple. We could run into a
situation where we would need four times the filers to
support scaling delivery by two times. The reason for
this is because the cost model was not linear. There were
limitations on IO performance of the filers and it was
not a linear growth. We were consistently seeing 100%
CPU hit on the filers even for the 10% cache miss. With-
out SPOCA, we would need more hardware as we start
serving more requests from the filer.

We observed in our production environment that load
balancing with SPOCA is three times better than load
balancing by VIP because SPOCA’s hashing function de-
terministically routes to the right server to serve the re-
quest whereas VIP routing does simple random routing
without regard to where content may be cached. Note
that this is not one server getting three times the load
of another, as might happen in a peer-to-peer system
which does not guarantee a partition of the address space
proportional to server weights. The variation among
servers is rather three times the small amount produced
by random request routing. This increased variation is
smoothed out by the law of large numbers: the more re-
quests distributed by the request router, the closer to an
average load each front-end server gets. For the delivery
platform, load balancing has never been an issue since
SPOCA was implemented, whereas the caching problem
SPOCA solved was quite serious.

Over 99% of files accessed in any given day are not ac-
cessed often enough to trip the popularity trigger. There-
fore these files are cached on only one front-end server
each. As a file grows more popular it does not necessar-
ily get distributed to the entire cluster. Instead it is spread
to two, three, four servers and so on in linear proportion
to how popular the file is. No more cache misses are
created than are necessary for load balancing.

Only 0.01% of all files are popular enough to be
cached on all front-end servers. No additional mecha-
nism for identifying such files is necessary. Each server’s
probability of being the next server in the sequence to
which a hot stream is mapped is proportional to that
server’s weight. The fail over mechanism therefore load-
balances extremely popular content in the same propor-
tions as it maps tail content.

With SPOCA we have been able to reduce cache
misses by 5x. Each item is now cached on as few me-

Figure 12: Without Software Improvements

Figure 13: With Software Improvements

dia servers as possible (usually one media server in each
location instead of all servers in a pool). There is also an
increase in stability with larger globally distributed clus-
ters of front-end servers. Our serving clusters grew from
8 servers to 90. The management of this single large
cluster was much easier than managing many small clus-
ters. Because SPOCA automatically adapted to differ-
ent workload profiles on a per file basis, we no longer
needed to use separate pools for the different workloads.
We were eventually able to consolidate 11 pools into a
single pool, which also allowed us to further simplify
management.

Without implementing SPOCA, video streaming from
filers was approximately 219 terabytes daily. Refer to
Figure 12 which shows the graphs for filer storage v/s
filer streaming of video assets. After implementing

10
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Figure 14: Storage Costs With and Without SPOCA

SPOCA, we see a drastic reduction (5x) in the number of
bytes streamed from the filers. Video Streaming from fil-
ers with SPOCA reduced to approximately 44 terabytes
daily. Fig 13 shows the performance improvements with
SPOCA.

A further benefit of SPOCA has been substantially in-
creased memory cache hits. Torso content (less popu-
lar than head content but more popular than tail content)
was formerly distributed between many servers. It was
in disk cache everywhere, but qualified for promotion to
the memory cache nowhere. With consistent addressing,
however, torso content requests are collected and focused
on a single front-end server, sometimes making the con-
tent popular enough for promotion to memory cache on
one server before it needs to be paged into disk cache
anywhere else.

As the video assets stay more in cache, streaming from
filers is reduced and hence the need to add more filers
also goes down as we saw from Fig 13.

Fig 14 is a projection model of the costs saving on
the filer. More than $350 million dollars in unnecessary
equipment (filer costs, rack space etc) alone can be saved
in five-year period of running with SPOCA. In addition
to the substantial savings in filer costs, the hidden cost
savings included Power savings for running the equip-
ments and data center utilizations.

The size of the popularity window is a tunable parame-
ter. A smaller window results in fewer disk cache misses
and more memory cache hits at the cost of greater load
imbalance due to hot files. The window of 150 seconds
for the SPOCA has driven the cache misses low enough
while keeping the load balancing is even enough, such
that we have not had to fiddle with the parameter to find
the perfect sweet spot.

Table 1 shows us the traffic pattern for one of our data
centers (S1S). It is pretty impressive that S1S missed
0.7% on the Flash workload and 0.4% on the Down-
load workload on 3/14. The numbers would have been
even better, but we had a server that lost it’s RAM drive

Figure 15: Increased memory cache hits across all server
by lowering the popularity window from 300 secs to 240
secs. The change was rolled out to servers over a period
of weeks.

which adversely affected those numbers. The traffic pat-
tern is a little variable, but on the whole SPOCA has ap-
parently reduced cache misses in S1S by almost a fac-
tor of ten. From this table (Table 1), we also see that
the Download RAM hit went down from 70% on 3/7 to
21% on 3/10 and to 14.2% on 3/14. This drop can be
attributed to server misconfigurations or the in-memory
index database getting corrupted after server reboots.

In production we measured how drastically we re-
duced the costs to store the bytes on the memory v/s the
disk cache. Our measurements indicate that SPOCA im-
proved memory cache hits from from 45% to 70%, and
the overall cache hits increased from 95% to 99.6%. Due
to this an item stays in cache for an increased duration
(5X of the time it stayed earlier. e.g. what stayed in for
only three hours now stays for 15 hours). We can also
scale storage hardware linearly instead of quadratically,
thus directly positively impacting cost.

Fig 15 shows the impact of increased memory cache
hits from lowering the popularity window (referred to
as T in Section 5.5) from 300 seconds to 240 seconds.
This window governs the reset of the sequence of servers
which are obtained from maptoserver(seed) func-
tion. A shorter window results more the cache hits be-
cause the requests are concentrated on fewer servers. But
there is a trade-off here. If we make the window too
small, we can use too few servers to serve a popular
stream and overload the servers. The figure shows the
three main pools in our three main locations. Further ad-
justments and measures have lead us to use a popularity
window of 150 seconds in our production environment.

The improvement in memory cache hits from SPOCA
was less dramatic: it only improved from 49% to 70%.
However, the improvement in cache misses was more
dramatic: it went from 5% all the way down to 0.5%,
i.e. a factor of ten! We later bumped up the memory
cache hits by adding more RAM, refreshing some of the
older hardware with beefier boxes.

11
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2/26 3/1 3/5 3/7 3/10 3/14
Download cache miss 9.7% 7.2% 4.3% 3.7% 1.8% 0.4%
Download cache hit 90.3% 92.8% 95.7% 96.3% 98.2% 99.6%
Download RAM hit 42.4% 66.0% 63.4% 70.0% 21.0% 14.2%
Flash Cache miss 21.8% 13.5% 22.0% 14.8% 2.5% 0.7%
Flash RAM hit 57.2% 81.4% 66.1% 71.5% 90.0% 90.1%

Table 1: Cache Hit and Misses for the Download and Flash Pools in S1S data center

6.1 Churn Times

To amplify the hit rate, some classical caching schemes
can be employed. For example, prefetching, whereby
the content is cached to anticipate future requests. These
techniques can also reduce the average hops between
servers for content delivery. However, we cannot
prefetch all the content, because of various limitations
including bandwidth and storage costs. One way to eval-
uate the effectiveness of a cache is to look at its churn
time. We define churn time as the period of time an item
remains in the cache. A high churn time means that on
average an item stays in cache for a long time before be-
ing replaced. There have been various models for study-
ing the right cache size for the content type and churn
times [14, 22].

We examined the churn times on our various pools of
servers across a couple of different data centers. Table
2 has the statistics on churn times from disk cache and
Table 3 has the churn times from memory cache from
the various pools across multiple data centers. The way
to read the table is this: If something is being removed
from cache to make room, then it has not been accessed
in X time. In table 2, we see that the churn time for
DAL - DLOD pool is 8.2 days, which means that the
content stays in disk cache for 8.2 days before its churned
out. Similarly, in S1S data center, content would stay
in Windows Media Pool (WMOD) for 2 years before its
removed. However, if we look at table 3, we see that the
memory churn time for DAL - DLOD pool is 2.5 hours
and in S1S, churn time for Windows Media Pool is 3.8
hours.

The bigger numbers are based on our projection model
because when we did this study, the system was not in
production for long enough.

7 Related Work

Figure 16 shows a comparison with options engineer-
ing had during the design of SPOCA. Our main require-
ments at that time were proportional distribution of head
and tail content, Consistent addressing/Good caching
scheme and the ability to scale by adding/removing
servers. Some of the schemes we looked at addressed
part of our requirements but none addressed all. We

Figure 16: Algorithm Comparisons

had Foundry Networks [3] address three requirements
but didn’t provided a consistent addressing or caching
scheme. Similarly, Microsoft’s cache array routing pro-
tocol (CARP) [21] partitions the URL space among prox-
ies. CARP uses hash-based routing to provide a deter-
ministic request resolution path and eliminates the dupli-
cation of contents that otherwise occurs on an array of
proxy servers. CARP made it possible to plug additional
servers into the cache array or subtract a server from the
array without massive reconfigurations and without sig-
nificant cache reassigning. Its cache-management fea-
tures provide both load balancing and fault tolerance.
But it failed to deliver proportional tail content and
missed on addressing one of our requirement.

Our VIP routers do load balancing based on round
robin servicing of connections. Network Dispatcher [11]
was early work on this type of router. Round robin DNS
is another way to do load balancing. These methods as
well as other common methods are described in ONE-IP
[5]. As we noted earlier these approaches balance the
load, but do not use the aggregate memory of the cluster
efficiently.

Caching services such as CoralCDN [8] and Aka-
mai [15] use DNS resolvers to direct clients to caching
proxies that are close to clients. Like SPOCA, they serve
content to unmodified clients and are excellent at dis-
tributing popular content. Much of SPOCA’s traffic is
made up of a many requests for various unpopular con-
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E: (Cache) DAL A2S S1S
DLOD 8.2 days 4.5 days 40 days
WMOD 40 days 5.5 months 2 years
FLOD 9 months 1.4 years 1.5 years

Table 2: Statistics about churn times from the disk cache.

R: (RAM) DAL A2S S1S
DLOD 2.5 hours 35 mins 40 mins
WMOD 1 hour 4.5 hours 3.8 hours
FLOD 4 hours 5.8 hours 6.4 hours

Table 3: Statistics about churn times from the memory cache.

tent that can pollute the front-end caches. For this reason
SPOCA does not always choose to direct clients to local
front-end servers for unpopular content.

The SPOCA router tries to use the aggregate memory
of the front-end servers as one big cache. Locality-aware
request distribution (LARD) [16] combined cooperative
caching with request routing to achieve load balancing
and effective cache utilization. LARD routes content
based on load and uses a table indexed by the content
identifier to consistently route requests. SPOCA’s con-
sistent routing function achieves load balancing without
using a table entry for every cached object. We also han-
dle popular content and failures with this same routing
function.

As in other consistent addressing schemes [12, 23, 20],
we assign each front-end server a section of an address
space, and hash file names into this space in order to
map files to servers. However, unlike any other scheme
we are aware of, the address space is not completely as-
signed. Some addresses belong to no server. Specifi-
cally, a server is not responsible for all addresses between
its own address and the address of whichever server is
next in the hash space, as in distributed networks such
as Chord [19]. Instead, each server is assigned a fixed
section of the address space which is proportional to its
capacity. Some systems [6, 1] which use consistent ad-
dressing mitigate the load balancing problems of Chord
by mapping to many virtual servers using a hash func-
tion and then mapping sets of virtual servers to physical
servers according to load. While this does allow coarse
grained load balancing, it still does not handle popular
content that needs to be served by multiple machines.

RUSH [10], scheme allows for cluster weights, thus
insuring proportionality, but is not optimally consistent.
When a cluster is removed or has its weight decrease,
it not only causes the necessary shifting from itself to
other clusters, it can cause shifting between other clus-
ters. Also dynamic handling of hot streams is not cov-
ered.

Peer-to-peer networks are the most common applica-

tions of consistent addressing, but in peer-to-peer net-
works an appropriate partition of the address space is
quite difficult to achieve. For example, in a 2005 tech-
nical paper, Giakkoupis and Hadzilacos [9] present a
method of insuring that the largest section of the par-
titioned address space is no more than four times the
size of the smallest section. Considering the complica-
tion that not all servers have equal capacity, their guaran-
tee worsens to an eightfold imbalance between the most-
loaded and least-loaded server, relative to each server’s
capacity.

Moreover, to achieve this factor-of-eight guarantee,
Giakkoupis and Hadzilacos weaken the optimal consis-
tency criterion, allowing up to twice the minimum con-
tent re-mapping when servers leave the cluster. This fur-
ther underscores the tension between consistent address-
ing and proportional load balancing.

Consistent hashing [12] was proposed to handle popu-
lar content without swamping a single server. It extends
work done by Harvest Cache [4] and Plaxton and Ra-
jaraman [17]. The consistent hashing work was incorpo-
rated into a web cache [13] that used consistent hashing
to route content requests to servers. Unlike SPOCA the
web cache work does not use the same mechanism for
load balancing, fault tolerance, and popularity handling.
They also always serve requests close to clients, even if
the content is unpopular.

8 Conclusion

Zebra and SPOCA routing simultaneously handles our
requirements for load balancing, fault tolerance, elastic-
ity, popularity, and geolocality. They do so using a sim-
ple mechanisms that nicely handle the different require-
ments in a consistent way.

Zebra and SPOCA do not have any hard state to main-
tain or per object meta-data. This allows our implemen-
tation not to have to worry about maintaining and recov-
ering persistent state. It also eliminates any per object
storage overhead or management, which simplifies oper-
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ations.
Operations were also simplified by the ability to con-

solidate content serving into a single pool of servers that
can handle files from a variety of different workloads.
Further the ability to decouple the serving and caching
of content from the storage of that content allowed us
greater flexibility in architecting our caching and storage
infrastructure. Specifically, this decoupling allowed us
to have front-end clusters without any local content that
only cache popular remote content.

In a for-profit corporation, cost savings and end user
satisfaction are key success metrics. SPOCA excels on
both accounts. We have seen great cost savings with a
corresponding increase in the performance of our serving
cluster.
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Abstract

This paper describes TidyFS, a simple and small dis-
tributed file system that provides the abstractions neces-
sary for data parallel computations on clusters. In recent
years there has been an explosion of interest in computing
using clusters of commodity, shared nothing computers.
Frequently the primary I/O workload for such clusters
is generated by a distributed execution engine such as
MapReduce, Hadoop or Dryad, and is high-throughput,
sequential, and read-mostly. Other large-scale distributed
file systems have emerged to meet these workloads, no-
tably the Google File System (GFS) and the Hadoop Dis-
tributed File System (HDFS). TidyFS differs from these
earlier systems mostly by being simpler. The system
avoids complex replication protocols and read/write code
paths by exploiting properties of the workload such as the
absence of concurrent writes to a file by multiple clients,
and the existence of end-to-end fault tolerance in the ex-
ecution engine. We describe the design of TidyFS and
report some of our experiences operating the system over
the past year for a community of a few dozen users. We
note some advantages that stem from the system’s simplic-
ity and also enumerate lessons learned from our design
choices that point out areas for future development.

1 Introduction

Shared-nothing compute clusters are a popular platform
for scalable data-intensive computing. It is possible to
achieve very high aggregate I/O throughput and total data
storage volume at moderate cost on such a cluster by
attaching commodity disk drives to each cluster computer.

In recent years data-intensive programs for shared-
nothing clusters have typically used a data-parallel frame-
work such as MapReduce [9], Hadoop [13], Dryad [16],
or one of the higher level abstractions layered on top of
them such as PIG [22], HIVE [14], or DryadLINQ [28].
In order to achieve scalability and fault-tolerance while

remaining relatively simple, these computing frameworks
adopt similar strategies for I/O workloads, including the
following properties.

• Data are stored in streams which are striped across
the cluster computers, so that a single stream is the
logical concatenation of parts stored on the local
file-systems of the compute machines.

• Computations are typically parallelized so that each
part of a distributed stream is streamed as sequential
reads by a single process, and where possible that
process is executed on a computer that stores that
part.

• In order to get high write bandwidth on commodity
hard drives I/O is made sequential as far as possi-
ble. In order to simplify fault-tolerance and reduce
communication the computing frameworks do not
implement fine-grain transactions across processes.
Consequently, modifications to datasets are made by
replacing an entire dataset with a new copy rather
than making in-place updates to an existing stored
copy.

• In order to achieve high write bandwidth the streams
are written in parallel by many processes at once. In
order to reduce communication and simplify lock
management however, each part is typically written
sequentially by a single writer. After all the parts
have been output in their entirety they are assembled
to form a stream.

• In order to provide fault-tolerance when computers
or disks become unavailable, the frameworks auto-
matically re-execute sub-computations to regenerate
missing subsets of output datasets.

Distributed file systems have been developed to sup-
port this style of write-once, high-throughput, parallel
streaming data access. These include the I/O subsystem
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in River [4], the Google File System (GFS) [11], and the
Hadoop Distributed File System (HDFS) [6, 24]. Unsur-
prisingly there are similarities in the designs of these sys-
tems: metadata for the entire file system is centralized and
stored separately from stream data, which is striped across
the regular compute nodes. They differ in their level of
complexity and their support for general filesystem op-
erations: for example GFS allows updates in the middle
of existing streams, and concurrent appends by multiple
writers, while the HDFS community has struggled with
the tradeoff between the utility and complexity of even
single-writer append operations [10] to a stream that can
be concurrently read. In order to provide fault-tolerance
all the systems replicate parts of a distributed stream, and
provide reliable write semantics so that a stream append is
replicated before the write is acknowledged to the client.

This paper presents TidyFS, a distributed file system
which is specifically targeted only to workloads that sat-
isfy the properties itemized above. The goal is to sim-
plify the system as far as possible by exploiting this re-
stricted workload. Parts of a distributed stream are in-
visible to readers until fully written and commited, and
subsequently immutable, which eliminates substantial se-
mantic and implementation complexity of GFS and HDFS
with appends. Replication is lazy, relying on the end-to-
end fault tolerance of the computing platform to recover
from data lost before replication is complete, which al-
lows us to eliminate custom I/O APIs so parts are read
and written directly using the underlying compute node
file system interface.

Sections 2 and 3 outline the data model and architecture
of TidyFS in more detail. Section 4 describes some of
our experiences operating TidyFS for over a year. We
describe related work in Section 5 and then conclude
with a discussion of some of the tradeoffs of our design
choices.

2 TidyFS usage

This section describes the TidyFS data model and the
typical usage patterns adopted by clients. As noted in the
introduction, the design aims to make TidyFS as simple
as possible by exploiting properties of its target workload.
Wherever features are introduced in the following discus-
sion that might seem to go beyond the simplest necessary
functionality, we attempt to justify them with examples
of their use.

2.1 Data Model
TidyFS makes a hard distinction between data and meta-
data. Data are stored as blobs on the compute nodes
of the cluster and these blobs are immutable once writ-
ten. Metadata describe how data blobs are combined to

form larger datasets, and may also contain semantic in-
formation about the data being stored, such as their type.
Metadata are stored in a centralized reliable component,
and are in general mutable.

TidyFS exposes data to clients using a stream abstrac-
tion. A stream is a sequence of parts, and a part is the
atomic unit of data understood by the system. Each part
is in general replicated on multiple cluster computers to
provide fault-tolerance. A part may be a single file ac-
cessed using a traditional file system interface or it may
be a collection of files with a more complex type—for
example, TidyFS supports SQL database parts which are
pairs of files corresponding to a database and its log. The
operations required by TidyFS are common across multi-
ple native file systems and databases so this design is not
limited to Windows-based systems.

The sequence of parts in a stream can be modified,
and parts can be removed from or added to a stream;
these operations allow the incremental construction of
streams such as long-lived log files. A part can be a
member of multiple streams, which allows the creation
of a snapshot or clone of a particular stream, or a subset
of a stream’s parts. Clients can explicitly discover the
number, sizes and locations of the parts in a stream, and
use this information for example to optimize placement
of computations close to their input data.

Each stream is endowed with a (possibly infinite) lease.
Leases can be extended indefinitely, however, if a lease
expires the corresponding stream is deleted. Typically a
client will maintain a short lease on output streams until
they are completely written so that partial outputs are
garbage-collected in the case of client failure. When a
stream is deleted any parts that it contained which are
not contained in any other stream are also scheduled for
deletion.

Each part and stream is decorated with a set of meta-
data represented as a key-value store. Metadata include
for example the length and fingerprint of a part, and the
name, total length and fingerprint of a stream. Rabin fin-
gerprints [7] are used so that the stream fingerprint can be
computed using the part fingerprints and lengths without
needing to consult the actual data. Applications may also
store arbitrary named blobs in the metadata, and these are
used for example to describe the compression or partition-
ing scheme used when generating a stream, or the types
of records contained in the stream.

2.2 Client access patterns

A client may read data contained in a TidyFS stream by
fetching the sequence of part ids that comprise the stream,
and then requesting a path to directly access the data as-
sociated with a particular part id. This path describes a
read-only file or files in the local file system of a clus-
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ter computer, and native interfaces (e.g., NTFS or SQL
Server) are used to open and read the file. In the case
of a remote file, a CIFS path is returned by the metadata
server. The metadata server uses its knowledge of the
cluster network topology to provide the path of the part
replica that is closest to the requesting process. The meta-
data server prioritizes local replicas, then replicas stored
on a computer within the same rack, and finally replicas
stored on a computer in another rack.

To write data, a client first decides which stream the
data will be contained in, creating a new empty stream if
necessary. The client then asks TidyFS to “pre-allocate”
a set of part ids associated with that stream. When a
client process wishes to write data, it selects one of these
pre-allocated part ids and asks TidyFS for a write path
for that part. Typically the write path is located on the
computer that the client process is running on, assuming
that computer has space available. The client then uses
native interfaces to write data to that path. When it has
finished writing the client closes the file and adds the new
part to the stream, supplying its size and fingerprint. At
this point the data in this part is visible to other clients,
and immutable. If a stream is deleted, for example due to
lease expiration, its pre-allocated part ids are retired and
will not be allocated to subsequent writers.

Optionally the client may request multiple write paths
and write the data on multiple computers so that the part
is eagerly replicated before being committed, otherwise
the system is responsible for replicating it lazily. The
byte-oriented interface of the TidyFS client library, which
is used for data ingress and egress, provides the option
for each write to be simultaneously written to multiple
replicas.

The decision to allow clients to read and write data us-
ing native interfaces is a major difference between TidyFS
and systems such as GFS and HDFS. Native data access
has several advantages:

• It allows applications to perform I/O using whatever
access patterns and compression schemes are most
suitable, e.g., sequential or random reads of a flat
file, or database queries on a SQL database part.

• It simplifies legacy applications that benefit from
operating on files in a traditional file system.

• It avoids an extra layer of indirection through TidyFS
interfaces, guaranteeing that clients can achieve the
maximum available I/O performance of the native
system.

• It allows TidyFS to exploit native access-control
mechanisms by simply setting the appropriate ACLs
on parts, since client processes operate on behalf of
authenticated users.

• It gives clients precise control over the size and
contents of a part so clients can, for example,
write streams with arbitrary partitioning schemes.
Pre-partitioning of streams can lead to substantial
efficiencies in subsequent computations such as
database Joins that combine two streams partitioned
using the same key.

The major disadvantage would appear to be a “loss of
control” on the part of the file system designer over how
a client may access the data, however our experience is
that this, while terrifying to many file system designers,
is not in practice a substantial issue for the workloads that
we target. The major simplification that we exploit is that
data are immutable once written and invisible to readers
until committed. The file system therefore does not need
to mediate between concurrent writers or order read/write
conflicts. The detection of corruption is also simplified be-
cause data fingerprints are stored by TidyFS. A malicious
client is unable to do more than commit corrupted data,
or (access-controls permitting) delete or corrupt existing
data. In both these cases the corruption will be discovered
eventually when the fingerprint mismatch is detected and
the data will be recovered from another replica or dis-
carded if no good replicas are available. This is no worse
than any other file system: if a client has write access to
a file it can be expected to be able to destroy the data in
that file.

Systems such as HDFS and GFS perform eager repli-
cation in their client libraries. Although the TidyFS client
library provides optional eager replication for data ingress,
TidyFS gains simplicity and performance in the common
case by making lazy replication the default. The potential
loss of data from lazy replication is justifiable because
of the underlying fault tolerance of the client computa-
tional model: a failure of lazy replication can be treated
just like a failure of the computation that produced the
original part, and re-run accordingly. This is even true for
workloads such as log processing, which are often imple-
mented as a batch process with the input being staged be-
fore loading into a distributed file system. We believe this
reliance on end-to-end fault tolerance is a better choice
than implementing fault tolerance at multiple layers as
long as failures are uncommon: we optimize the common
case and in exchange require more work in error cases.

A drawback to giving clients control over part sizes is
that some may end up much larger than others, which can
complicate replication and rebalancing algorithms. Both
GFS and HDFS try to split streams into parts of moderate
sizes, e.g., around 100 MBytes. In principle a system
that controls part boundaries could split or merge parts to
improve efficiency, and this is not supported by TidyFS
since each part is opaque to the system. In our experience,
however, such rebalancing decisions are best made with
semantic knowledge of the contents of the stream, and
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we can (and do) write programs using our distributed
computational infrastructure to defragment streams with
many small parts as necessary.

The biggest potential benefit, given our current work-
loads, that we can see from interposing TidyFS inter-
faces for I/O would come if all disk accesses on the com-
pute nodes were mediated by TidyFS. This would po-
tentially allow better performance using load scheduling,
and would simplify the allocation of disk-space quotas to
prevent clients from denying service to other cluster users
by writing arbitrary sized files. We discuss some pros and
cons of this direction in the final section.

Of course, the major tradeoff we make from the sim-
plicity of TidyFS is a lack of generality. Clients of GFS
use multi-writer appends and other features missing in
TidyFS to implement services that would be very ineffi-
cient on our system. Again, we address this tradeoff in
the Discussion.

2.3 SQL database parts
As mentioned in section 2.1, we have implemented sup-
port for two types of TidyFS parts: NTFS files and
SQL databases. In the case of SQL parts, each part is
a Microsoft SQL server database, consisting of both the
database file and the database log file. The TidyFS meta-
data server stores the type of each part, and this informa-
tion is used by the node service so that it will replicate
both files associated with the part. The HadoopDB evalua-
tion [1] shows that for some data-warehouse applications
it is possible to achieve substantial performance gains
by storing records in a database rather than relying on
flat files. We believe that the ease of supporting SQL
parts in TidyFS, compared with the additional mecha-
nisms required to retrofit HadoopDB’s storage to HDFS,
provides support for our design choice to adopt native
interfaces for reading and writing parts. As a bonus we
achieve automatic replication of read-only database parts.
There remains the problem of targeting these partitioned
databases from client code, however, DryadLINQ [28]
can leverage .NET’s LINQ-to-SQL provider to operate
in a hybrid mode shipping computation to the database
where possible, as described in the referenced paper.

3 System architecture

The TidyFS storage system is composed of three compo-
nents: a metadata server; a node service that performs
housekeeping tasks running on each cluster computer that
stores data; and the TidyFS Explorer, a graphical user
interface which allows users to view the state of the sys-
tem. The current implementation of the metadata server
is 9,700 lines of C++ code, the client library is 5,000 lines
of mixed C# and C++ code, the node service is 948 lines

of C# code, and the TidyFS Explorer is 1,800 lines of
C#. Figure 1 presents a diagram of the system architec-
ture, along with a sample cluster configuration and stream.
Cluster computers that are used for TidyFS storage are
referred to in the following text as “storage computers.”

3.1 Metadata server

The metadata server is the most complex component in
the system and is responsible for storing the mapping
of stream names to sequences of parts, the per-stream
replication factor, the location of each part replica, and
the state of each storage computer in the system, among
other information. Due to its central role, the reliability
of the overall system is closely coupled to the reliability
of the metadata server. As a result, we implemented the
metadata server as a replicated component. We leverage
the Autopilot Replicated State Library [15] to replicate
the metadata and operations on that metadata using the
Paxos [18] algorithm. Following the design of systems
such as GFS, there is no explicit directory tree maintained
as part of the file system. The names of the streams in
the system, which are URIs, create an implied directory
tree based on the arcs in their paths. When a stream is
created in the system, any missing directory entries are
implicitly created. Once the last stream in a directory
is removed, that directory is automatically removed. If
the parent directory of that directory is now empty, it
is also removed, and the process continues recursively
up the directory hierarchy until a non-empty directory is
encountered.

The metadata server tracks the state of all of the storage
computers currently in the system. For each computer
the server maintains the computer’s state, the amount of
free storage space available on that computer, the list of
parts stored on that computer, and the list of parts pend-
ing replication to that computer. Each computer can be
in one of four states: ReadWrite, the common state,
ReadOnly, Distress, or Unavailable. When a
computer transitions between these states, action is taken
on either the list of pending replicas, the list of parts
stored on that computer, or both. If a computer tran-
sitions from ReadWrite to ReadOnly, its pending
replicas are reassigned to other computers that are in
the ReadWrite state. If a computer transitions to the
Distress state, then all parts, including any which are
pending, are reassigned to other computers that are in the
ReadWrite state. The Unavailable state is similar
to the Distress state, however in the Distress state,
parts may be read from the distressed computer while
creating additional replicas, while in the Unavailable
state they cannot. The Distress state is used for a com-
puter that is going to be removed from the system, e.g.,
for planned re-imaging, or for a computer whose disk is
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Figure 1: TidyFS System Architecture

showing signs of imminent failure. The Unavailable
state signifies that TidyFS should not use the computer at
all.

In the current TidyFS implementation computers tran-
sition between states as a result of an administrator’s
command. We have found this manual intervention to
be an acceptable burden for the clusters of a few hun-
dred computers that we have been operating. A more
widely deployed system should be able to automatically
detect failure conditions and perform transitions out of the
ReadWrite state without operator action. This could
be implemented using well-known techniques such as the
watchdogs employed in the Autopilot system [15].

The metadata server also maintains per-stream and
per-part attributes. There is a set of “distinguished” at-
tributes for each stream or part which are maintained by
the system automatically or as a side-effect of system API
calls, and users may add arbitrary additional attributes as
key-value pairs to store client-specific information. For
streams, the distinguished values are creation time, last
use time, content fingerprint, replication factor, lease time,
and length. For parts, the distinguished values are size
and fingerprint.

Clients of the metadata server, including the other
TidyFS components, communicate with the server via
a client library. This client library includes RSL code that
determines which metadata server replica to contact and
will fail over in case of a server fault.

3.2 Node service

In any distributed file system there is a set of maintenance
tasks that must be carried out on a routine basis. We im-
plemented the routine maintenance tasks as a Windows
service that runs continuously on each storage computer
in the cluster. Each of the maintenance tasks is imple-
mented as a function that is invoked at configurable time
intervals. The simplest of these tasks is the periodic report-
ing, to the metadata server, of the amount of free space
on the storage computer disk drives. The other tasks are

garbage collection, part replication, and part validation,
which are described in the following paragraphs.

Due to the separation of metadata and data in TidyFS
and similar systems, there are many operations that are
initially carried out on the metadata server that trigger
actions on the storage computers in the system. The dele-
tion of streams, via either user action or lease expiration,
is one such operation. Once all of the streams that ref-
erence a particular part are deleted, every replica of that
part should be removed from the storage computer that
holds it. The metadata server is responsible for ensuring
that there are sufficient replicas of each part, as calculated
from the maximum replication factor of all streams the
part belongs to. Once the replicas have been assigned to
particular computers, the node services are responsible
for actually replicating the parts.

In order to determine what parts should be stored on a
storage computer, each node service periodically contacts
the metadata server to get two lists of parts: the first is
the list of parts that the server believes should be stored
on the computer; and the second is the list of parts that
should be replicated onto the computer but have not yet
been copied.

When the node service processes the list of parts that
the metadata server believes should be stored on the com-
puter, the list may differ from the actual list of parts on
the disk in two cases. The first is that the metadata server
believes a part should be there but it is not. This case
is always an error, and will cause the node service to
inform the metadata server of the discrepancy, which in
turn will cause the metadata server to set in motion the
creation of new replicas of the part if necessary. The
second is that the metadata service believes a part that
is present on the disk should not be there. In this (more
common) case the part id is appended to a list of can-
didates for deletion. Once the entire list is processed,
the list of deletion candidates is sent to the metadata
server, which filters the list and returns a list of part ids
approved for deletion. The node service then deletes the
files corresponding to the filtered list of part ids. The
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complete function pseudocode is listed in Algorithm 1,
where ListPartsAtNode, RemovePartReplica,
and FilterPendingDeletionList are all calls
that contact the metadata server.

The reason for this two phase deletion protocol is to
prevent parts that are in the process of being written from
being deleted. The metadata server is aware of the part ids
that have been allocated to a stream but not yet committed,
as outlined in Section 2.2, however these pending part
ids are not included in the list of part ids stored on any
storage computer.

Algorithm 1 Garbage collection function
partIds = ListPartsAtNode();
filenames = ListFilesInDataDir();
List pdList;
for all file in filenames do

id = GetPartIdFromFileName(file);
if !partids.Remove(id) then

pdList.Add(id);
end if

end for
for all partId in partids do

RemovePartReplica(partId);
end for
partIdsToDelete = FilterPendingDeletionList(pdList);
for all partId in partIdsToDelete do

DeletePart(partId);
end for

If the list of parts that should be replicated to the node
but are not present is non-empty, the node service contacts
the metadata server for each listed part id to obtain the
paths to read from and write to for replicating the part.
Once the part has been replicated the fingerprint of the
part is validated to ensure it was correctly copied, and
the node service informs the metadata server that it has
successfully replicated the part, after which the part will
be present in the list of ids that the metadata believes are
stored at that computer.

As we will show in Section 4, there is a substantial
fraction of parts that are not frequently read. Latent sector
errors are a concern for the designers of any reliable data
storage system [5]. These errors are undetected errors
where the data in a disk sector gets corrupted and will
be unable to be read. If this undetected error were to
happen in conjunction with computer failures, the system
could experience data loss of some parts. As a result,
the node service periodically reads each part replica and
validates that its fingerprint matches the stored fingerprint
at the metadata server; if not, the node service informs
the metadata server that the part is no longer available on
that computer, potentially triggering a re-replication.

3.3 TidyFS Explorer

The two TidyFS components already described deal with
the correct operation of the system. The final compo-
nent is the graphical user interface for the distributed file
system, named the TidyFS Explorer. It is the primary
mechanism for users and administrators to interact with
the system. Like all other TidyFS clients, the TidyFS
Explorer communicates with the metadata server via the
client library. For users, TidyFS Explorer provides a
visualization of the directory hierarchy implied by the
streams in the system. In addition to the directory hierar-
chy, the TidyFS Explorer exposes the sequence of parts
that comprise a stream, along with relevant information
about those parts. Users can use the GUI to delete streams,
rename streams, manipulate the sequence of parts in a
stream, as well as copy parts between streams. Cluster
administrators can use the TidyFS Explorer to monitor the
state of computers in the system, including determining
what computers are healthy, what replications are pending,
and how much storage space is available. Administrators
can also manually change the state of computers in the
system and interact with the node service.

3.4 Replica Placement

When choosing where to place replicas for each part, we
would like the system to optimize two separate criteria.
First, it is desirable for the replicas of the parts in a partic-
ular stream to be spread across the available computers
as widely as possible, which allows many computers to
perform local disk reads in parallel when processing that
stream. Second, storage space used should be roughly
balanced across computers. Figure 2 shows a histogram
of part sizes in a cluster running TidyFS. Due to this
non-uniform distribution of part sizes, assigning part to
replicas is not as simple as assigning roughly equal num-
bers of parts to each computer.

The location of the data for the first copy of a part is
determined by the identity and state of the computer that
is writing the part. We would like to bias writes to be local
as often as possible, so we simply use the local computer
if it is “legal” to write there, meaning that the computer
is a storage computer in the ReadWrite state that has
enough space available. We do not know the length of the
part before the data is written, so we make a conservative
estimate based on typical usage. If the disk fills up, the
writer will fail and the computational framework’s fault-
tolerance will reschedule the computation elsewhere.

Subsequent replication of parts should optimize the
two criteria above. We have avoided complex balancing
algorithms that directly optimize our desired criterion in
favor of simpler greedy algorithms.
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Figure 2: Histogram of part sizes (in MB)

We initially implemented a policy that assigns a replica
to the legal computer in the system with most free space.
Unfortunately many streams contain very small parts, and
after adding one such small part to a given computer it
often continues to be the one with the most free space.
Since many parts from a stream are replicated in a short
time period when the stream is created, this problem
resulted in very poor balance for streams with small parts:
one computer would hold the second copy of many or all
of that stream’s parts.

This lack of balance led us to implement a second
policy, similar to the one used in the Kinesis project [19]
and techniques described in [21]. This approach uses the
part identifier to seed a pseudo-random number generator,
then chooses three legal computers using numbers drawn
from this pseudo-random number generator and selects
the computer with the most free space from this set as the
destination for the part. As we report in Section 4.4, this
second policy results in acceptable balance for streams.

Over time the system may become unbalanced with
some computers storing substantially more data than oth-
ers. We therefore implemented a rebalancing command.
This simply picks parts at random from overloaded com-
puters and uses the replication policy to select alternate
locations for those parts. The metadata server schedules
the replication to the new location, and when the node
service reports that the copy has been made, the metadata
server schedules deletion from the overloaded computer.

3.5 Watchdog
We recently started to prototype a set of watchdog ser-
vices to automatically detect issues and report them to
an administrator for manual correction. The issues fall
into two categories: error conditions, such as the failure
to replicate parts after an acceptable period; and alert con-
ditions, such as the cluster becoming close to its storage

void AddStorageComputer(string
storageComputerName, ulong freeSpace,
string managedDirectory, string
uncPath, string httpPath, int
networkId);

bool DeleteStorageComputer(string
storageComputerName);

StorageComputerInfo
GetStorageComputerInformation(string
storageComputerName);

void SetFreeSpace(string
storageComputerName, ulong freeSpace);

void SetStorageComputerState(string
storageComputerName,
StorageComputerState
storageComputerState);

string[] ListStorageComputers();

ulong[] ListPartsAtStorageComputer(string
storageComputerName);

ulong[] GetPartReplicaList(string
storageComputerName);

Figure 3: TidyFS API - Operations involving storage
computers

limit or computers becoming unresponsive. In the month
or so that the watchdogs have so far been deployed they
have reported two alerts and no errors. When we have
more confidence in the watchdogs we may integrate them
into an automatic failure mitigation system to reduce the
cluster management overhead.

3.6 API
For completeness we list the TidyFS API here. Most op-
erations involve storage computers, streams and parts. As
previously described, these operations are used by other
TidyFS components (node service and TidyFS Explorer)
and by external applications that wish to read and write
TidyFS data.

Figure 3 includes a representative set of operations in-
volving storage computers. These include commands,
typically used by cluster administrators, for adding, mod-
ifying and removing computers. SetFreeSpace and
SetStorageComputerState are useful for updat-
ing the state of the cluster, and are used both by admin-
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string[] ListDirectories(string path);

string[] ListStreams(string path);

void CreateStream(string streamName);

ulong CreateStream(string streamName,
DateTime leaseTime, int numParts);

void CopyStream(string srcStreamName,
string destStreamName);

void RenameStream(string srcStreamName,
string destStreamName);

bool DeleteStream(string streamName);

void ConcatenateStreams(string
destStreamName, string srcStreamName);

void AddPartToStream(ulong[] partIds,
string streamName, int position);

void RemovePartFromStream(ulong partId,
string streamName);

ulong[] ListPartsInStream(string
streamName);

PartInfo[] GetPartInfoList(string
streamName);

DateTime GetLease(string streamName);

void SetLease(string streamName, DateTime
lease);

ulong RequestPartIds(string streamName,
uint numIds);

byte[] GetStreamBlobAttribute(string
streamName, string attrName);

void SetStreamAttribute(string streamName,
string attrName, byte[] attrValue);

void RemoveStreamAttribute(string
streamName, string attrName);

string[] ListStreamAttributes(string
streamName);

Figure 4: TidyFS API - Operations involving streams

void AddPartInfo(PartInfo[] pis);

void AddPartReplica(ulong partId, string
nodeName);

void RemovePartReplica(ulong partId,
string nodeName);

void GetReadPaths(ulong partId, string
nodeName, out StringCollection paths);

void GetWritePaths(ulong partId, string
nodeName, out StringCollection paths);

Figure 5: TidyFS API- Operations involving parts

istrators and by the node service. Operations that allow
listing all computers and all parts at a computer are also
provided for diagnostic purposes and are used by the
TidyFS Explorer. GetPartReplicaList is a com-
mand for listing all new replicas that have been assigned
by TidyFS to a specific storage computer, but that have
not yet been created. This call is invoked periodically by
the node service running on a storage computer to fetch
the list of parts that it needs to fetch and replicate.

Figure 4 lists operations involving streams. Due to
space restrictions we have only included the most often
used ones and have omitted some operations that are sim-
ilar to others already shown. For example, while we only
show operations for getting and setting stream attributes
of blob data type, similar commands exist for attributes
of different types. The figure includes operations for
listing the contents (both subdirectories and streams) of
directories, and stream manipulation commands including
operations for adding and removing parts from a stream.
Parts may be added at any position in the stream, and
streams may be concatenated, which causes all parts from
one stream to be appended to another.

Finally, in Figure 5 the remaining operations involving
parts are listed. The AddPartInfo command is used
by clients to inform TidyFS that a part has been fully
written, and to pass information such as the part size and
fingerprint. Operations for adding and removing repli-
cas from a storage computer (AddPartReplica and
RemovePartReplica) are used by the node service
to inform the metadata server when replicas have been
created at a particular computer. Other important opera-
tions include GetReadPaths and GetWritePaths,
which return a list of paths where a part may be read from,
or written to. These are used by clients prior to reading or
writing any data to TidyFS. There are also operations for
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getting and setting part attributes of various data types that
are similar to those provided for streams and are omitted
here for brevity.

The RSL state replication library allows some API calls
to execute as “fast reads” which can run on any replica
using its current state snapshot and do not require a round
of the consensus algorithm. Fast reads can in principle re-
flect quite stale information, and are not serializable with
other state machine commands. Given our read-mostly
workload, by far the most common API calls are those
fetching information about existing streams, such as list-
ing parts in a stream or read paths for a part. We therefore
allow these to be performed as fast reads and use all repli-
cas to service these reads, reducing the bottleneck load on
the metadata server. As we report in Section 4 most reads
are from streams that have existed for a substantial period,
so staleness is not a problem. If a fast read reports stale
data such as a part location that is out of date following a
replication, the client simply retries using the slow-path
version that guarantees an up to date response.

4 Evaluation and experience

TidyFS has been deployed and actively used for the past
year on a research cluster with 256 servers, where dozens
of users run large-scale data-intensive computations. The
cluster is used exclusively for programs run using the
DryadLINQ [28] system. DryadLINQ is a parallelizing
compiler for .NET programs that executes programs using
Dryad [16]. Dryad is a coarse-grain dataflow execution
engine that represents computations as directed-acyclic
graphs of processes communicating via data channels.
It uses TidyFS for storage of input and output data, fol-
lowing the access patterns set out in Section 2.2. Fault-
tolerance is provided by re-execution of failed or slow
processes. Dryad processes are scheduled by a cluster-
wide scheduler called Quincy [17] that takes into account
the size and location of inputs for each process when
choosing which computer to run the process on. The
cluster hardware is as described in our Quincy paper [17].

Dryad queries TidyFS for the locations of its input parts
and passes this information to Quincy so that most pro-
cesses end up scheduled close in network topology to at
least one replica of their input parts. DryadLINQ makes
use of TidyFS attributes to store type information about
the records in output streams and to record partitioning
information—both of these types of attribute are used
by subsequent DryadLINQ programs that consume the
streams as inputs. Our cluster infrastructure also include
Nectar [12] which is a cache manager for computations.
Nectar and DryadLINQ communicate to determine sub-
computations whose results have already been stored to
TidyFS, to save unnecessary recomputation of complex
quantities. Nectar makes use of TidyFS stream and part

fingerprints to determine when the inputs of two compu-
tations are identical.

TidyFS was designed in conjunction with the other
cluster components listed above, so it naturally has APIs
and performance that is well suited to their requirements.
As noted in Section 2.2 we believe these requirements
are shared by other systems including MapReduce and
Hadoop. At the end of the paper we include more discus-
sion of the wider applicability of TidyFS.

4.1 Data volume
On a typical day, several terabytes of data are read and
written to TidyFS through the execution of DryadLINQ
programs. We collected overall statistics on the usage of
the system through logs maintained by TidyFS.

Figures 6 and 7 present daily read and write loads, and
volumes of data deleted, on TidyFS during a sample two-
week period. The purpose of these figures is to give the
reader a sense of the scale of system usage. The amount
of data read and written on a specific day varies over the
days mostly because of the diverse nature of jobs being
run on the cluster, and on other factors such as day of the
week.

As earlier described, Quincy attempts to place pro-
cesses close to the data they will read, and when satisfying
clients’ requests for read paths TidyFS prioritizes copies
of the data that are stored locally at the computer where
the client is running, followed by copies stored within the
same rack, and finally cross racks. The default replication
factor in the cluster is two, so there are generally two
replicas per part from which data can be read. Figure 6
classifies reads as local, within rack, cross rack or remote.
Remote reads refer to reads where the client is outside the
compute cluster. As expected, the majority of reads are
local, followed by reads that occur within the same rack,
indicating that the goal of moving computation close to
the data is very often achieved.

DryadLINQ does not perform any eager replication, so
each part is written once by DryadLINQ and subsequently
replicated lazily by TidyFS. Figure 7 shows the amount
of data committed by DryadLINQ per day during the
sample period. The vast majority of these writes are
local, and there is an equivalent amount of data written
during lazy replication since the default replication count
is two. The volume of data deleted shown in the figure
corresponds again to the volume of primary part data: due
to the replication factor of two, the space freed across the
cluster disks is actually twice as large.

4.2 Access patterns
More insight can be gained into cluster usage by studying
how soon data is read after it has been initially written.



406 USENIX ATC ’11: 2011 USENIX Annual Technical Conference USENIX Association

0

5

10

15

20

25

30

35

11/7 11/8 11/9 11/10 11/11 11/12 11/13 11/14 11/15 11/16 11/17 11/18 11/19 11/20

TB
 R

ea
d 

Local
Within Rack
Cross Rack
Remote

Figure 6: Terabytes of data read per day, grouped by local, within rack, cross-rack, and remote reads.

11/7 11/8 11/9 11/10 11/11 11/12 11/13 11/14 11/15 11/16 11/17 11/18 11/19 11/20

TB
 W

rit
te

n/
De

le
te

d 

Series4
Written
Deleted
Series3

4 

3 

2 

1 

0 

5 

43 

42 

Figure 7: Terabytes of primary part data written and deleted per day.

We computed, for every read that happened over a period
of three months, the age of the read as the time interval
between the time the read occurred and the time the part
being read was originally written. Figure 8 presents the
cumulative distribution of data read as the read age in-
creases. As shown in the figure only a small percentage of
data is read within the first five minutes after it has been
created. Almost 40% of the data is read within the first
day after the data being read has been created, and around
80% of the data is read within one month of creation.

Given the small percentage of reads that occur within
the first minute of writing a part, the node service’s peri-
odic task of checking for pending replicas is configured to
run every minute. This implies a delay of up to a minute
before lazy replication of a part begins, and reads that
occur in smaller windows of time will have fewer choices
of where to read from.

This effect can be observed in Figure 9, which shows
the proportion of local, within rack and cross rack data
out of all reads that happen for different read ages. As
observed, most reads that happen within the first minute
after a part is written are remote reads, since many of those
parts would only have one copy at that time. However,
as observed from Figure 8 the total number of reads that
happen at that time interval is very small relative to all
reads. For part reads that occur after longer periods of
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Figure 8: Cumulative distribution of read ages (time when
read occurs - time when data was originally written) for
reads occurring over a period of three months.

time since the part’s creation, local and within rack reads
predominate.

To further characterize our cluster’s usage pattern we
analyzed the relationships in timing and frequency be-
tween reads and writes of the same part. In Figure 10 we
show how often parts are read once they have been writ-
ten. Once again, we analyzed data over a period of three
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months, considering all writes and subsequent reads that
happened in the period. For each part written we counted
the number of times the part was subsequently read. As
observed from the graph, many parts are read only once
or a small number of times. There is also a large number
of parts which are never read again by future jobs.
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Figure 10: Number of times a part is read after it has been
originally written.

Finally, in Figure 11 we present results on the last
access time of parts. For every part in the system, we
identify the last time it was read, up to a maximum of
sixty days, and plot the cumulative ratio of parts as a
function of their last read time. Approximately thirty
percent of the parts had not been read in the period of
sixty days, and read ages are evenly distributed over the
sixty day period.
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Figure 11: Cumulative distribution of parts over time
since parts’ last access.

4.3 Lazy versus Eager Replication

In order to evaluate the effectiveness of lazy replication,
we gathered statistics about the average time before parts
are replicated. Table 1 shows the mean time between a
part being added to the system and the creation of a replica
for that part over a three month time window. Nearly 70%
of parts have a replica created within 60 seconds and 84%
within 2 minutes. 96% of parts have a replica within one
hour. Parts that are not replicated within one hour are
due to the node service on the storage computer where
the replica has been scheduled being disabled for system
maintenance. The data in these parts is still available
from the original storage computer. Therefore, we find
that lazy replication provides acceptable performance for
clusters of a few hundred computers. We have been expe-
riencing around one unrecoverable computer failure per
month, and have not so far lost any unreplicated data as a
consequence.

Mean time to replication (s) Percent
0 - 30 6.7%

30 - 60 62.9%
60 - 120 14.6%

120 - 300 1.1%
300 - 600 2.2%

600 - 1200 4.5%
1200 - 3600 3.4%

3600 - 4.5%

Table 1: Mean time to replication over a three month time
interval.
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4.4 Replica Placement and Load Balancing
As described in Section 3.4, we would like TidyFS to
assign replicas to storage computers using a policy that
balances the spread of parts per stream across computers
as well as the total free space available at storage com-
puters. We compare the two policies we implemented:
the initial space-based policy that led to poorly-balanced
streams, especially for those streams with many small
parts; and the subsequent best-of-three random choice
policy.

We define a load-balancing coefficient for each stream
by calculating the L2 distance between a vector represent-
ing the number of parts from a particular stream assigned
to a specific storage computer and the perfectly-balanced
mean vector. The coefficient is computed as follows:√∑n

i=1(pi −
rp
n )2 where r is the stream replication fac-

tor, p is the number of parts in the stream, pi is the number
of part replicas stored at node i, and n is the number of
computers in the ReadWrite state in the cluster. We
normalize so that a coefficient of 1 corresponds to the
worst-case situation where just r computers are used to
store all the parts, which leads to the following complete
equation:

1√
r(p− rp

n )2 + (n− r)( rpn )2

√√√√
n∑

i=1

(pi −
rp

n
)2 (1)

The load-balancing behavior was analyzed over two
periods of time: in the first one, the space-based policy
was used; in the second one, the randomized policy. We
computed, at the end of each day, the load balancing
coefficient of each stream, as given by Equation 1, and
the overall average over all streams. Figure 12 presents
the average coefficient for each day over these two periods.
As shown in the figure, streams were significantly better
balanced during the second period when the randomized
policy was being used.

5 Related Work

The TidyFS design shares many characteristics with other
distributed storage systems targeted for data-intensive
parallel computations, but wherever possible simplifies or
removes features to improve the overall performance of
the system without limiting its functionality for its target
workload. While several systems only focus on delivering
aggregate performance to a large number of clients, one of
the main goals with TidyFS is to also encourage moving
computation close to the data by providing interfaces that
allow applications to locate all replicas of parts.

Like several distributed storage systems such as
Frangipani [26], GPFS [23], GFS [11], HDFS [6, 24],
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Figure 12: Load balancing coefficient when using space-
based policy against randomized policy for replica place-
ment.

PanasasFS [27] and Ursa Minor [25], TidyFS separates
metadata management from data storage, allowing data to
be transparently moved or replicated without client knowl-
edge. Some of these systems do not maintain the meta-
data in centralized servers and support complex read and
write semantics, either by relying on distributed locking
algorithms (Frangipani, GPFS), or by migrating metadata
prior to executing metadata operations (Ursa Minor).

TidyFS is most similar to GFS [11] and HDFS [6, 24].
It follows their centralized metadata server design and
focuses on workloads where data is written once and read
multiple times, which simplifies the needed coherency
model. Despite the similarities with GFS and HDFS,
TidyFS’s design differs from these systems in important
ways. The most significant difference is that TidyFS uses
native interfaces to read and write data while GFS and
HDFS both supply their own data access APIs. This
design choice leads to related differences in, for example,
replication strategies and part-size distribution.

TidyFS also differs from GFS in how it achieves re-
silience against metadata server crashes. GFS maintains
checkpoints and an operation log to which metadata oper-
ations should be persisted before changes become visible
to clients. TidyFS instead maintains multiple metadata
servers, all of which keep track of all the metadata in
the system, and uses the Paxos [18] algorithm to main-
tain consistency across the servers. A similar approach
is used in BoomFS [2], a system similar to HDFS built
from declarative language specifications.

TidyFS’s ability to handle database parts enables a hy-
brid large-scale data analysis approach that exploits the
performance benefits of database systems, similarly to
the approach taken for HadoopDB [1]. HadoopDB com-
bines MapReduce style computations with database sys-
tems to achieve the benefits of both approaches, although
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the databases accessed by HadoopDB are not stored in
HDFS or a replicated file system. The MapReduce frame-
work is used to parallelize queries, which are then exe-
cuted on multiple single-node database systems. Database
parts stored in TidyFS can be queried using Dryad and
DryadLINQ in similar ways.

6 Discussion

TidyFS is designed to support workloads very much like
those generated by MapReduce and Hadoop. It is thus
natural to compare TidyFS to GFS and HDFS, the file sys-
tems most commonly used by MapReduce and Hadoop
respectively. The most consequential difference is the
decision for TidyFS to given clients direct access to part
data using native interfaces. Our experience of the re-
sulting simplicity and performance, as well as the ease
of supporting multiple part types such as SQL database,
has validated our assumption that this was a sensible de-
sign choice for the target Dryad workload. The main
drawback is a loss of generality. Other systems built on
GFS, such as BigTable [8], use the ability to persist small
appends and make them visible to other clients in order
to achieve performance and reliability, and the desire to
support appends in HDFS is related to the desire to imple-
ment similar services such as HBASE on top of that file
system [10]. A key point in [20] is that the GFS semantics
were not a good fit for all of the applications rapidly built
on GFS. Some issues that are described in [20], such as
the small file problem, can be addressed in client libraries.
Other issues, including inconsistent data returned to the
client depending on which replica was read and latency is-
sues because GFS was designed for high-throughput, not
low-latency, cannot be addressed in client libraries. We
believe however that rather than complicating the com-
mon use case of a data-intensive parallel file system it
makes more sense to add a separate service for reliable
logging or distributed queues. This was done for example
in River [4] and the Amazon Web Service [3] and would
be our choice if we needed to add such functionality to
our cluster.

Another feature that TidyFS lacks as a result of our
choice of native interfaces is automatic eager replication,
with the exception of optional eager replication in the data
ingress case. Again we are happy with this tradeoff. In the
year we have been operating TidyFS we have not had a
single part lost before replication has completed. Clearly
this is primarily because of the relatively small size of
our deployment, however it suggests that leveraging the
client’s existing fault-tolerance to replace lost data is a
reasonable alternative to eager replication, despite the
additional work spent in the rare failure cases.

The final major difference is our lack of control over
part sizes. DryadLINQ programs frequently make use of

the ability to output streams with exact, known partition-
ing, which leads to sometimes significant performance
improvements. However we do also have to deal with
problems caused by occasional parts which are very much
larger than the average. This caused problems with our
original simple replication policy that fortunately were
easy to fix with the slightly more sophisticated best-of-
three random policy. We believe that the existence of
very large parts also adds to disk fragmentation across our
cluster. If ignored, we have found that this fragmentation
results in devastating performance penalties as parts are
split into thousands of fragments or more, preventing the
sequential I/O that is necessary for high read throughput.
We have recently started to aggressively defragment all
disks in the cluster to mitigate this problem.

While we motivate the TidyFS design using general
properties of data intensive shared-nothing workloads, in
practice it is currently used almost exclusively by applica-
tions executing using Dryad. Rather than making TidyFS
more general, one direction we are considering is inte-
grating it more tightly with our other cluster services. If
all I/O on the cluster were reads or writes from TidyFS,
Dryad intermediate data shuffling, and TidyFS replica-
tion traffic, then substantial performance benefits might
accrue from integrating I/O into the Quincy scheduling
framework, and possibly even adopting circuit-switched
networking hardware to take advantage of these known
flows. As mentioned in Section 2.2 this tighter integra-
tion might conflict with the choice to allow clients unfet-
tered access to native I/O. On the other hand if the only
client were Dryad, which is trusted to obey scheduling
decisions, the benefits of I/O scheduling might still be
achieved. Tighter integration with Dryad would also let us
revisit a design alternative we had originally considered,
which is to eliminate the node service altogether and per-
form all housekeeping tasks using Dryad programs. We
abandoned this potentially simplifying approach primar-
ily because of the difficulty of ensuring that Dryad would
run housekeeping tasks on specific computers in a timely
fashion with its current fairness and locality policies.

We have recently reimplemented the metadata server
on top of a replicated SQL database instead of the C++
and RSL implementation described in this paper. This
radically reduces the number of lines of novel code in
the system by relying on the extensive but mature SQL
Server codebase. Our main concern is whether compara-
ble performance can be easily attained using SQL, which
is unable to perform fast reads as described in Section 3.6
without the addition of a custom caching layer, and we
are currently evaluating this tradeoff.

Overall we are pleased with the performance, simplicity
and maintainability of TidyFS. By concentrating on a
single workload that generates a very large amount of
I/O traffic we were able to revisit design decisions made
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by a succession of previous file systems. The resulting
simplifications have made the code easier to write, debug,
and maintain.
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Abstract

Users increasingly store data collections such as digital

photographs on multiple personal devices, each of which

typically offers a storage management interface oblivious

to the contents of the user’s other devices. As a result,

collections become disorganized and drift out of sync.

This paper presents Eyo, a novel personal storage sys-

tem that provides device transparency: a user can think

in terms of “file X”, rather than “file X on device Y ”,

and will see the same set of files on all personal devices.

Eyo allows a user to view and manage the entire col-

lection of objects from any of their devices, even from

disconnected devices and devices with too little storage

to hold all the object content. Eyo synchronizes these

collections across any network topology, including direct

peer-to-peer links. Eyo provides applications with a stor-

age API with first-class access to object version history

in order to resolve update conflicts automatically.

Experiments with several applications using Eyo—

media players, a photo editor, a podcast manager, and an

email interface—show that device transparency requires

only minor application changes, and matches the storage

and bandwidth capabilities of typical portable devices.

1 Introduction

Users often own many devices that combine storage, net-

working, and applications managing different types of

data: e.g., photographs, music files, videos, calendar en-

tries, and email messages. When a single user owns more

than one such device, that user needs a mechanism to

access their objects from whichever device they are us-

ing, in addition to the device where they first created or

added the object to their collection. Currently, users must

manually decide to shuttle all objects to a single master

device that holds the canonical copy of a user’s object

collection. This hub-and-spoke organization leads to a

storage abstraction that looks like “object a on device

x”, “object b on device y”, etc. It is up to the user to keep

track of where an object lives and determine whether a

and b are different objects, copies of the same object, or

different versions of the same object.

A better approach to storing personal data would pro-

vide device transparency: the principle that users should

see the same view of their data regardless of which of

their devices they use. Device transparency allows users

to think about their unified data collection in its entirety

regardless of which device a particular object may reside

on, rather than as the union of independent copies of ob-

jects scattered across their devices.

Traditional distributed file systems provide location

transparency whereby a file’s name is independent of

its network location. This property alone is insufficient

for use with disconnected, storage-limited devices. A

device-transparent storage system, however, would pro-

vide the same abstraction regardless of connectivity.

One attempt at providing device transparency is to

store all data on a centralized cloud server, and request

objects on demand over the network. In the presence of

poor or disconnected networks, however, this approach

fails to provide device-transparency: disconnected de-

vices cannot access new objects or old objects not cached

locally. In addition, two devices on the same fast local

network cannot directly exchange updates without com-

municating with the central hub.

Beyond the challenge of transferring data between de-

vices, either by direct network connections or via cen-

tralized servers, providing device-transparent access to a

data collection faces two additional challenges: (1) con-

current updates from disconnected devices result in con-

flicting changes to objects, and (2) mobile devices may

not have enough space to store an entire data collection.

This paper presents Eyo, a new personal storage sys-

tem that provides device transparency in the face of dis-

connected operation. Eyo synchronizes updates between

devices over any network topology. Updates made on

one device propagate to other reachable devices, and

users see a single coherent view of their data collection

from any of their devices. Since these updates may cause
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conflicts, Eyo supports automated conflict resolution.

The key design decision behind Eyo is to use ob-

ject metadata (e.g., author, title, classification tags, play

count, etc.) as a proxy for objects themselves. This de-

cision creates two requirements. First, Eyo requires ap-

plications to separate object metadata from content, so

that Eyo knows what is metadata and what is content.

Second, Eyo must replicate metadata on every device, so

that applications can manage any object from any device

as though that device held the master copy of that object.

To meet these requirements, Eyo provides a new stor-

age API to applications. This API separates metadata

from content, and presents object version histories as

first-class entities, so that applications can automatically

resolve most common divergent version histories with-

out user intervention, while incorporating the presenta-

tion and resolution of other conflicts as a part of ordinary

operation. In return, applications delegate inter-device

synchronization to Eyo.

Experiments using Eyo in existing applications—

media players, a photo editor, a podcast manager, and an

email interface—show that Eyo transforms these stand-

alone applications into distributed systems providing

device-transparent access to their data collections, takes

advantage of local peer-to-peer communication chan-

nels, permits automatic conflict resolution, and imposes

only modest storage and bandwidth costs on devices.

Eyo’s main contribution is a design for device trans-

parency for disconnected storage-limited devices, build-

ing on our earlier proposal for device transparency [44].

The design adopts techniques pioneered by existing

systems (e.g., disconnected operation in Coda [22],

application-aware conflict resolution in Bayou [46],

placement rules in Cimbiosys [36] and Perspective [40],

version histories in source control systems [16], up-

date notifications in EnsemBlue [33]). Eyo wraps these

techniques in a new storage interface that supports ef-

ficient, continuous, peer-to-peer synchronization, and

avoids most user involvement in conflict resolution.

The remainder of this paper is organized as follows:

Section 2 describes Eyo’s API and its use, followed by

Eyo’s synchronization protocols in Section 3 and imple-

mentation in Section 4. Section 5 evaluates Eyo with

existing data collections and applications. Section 6 de-

scribes related systems, and Section 7 concludes.

2 Eyo

Eyo enables a traditionally architected, single-device ap-

plication to work as a distributed application whose state

is scattered among many devices. For example, suppose

we have a traditional photo management application that

copies photos from a camera into a local database of

photo albums. After modifying the application to use

Eyo, the album database becomes replicated automati-

cally across all devices, permitting the user to manage

her photo collection from whichever device is most con-

venient. Eyo maintains these properties for the photo ap-

plication on all devices, even if a given device isn’t large

enough to hold the entire collection of photos.

Eyo sits between applications, local storage, and re-

mote network devices. Eyo uses an overlay network [13]

to identify a user’s devices, and track them as they move

to different locations and networks. Eyo manages all

communication with these devices directly, and deter-

mines which updates it must send to each peer device

whenever those devices are reachable.

In order to bring these features to applications, Eyo

provides a new storage API. Eyo’s API design makes the

following assumptions about applications:

• Users identify objects by metadata, not filesystem

path. For example, headers and read/replied flags

of emails or the labels and dates of photos.

• The application provides user interfaces that make

sense when the device stores only object metadata;

for example, songs listings or genre searches.

• Modification of metadata and insertion/deletion of

objects are common, but modification of object con-

tent is rare. For example, a user is more likely to

change which folder a stored email message resides

in, and less likely to change the message itself.

• Metadata is small enough to replicate on every de-

vice. In our application study (Section 5.1), we find

that metadata is less than 0.04% of the size of typi-

cal music and photo objects.

• Application developers agree on the semantics of a

basic set of metadata for common data types, in or-

der to permit multiple applications to share the same

data objects: e.g., standard email headers, ID3 tags

in MP3 audio files, or EXIF tags in photos. Appli-

cations can still attach arbitrary data to metadata in

addition to the commonly agreed upon portions.

We believe that these assumptions match the char-

acteristics of common personal data management ap-

plications. The following sections describe how Eyo’s

techniques can transform such applications into peer-

to-peer distributed applications operating on a device-

transparent data collection, using the photo album appli-

cation as a running example.

2.1 Objects, metadata, and content

Eyo stores a user’s object collection as a flat set of ver-

sioned objects. Figure 1 shows an example of an ob-

ject representing one photo, with multiple versions from

adding and removing organizing tags. Each Eyo ver-

sion consists of a directed acyclic graph of collections of

metadata and content. Edges in the version graph denote

parent-child relationships. Newly created object versions

include explicit predecessor pointers to their parent ver-
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Figure 1: Eyo object store.

object creation and manipulation:

create(ID hint) → (objectID, versionID)

lookup(query ) → list<(objectID, versionID)>

getVersions(objectID) → list<versionID>

getMetadata(objectID, versionID) → list<(key,value)>

open(objectID, versionID) → contentID

read(contentID, offset, length) → contents

newVersion(objectID, list<versionID>,

metadata, contents) →versionID

deleteObject(objectID) → versionID

placement rules:

addRule(name, query, devices, priority ) → ruleID

getRule(name) → (ruleID, query, devices, priority )

getAllRules() → list<(ruleID, query, devices, priority )>

removeRule(ruleID)

event notifications:

addWatch(query, watchFlags, callback ) → watchID

removeWatch(watchID)

callback (watchID, event)

Figure 2: Eyo API summary. Event notifications are dis-

cussed in Section 2.2, and placement rules in Section 2.3.

sions, represented as a parent version attribute. An ob-

ject version’s metadata consists of a set of Eyo- and

application-defined key/value pairs. The metadata also

contains a content identifier; the associated content might

or might not be present on any particular device.

Applications retrieve objects via queries on metadata.

Eyo expects applications to maintain rich enough meta-

data to display to the user meaningful information about

an object, even on devices not storing the content. In our

photo album example, the metadata may include rating,

album, and location to help the user sort photos.

Eyo’s API contains elements similar to databases for

searching, reading, and editing object metadata, along

with elements similar to filesystems for reading and writ-

ing object content. This distinction is deliberate, as it

matches common uses of media applications which of-

ten use both elements internally. In addition, the API

provides mechanisms to learn about and repair conflicts,

to specify content placement rules, and to receive no-

tices about changes to the object store. Figure 2 lists

commonly used Eyo methods. The figure omits alternate

iterator-based versions of these methods for constructing

or viewing large collections as well as library functions

combining these base operations. All of these methods

access only device-local data, so no method calls will

block on communication with remote devices.

If an application tries to read an object’s content, but

the content is not present on the device, Eyo signals an

error. A user can still perform useful operations on meta-

data, such as classifying and reorganizing objects (e.g.,

updating the rating of a photo), from a device that does

not store content. If the user wants to use content that is

not on the current device, the system can use the meta-

data to help the user find a device that has the content, or

ask Eyo to try to fetch the content using the placement

methods in the API (Section 2.3). Section 3 shows how

metadata replication supports efficient synchronization.

2.2 Queries

While Eyo does not provide human-readable object iden-

tifiers, it provides queries with which applications can

implement their own naming and grouping schemes. For

example, the photo application may tag photos with their

associated albums. Queries return IDs for all objects that

have metadata attributes matching the query. As in Per-

spective [40], users never see Eyo queries; applications

create queries on their behalf.

Eyo’s lookup() call performs a one-time search,

whereas addWatch() creates a persistent query. Watch

queries allow applications to learn of new objects and ob-

ject versions, and to observe the progress of inter-device

synchronization, fulfilling a purpose similar to filesystem

notification schemes such as inotify [28].

Eyo’s queries use a subset of SQL, allowing boolean

combinations of comparisons of metadata values with

constants. Such queries are efficient to execute but lim-

ited in expressiveness. For example, the language does

not directly support searching for the 10 most-viewed

photos, but does allow searching for photos viewed more

than 100 times. Eyo limits queries to these restricted

forms to assure efficiency for query uses (watch events

and placement rules) that must evaluate queries in two

different contexts: evaluating new or changed queries to

identify which objects match, and determining which ex-

isting queries match new or modified objects.

2.3 Placement Rules

Eyo allows applications to specify placement rules con-

trolling which objects’ content has highest priority for

storage on storage-limited devices. For example, the

placement rules for our photo album application may
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specify that a user’s laptop should hold only recent al-

bums, but that a backup device should hold every photo.

Applications are expected to generate placement rules

based on user input. Experience suggests that users are

not very good at predicting what objects they will need

or at describing those objects with rules [40]. Eyo’s

metadata-everywhere approach makes it easy to find

missing objects by searching the metadata, to discover

which devices currently have copies of the object, and to

fix the placement rules for the future.

Applications specify placement rules to Eyo using the

query language. A placement rule is the combination of

a query and the set of devices that should hold objects

matching the query. For example, the photo album ap-

plication might present a UI allowing the user to indicate

which devices should hold a complete photo album. An

application can also let users specify particular objects

and the devices on which they should be placed.

Each rule has a priority, and a storage-limited device

stores high-priority content in preference to low-priority.

When space permits, Eyo provides eventual filter consis-

tency [36] for object content, meaning that each device

eventually gathers the set of objects that best matches its

preferences. Eyo’s synchronization mechanism, as de-

scribed in Section 3.4, ensures that at least one copy of

content persists even if no placement rule matches.

To ensure that all devices know all placement rules,

Eyo stores each rule as an object with no content, but

whose metadata contain the query, priority, and device

set. Any device can modify a placement rule. If a conflict

arises between rule versions, Eyo conservatively applies

the union of all current versions’ requirements. Simi-

larly, if an object has multiple current versions and any

current version matches a placement query, Eyo acts as if

the query had matched all versions back to the common

ancestor. This behavior ensures that any device that may

be responsible for the object’s content has all versions

required to recognize and resolve conflicts.

Because placement rules operate at object granularity,

applications that maintain related variations of content

should store these variations as separate objects linked

via metadata, so that different placement rules can apply

to each variation. For example, our photo application

stores both a full size and a thumbnail size image of the

same base photo, assigning a high priority placement rule

to replicate the thumbnail objects widely, but placing the

full-size versions only on high-capacity devices.

2.4 Object Version Histories

Much of Eyo’s API design and storage model is moti-

vated by potentially disconnected devices. Devices carry

replicas of the Eyo object store and might make indepen-

dent modifications to their local replicas. Devices must

therefore be prepared to cope with divergent replicas.

When an Eyo application on a device modifies an ob-

ject, it calls newVersion() to create a new version of that

object’s metadata (and perhaps content) in the device’s

data store. The application specifies one or more par-

ent versions, with the implication that the new version

replaces those parents. In the ordinary case there is just

one parent version, and the versions form a linear history,

with a unique latest version. Eyo stores each version’s

parents as part of the version.

Pairs of Eyo devices synchronize their object stores

with each other, as detailed in Section 3. Synchroniza-

tion replaces each device’s set of object versions and

metadata attributes with the union of the devices’ sets.

For example, in Figure 1, suppose device A uses Eyo

to store a new photo, and to do so it creates a new ob-

ject O56, with one version, O56:34, and metadata and

content for that version. If A and B synchronize, B’s

object store will then also contain the new object, its

one version, that version’s metadata, and perhaps its con-

tent. If an application on B then modifies O56’s meta-

data or content, the application calls newVersion(O56,

[O56:34], metadata, content), indicating that the new

version (O56:78), should supplant the existing version.

When A and B next synchronize, A will learn about

O56:78, and will know from its parent that it supersedes

O56:34. Since the version history is linear, Eyo applica-

tions will use the unique most recent version.

2.5 Continuous Synchronization

To propagate updates to other devices as promptly as

possible, Eyo provides continuous synchronization. Con-

tinuous synchronization helps reduce concurrency con-

flicts by propagating changes as quickly as the network

allows, essentially serializing changes. Continuous syn-

chronization also improves the user experience by show-

ing changes from other devices “instantly”. If two de-

vices on the same network run the photo album applica-

tion, for example, rating changes in one application will

be immediately reflected in other application. Section 3

details continuous synchronization.

2.6 Automated Conflict Management

A primary goal of Eyo’s API is to enable applications to

offer the user automated conflict management. To man-

age conflicts, applications need access to history infor-

mation, notifications when conflicts arise, and a way to

resolve those conflicts permanently.

Eyo uses per-object version histories and update noti-

fications to provide a distributed metadata database that

describes objects at the same granularity as user-visible

objects. Applications thus need to examine only the Eyo-

provided history of changes to a single object at a time in

order to resolve changes. Cloud synchronization services

that use existing filesystem APIs would instead require
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applications to examine two (or more) complete copies

of a metadata database and write a resolution procedure

to operate on the entire collection at once.

Continuing with the example from Figure 1, consider

a case where A had produced a new version of O56 be-

fore the second synchronization with B, such as adding

additional category or location tags to the photo.

In that case, both new versions would have parent ver-

sion O56:34. After synchronization, A and B would

both have two “latest” versions of O56 in their object

stores. These are called head versions. When it detects

concurrent updates, Eyo presents to the application each

of the head versions along with their common ancestors.

Eyo’s version graphs with explicit multiple parent ver-

sions are inspired by version control systems [16, 45].

Where version control systems keep history primarily

for users to examine, Eyo instead uses version history to

hide concurrency from users as much as possible. When

combined with synchronization, version graphs automat-

ically capture the fact that concurrent updates have oc-

curred, and also indicate the most recent common an-

cestor. Many procedures for resolving conflicting up-

dates require access to the most recent common ances-

tor. Since Eyo preserves and synchronizes complete ver-

sion graphs back to those recent ancestors, applications

and users can defer the merging of conflicting updates as

long as they want. In order to ensure that parent pointers

in object version histories always lead back to a common

ancestor, Eyo transfers older versions of metadata before

newer ones during synchronization [34].

Applications hold responsibility for handling concur-

rent updates of the same object on different devices, and

should therefore structure the representation of objects in

a way that makes concurrent updates either unlikely or

easy to merge automatically. Applications must notice

when concurrent updates arise, via Eyo queries or watch

notifications. When they do occur, applications should

either resolve conflicts transparently to the user, or pro-

vide ways for users to resolve them. This division allows

Eyo to take advantage of fleeting network connectivity to

transfer all new updates. Users avoid interruptions about

irrelevant objects, and can wait until some more conve-

nient time to merge conflicts, or perhaps ignore unimpor-

tant conflicts forever.

Eyo’s version history approach permits many concur-

rent updates to be resolved automatically and straightfor-

wardly by the application. For example, a user may move

a photo between albums on one device, while changing

the rating for the same photo on another device. Appli-

cations can arrange for these pairs of operations to be

composable, e.g., ensuring that album tags and ratings

can be set independently in the metadata. Eyo identi-

fies these conflicting modifications, but the applications

themselves merge the changes since applications know

the uses of these attribute types, and so can determine the

correct final state for these classes of concurrent changes.

Some concurrent updates, however, require user inter-

vention to merge them into a single version. For exam-

ple, a user might change the caption of a photo different

ways on different devices. In such cases it is sufficient

for Eyo to detect and preserve the changes for the user,

either to fix at some later time or ignore entirely. Be-

cause Eyo keeps all of the relevant ancestor versions, it is

simple for the application to show the user what changes

correspond to each head version. All of Eyo’s API calls

work regardless of whether an object contains an unre-

solved conflict, so it is up to applications as to whether

they wish to operate on conflicted objects.

Applications may not intentionally create conflicts:

when calling newVersion(), applications may list only

head versions as predecessors. This requirement means

that once a unique ancestor is known to all devices in a

personal group, no version that came before the unique

ancestor can ever be in conflict with any new written or

newly learned version. Eyo can thus safely delete these

older versions without affecting later conflict resolution.

For example, in Figure 1, if all devices knew about ver-

sion O56:21, that version is a unique ancestor for the ob-

ject O56, and Eyo may prune the older versions O56:34,

O56:56, and O56:78. Section 5.4 discusses storage costs

when devices do not agree on a unique ancestor.

Applications permanently remove objects from Eyo

via deleteObject(), which is just a special case of cre-

ating a new version of an object. When a device learns

that a delete-version is a unique ancestor (or that all head

versions are deletes, and seen by all other devices), Eyo

deletes that object from the metadata collection.

3 Continuous Synchronization

Eyo needs to synchronize two classes of data between

devices, metadata and content, and faces different needs

for these classes. Metadata is usually small, and updates

must be passed as quickly as possible in order to provide

the appearance of device-transparency. The goal of Eyo’s

metadata synchronization protocol is to produce identical

metadata collections after synchronizing two devices.

Content, in contrast, can consist of large objects that

change infrequently and take a long time to send over

slow network links. Synchronizing content, unlike meta-

data, results in identical copies of individual objects, but

not of the entire collections. The goal of content synchro-

nization is to move objects to locations that best match

placement policies.

Given the different needs for these two classes of data,

Eyo uses different protocols for each class. Both run over

UIA [13], an overlay network supporting direct peer-to-

peer links as well as centralized cloud server topologies.
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3.1 Metadata Synchronization

The primary goal of Eyo’s metadata synchronization pro-

tocol is to maintain identical copies of the entire meta-

data collection. This process must be efficient enough

to run continuously: updates should flow immediately to

devices connected to the same network. If connectivity

changes frequently, devices must quickly identify which

changes to send to bring both devices up to date.

The main approach that Eyo takes to synchronize

metadata is to poll for changes whenever connectivity

changes and to push notifications to reachable devices

whenever a local application writes a new version of an

object. Eyo identifies and organizes changes as they oc-

cur rather than iterating over the entire collection, allow-

ing Eyo to quickly find the set of changed objects (among

a much larger set of unchanged objects) at every synchro-

nization opportunity.

Eyo groups multiple metadata updates into a perma-

nent collection called a generation. Each generation is

uniquely named by the device that created it and includes

an id field indicating how many generations that device

has created. A generation includes complete metadata

updates, but only identifiers and new status bits for con-

tent updates. All synchronization occurs at the granu-

larity of individual generations; each device that holds a

copy of a given generation will have an identical copy.

A generation vector is a vector denoting which gener-

ations a device has already received. These vectors are

equivalent to traditional version vectors [32], but named

differently to avoid confusion with the versions of in-

dividual objects. For a personal group with n devices,

each Eyo device updates a single n-element vector of

(device, id) tuples indicating the newest generation au-

thored by device that it holds.

Each device regularly sends getGenerations requests

to other reachable devices. When local applications

modify or create new objects (via newVersion calls),

Eyo adds these uncommunicated changes to a pending

structure, and attempts to contact reachable peers. With

each of these requests, the client includes either its local

generation vector, or the next generation vector it will

write if it has new changes pending. When a device re-

ceives a reply, it incorporates the newly learned changes

into its local data store, updates its generation vector

accordingly, notifies applications about newly learned

changes, and updates and applies placement rules to the

newly learned changes.

When a device receives an incoming getGenerations

request, it first gathers all pending changes, if any, into

a new generation. It then identifies all the changes the

other device lacks, and replies with those changes. If the

request includes a generation vector with some compo-

nent larger than the device handling the request knows

about, the device queues a getGenerations request in

Figure 3: Metadata Synchronization: Messages sent be-

tween two devices for one new object

the reverse direction to update itself, either immediately,

or when next reachable if the request fails.

Figure 3 presents an example use of these structures

between two devices: a camera C that temporarily stores

photos when the user takes a picture, and a target device

T that archives the user’s photos. Initially, at t0 in Fig-

ure 3, both devices hold no objects and agree on an initial

generation vector <C:0,T:0>. When the user takes a

picture P at time t1, the camera adds the contents of the

picture to its local content store with content identifier

Pcid, creates a new Eyo object with object id Poid, and

adds Poid to the metadata store. Eyo adds each of these

updates to the next generation under construction (noted

pending in the figure).

At time t2, C holds uncommunicated updates, so it

sends getGenerations() requests to all reachable de-

vices with the single argument <C:1,T:0>: C’s gen-

eration vector with the C element incremented. T com-

pares the incoming generation vector to its own and de-

termines that it has no updates for C and replies with

an empty generation list. However, since C’s generation

vector was larger than its own, T now knows that C has

updates it has not seen, so T immediately makes its own

getGenerations() call in the opposite direction with ar-

gument <C:0,T:0> since T has no uncommunicated

updates of its own. Upon receiving the incoming request

from T , C increments its generation vector and perma-

nently binds all uncommunicated updates into generation

C:1. C then replies with generation C:1 and its newly-

updated generation vector to T . The camera makes no
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further call back to T , as T ’s generation vector was not

larger than its own. Both devices now contain identical

metadata.

Although for the sake of clarity this example only in-

cluded two devices and did not include a large existing

data collection, it does illustrate the protocol’s scaling

properties. For a group containing n devices, the Eyo

metadata synchronization protocol sends only a single

generation vector of length n to summarize the set of

updates it knows about in a getGenerations() request.

Upon receiving an incoming vector, an Eyo device needs

only a simple lookup to identify what generations to send

back, rather than an expensive search. This lookup re-

quires one indexed read into the generation log per ele-

ment in the incoming generation vector. This low cost

means that devices can afford to push notifications in-

stantaneously, and poll others whenever network connec-

tivity changes.

3.2 History and Version Truncation

Eyo must have a way to prune version histories. It must

identify which past changes are no longer needed and

reclaim space taken up by those updates. This process

involves three separate steps: determining when gener-

ation objects have been seen by all devices in a group,

combining the contents of those generation objects into

a single archive, and truncating the version history of in-

dividual objects.

Eyo learns that each other device has seen a given gen-

eration G by checking that every other device has written

some other generation G′ that includes G in its genera-

tion vector. At this point, no other existing device can

correctly send a synchronization request that would in-

clude G in the reply, so it can remove G from its gen-

eration log. Once a device learns that all other devices

have received a given generation G, it may lazily move

G’s contents into its archive generation, which groups

together updates made by different devices and from dif-

ferent original generations, and does not retain those ori-

gins. Eyo preserves at least one generation for each de-

vice separate from the combined archive, even if that

generation is fully known to all other devices. This en-

sures that Eyo knows the latest generation each other de-

vice has reported as received.

Object versions in the archive generation are known by

all the user’s devices, and are thus candidates for pruning,

which is the second phase of history truncation. Version

pruning then proceeds as described in Section 2.4.

3.3 Adding and Removing Devices

When a user adds a new device to their personal group,

and that new device first synchronizes with an existing

device, Eyo sees a getGenerations() request with miss-

ing elements in the incoming generation vector. Exist-

Figure 4: Content Synchronization. The thick double

arrows represent a metadata sync from Figure 3.

ing devices reply with a complete copy of all generations

plus the archive generation. This copy cannot easily be

broken down into smaller units, as the archive genera-

tion differs between devices due to pruning. Users ex-

pect new devices to require some setup, however, so this

one-time step is not an undue burden.

Users remove devices from an Eyo group by deleting

them from the underlying overlay network. Unless the

user explicitly resets an expelled device entirely, it does

not then delete any objects or content, and behaves there-

after as group with only one device. Removing an inac-

tive or uncommunicative device from an Eyo group al-

lows the surviving devices to make progress truncating

history.

3.4 Content Synchronization

The challenges in moving content to its correct location

on multiple devices are (1) determining which objects

a particular device should hold, (2) locating a source

for each missing data object on some other device, and

(3) ensuring that no objects are lost in transit between

devices.

Eyo uses placement rules to solve the first of these
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challenges, as described in Section 2.3. Each device

keeps a sorted list of content objects to fetch, and up-

dates this list when it learns about new object versions,

or when changes to placement rules affect the placement

of many objects.

Eyo uses the global distribution of metadata through a

user’s personal group to track the locations of content ob-

jects. In addition to the version information, devices pub-

lish notifications about which content object they hold

(as shown in Figure 3). Since all devices learn about all

metadata updates, all devices thus learn which devices

should hold content as part of the same process. When

Eyo learns that another device is reachable, it can look at

the list of content to fetch, and determine which objects

to request from the reachable device.

To ensure that content objects are not deleted prema-

turely, Eyo employs a form of custodial transfer [11]

whereby devices promise to hold copies of given objects

until they can pass that responsibility on to some other

device. When a device adds content to its local data store

as a result of a matching placement rule, it signals its in-

tent to hold the object via a flag in the metadata.

If placement rules later change, or the device learns of

newer higher-priority data that it would prefer to hold,

it issues a new metadata update removing its promise to

keep the object in the future. At this point, however, the

promise to hold still applies to the original data holder.

Its responsibility continues to apply until some other de-

vice authors a generation that falls strictly later than the

one which removed the promise, and includes a new or

existing promise to hold that same data item. If two dif-

ferent devices holding the last two copies of an object

each simultaneously announce their desire to remove it,

then the generations that contain these modifications can-

not be totally ordered. Neither device will be able to

delete the object, as neither can identify another device

that has accepted responsibility for storing the object.

This protocol ensures that, as long as no devices are

lost, stolen, or broken, each non-deleted item will have

at least one live replica in the device collection. This

property does not depend on the existence or correct-

ness of placement rules: applications may delete or mod-

ify placement rules without needing to ensure that some

other rule continues to apply to that object.

Figure 4 shows an example content sync that continues

where the metadata sync of Figure 3 leaves off. To match

the user’s workflow, the target device has a placement

rule matching photos the camera creates; the camera has

no such rule and thus tries to push its photos to other

devices. When the target device receives the camera’s

metadata update at time t2, it evaluates its own place-

ment rules, and adds Pcid to its list of content it desires.

The generation C:1 that T received included Pcid, so

T knows that C has a copy (the hold bit is set) of Pcid

that it wants to delete (the purge bit). At t3, T sends

a getContent(Pcid) request to C, which replies with the

new photo. Because T intends to keep P , it adds a hold

bit to Pcid in the next generation it publishes, T:1.

At t4, the devices synchronize again and the camera

and target again contain identical state. But the camera

now knows an important fact: the target (as of last con-

tact) contained a copy of P , knew that C did not promise

to keep P via the purge bit, and hence the target has ac-

cepted responsibility (hold but not purge) for storing P .

Thus, at t5, the camera can safely delete P if it needs to

reclaim that space for new items, placing the system in a

stable state matching the user’s preferences.

4 Implementation

Eyo’s prototype implementation consists of a per-user

daemon that runs on each participating device and han-

dles all external communication, and a client library that

implements the Eyo storage API. The daemon is writ-

ten in Python, runs on Linux and Mac OSX, keeps open

connections (via UIA) to each peer device whenever pos-

sible, and otherwise attempts to reestablish connections

when UIA informs Eyo that new devices are reachable.

It uses SQLite [43] to hold the device’s metadata store,

and to implement Eyo queries. The daemon uses sepa-

rate files in the device’s local filesystem to store content,

though it does not expose the location of those files to

applications. The Eyo implementation uses XML-RPC

for serializing and calling remote procedures to fetch

metadata updates, and separate HTTP channels to re-

quest content objects. This distinction ensures that large

content fetches do not block further metadata updates.

Larger content objects can be fetched as a sequence of

smaller blocks, which should permit swarming transfers

as in DOT [47] or BitTorrent [6], although we have not

yet implemented swarming transfers. We implemented

Eyo API modules for Python and a library for C applica-

tions. The client libraries fulfill most application requests

directly from the metadata store via SQLite methods,

though they receive watch notifications from the daemon

via D-Bus [8] method calls.

5 Evaluation

We explore the performance of Eyo by examining the

following questions:

• Is Eyo’s storage model useful for applications and

users?

• Can Eyo resolve conflicts without user input?

• Do Eyo’s design choices, such as splitting metadata

from content, unduly burden devices’ storage ca-

pacity and network bandwidth?

• Are Eyo’s continuous synchronization protocols ef-

ficient in terms of the bandwidth consumed, and the

delay needed to propagate updates?
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We employ three methods to evaluate Eyo: (1) adapt-

ing existing applications to use Eyo’s storage API instead

of their native file-based storage to examine the modifica-

tion difficulty and describe the new features of the mod-

ified versions, (2) storing example personal data collec-

tions to examine storage costs, and (3) measuring Eyo’s

synchronization protocol bandwidth and delays to com-

pare against existing synchronization tools.

The purpose for adapting existing applications to use

Eyo as their primary storage interface is to examine

whether Eyo’s API is a good match for those uses, de-

scribe how those applications use the Eyo API, and how

difficult those changes were. We focus on two types of

applications: (1) media applications, where users do not

currently see a device-transparent data collection, and (2)

email, where users already expect a device-transparent

view, but typically only get one today while connected

to a central server. We modified two media players,

Rhythmbox and Quod Libet, the Rawstudio photo man-

ager, and the gPodder podcast manager, to use Eyo in-

stead of the local filesystem. We also built an IMAP-

to-Eyo gateway to enable existing email clients to access

messages stored in Eyo.

We evaluate Eyo’s storage and bandwidth costs using

three data collections: email, music, and photos. These

collections served as a basis for a synthetic workload

used to measure bandwidth costs and storage costs due

to disconnected devices.

We compare Eyo’s synchronization protocols to exist-

ing synchronization tools, Unison and MobileMe. Al-

though neither tool aims to provide device-transparent

access to a data collection, the comparison does verify

that the performance of Eyo’s metadata synchronization

protocol is independent of the number of objects in the

collection, and demonstrates the need for direct peer-to-

peer updates.

5.1 Eyo Application Experiences

Adapting existing applications to use Eyo is straight-

forward. Table 1 summarizes the changes made to

each application. In each case, we needed to modify

only a small portion of each application, indicating that

adopting the Eyo API does not require cascading changes

through the entire application. The required changes

were limited to modules composing less than 11% of the

total project size for the C-based applications, and sig-

nificantly less for the Python applications. The C-based

application changes were spread over a few months; the

python applications needed only a few days of work.

Eyo provides device-transparency. Eyo transforms

the existing media applications from stand-alone appli-

cations with no concept of sharing between devices into a

distributed system that presents the same collection over

multiple devices. The changes do not require any user

Size (lines) Rawstudio Rhythmbox QuodLibet gPodder Email

total project 59,767 102,000 16,089 8,168 3,476
module size 6,426 9,467 428 426 312
lines added 1,851 2,102 76 295 778
lines deleted 1,596 14 2 2 N/A
language C C python python python
content ←−−−−− individual files −−−−−→ N/A

metadata
central DB,
sidecar files

←−−− central DB −−−→ N/A

Table 1: Comparisons of applications adapted to Eyo, in-

cluding lines of code changed along with descriptions of

the application’s original organization for storing meta-

data and content. For email, the “total project” size only

includes Twisted’s IMAP module and server example

code, and “lines added” includes all of our newly writ-

ten code.

interface modifications to support device transparency;

users simply see a complete set of application objects

rather than the local subset. However, some user inter-

face changes are necessary to expose placement rules and

conflict resolution to the user.

Device transparency brings new features to the appli-

cations. For example, Rhythmbox and QuodLibet can

show the user’s entire media collection, even when con-

tent is not present, allowing users to search for items and

modify playlists from any device. In Rawstudio, users

can search for or organize photos in the entire collec-

tion, even when the content is missing. Surprisingly few

changes were necessary to support missing content. This

is because applications already have code paths for miss-

ing files or unreachable network services. Content that is

not on the current device triggers these same code paths.

Users rarely encounter metadata conflicts. As a con-

sequence of device transparency, users may encounter

conflicts from concurrent changes on multiple devices.

These concurrent changes result in multiple head ver-

sions of these objects when connectivity resumes. For

changes to distinct pieces of metadata, the version his-

tory Eyo provides permits applications to resolve con-

current changes simply by applying the union of all user

changes; Eyo’s client library makes this straightforward.

For concurrent changes to the same piece of metadata,

the application must manually resolve the conflict be-

cause the correct policy depends on the application and

the metadata item. In most cases, users are never aware

when concurrent updates occur, as the applications per-

form these operations automatically. For example, if one

device changes an email message status to “read” while

another device changes the status to “replied”, Eyo will

signal a conflict to the application. However, the IMAP

gateway knows that these updates are composable and

resolves the conflict without user intervention.
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Application Type User-Visible
Conflicts Possible?

Why?

IMAP
Email
Gateway

No Boolean flag changes only

gPodder
Podcast
Manager

No User cannot edit metadata directly

Rhythmbox
Media
Player

Yes Edit Song title directly

QuodLibet
Media
Player

Yes Edit Song title directly

Rawstudio
Photo
Editor

Yes Edit settings: contrast, exposure...

Table 2: Description of whether applications can handle

all version conflicts internally, or must show the pres-

ence of multiple versions as a result of some concurrent

events, along with an explanation or example of why that

result holds for each application.

Email Music Photos

number of objects 724230 5299 72380
total content size 4.3 GB 26.0 GB 122.8 GB

native metadata size 169.3 MB 2.6 MB 22.6 MB
Eyo metadata size 529.6 MB 5.8 MB 52.9 MB

metadata/content overhead 12% 0.02% 0.04%
metadata store per object 766 bytes 1153 bytes 767 bytes

Table 3: Metadata store sizes for example datasets. The

native metadata size is the size of the attribute key/value

pairs before storing in Eyo. The Eyo metadata size is the

on-disk size after adding all objects.

As shown in Table 2, it is possible to cause end-user

visible effects. For example, Rhythmbox and QuodLi-

bet allow users to modify metadata directly in the UI,

which may require manual intervention to resolve. How-

ever, these kinds of user-visible conflicts only arise due

to manual, concurrent changes and are rare in practice.

In Rawstudio, during the course of editing on two de-

vices, users may create conflicting versions of a photo.

Rather than hiding the change or requiring immediate

conflict resolution, Eyo exposes each version as a “de-

velopment version” of the photo. While this feature is

typically used to let the user test different exposure and

color settings, Eyo uses the feature to show concurrent

branches of the photo.

In the other applications, gPodder and email, user-

visible conflicts are impossible, as users cannot edit

individual metadata tags directly. These two applica-

tions never show multiple versions to end users, even

though the underlying system-maintained version histo-

ries exhibit forks and merges. The ability to hide these

events demonstrates the usefulness of keeping system-

maintained version histories so that applications face no

ambiguity about the correct actions to take.

5.2 Metadata Storage Costs

To determine the expected size of metadata stores in Eyo,

we inserted three modest personal data sets into Eyo: the

email, music, and photo collections a single user gath-

ered over the past decade. We included a collection of

email messages as a worst-case test; this collection in-

cludes a large number of very small objects, so the meta-

data overhead will be much larger than for other data

types. Table 3 shows the resulting metadata store sizes.

The table shows that for each of the data types, Eyo’s

metadata store size is approximately 3 times as large as

the object attributes alone. The overhead comes from

database indexes and implementation-specific structures.

The most important feature this data set illustrates is

that the size of the metadata store is roughly (within a

small constant factor) dependent only on the number of

individual objects, not the content type nor the size of

content objects. The number of objects, along with the

amount of metadata per object, thus provides a lower

bound on the necessary storage capacity of each device.

The total metadata size in this example (less than 600

MB) is reasonable for today’s current portable devices,

but the total content size (153 GB) would not fit on a

laptop only a few years old nor on many current portable

devices. Including video content would further reduce

the relative amount of overhead Eyo devotes to storing

object metadata.

5.3 Bandwidth Costs

In addition to storage costs, the metadata-everywhere

model places bandwidth costs on all devices, even when

those devices do not store newly created objects.

To measure bandwidth costs, we placed a pair of

object-generating devices on the same network and a

remote device on a different network with a slow link

to the object-generating devices. The object-generating

devices create new objects at exponentially distributed

times at a variable average rate, attaching four kilobytes

of attributes to each new object (larger than the median

email message headers considered in Section 5.2). The

remote object has no placement rules matching the new

objects, so it does not fetch any of the associated content.

As such, all of the bandwidth used by the remote device

is Eyo metadata and protocol overhead.

The bandwidth consumed over the slow link, as ex-

pected, relates linearly with the update rate. If the slow

link had a usable capacity of 56 kbps, and new updates

arrive once per minute on average, the remote device

must spend approximately 1.5% of total time connected

to the network in order to stay current with metadata up-

dates. This low overhead is expected intuitively: small

portable devices routinely fetch all new email messages

over slow links, so the metadata bandwidth for compara-

ble content will be similar.
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Figure 5: Storage consumed by metadata versions

queued for a disconnected device (Log-Log plot).

5.4 Disconnected Devices

When an Eyo device, R, is disconnected from the rest

of the group due to network partitions, or because the

device in question is turned off, the other devices will

keep extra metadata object versions, which might prove

necessary to construct causally ordered version graphs

once R returns.

In this measurement, we place an initial set of 1000

non-conflicting objects synchronized across the three de-

vices. The remote device R then disconnects from the

network, and stays disconnected for a single period of

time ∆t ranging from four hours to four months. Start-

ing after R is out of communication, the other replicas

generate new versions to one of the existing objects at an

average rate of once per minute, attaching 2 kilobytes of

unique metadata, so the devices save no space by storing

only changed attributes.

After the interval ∆t, we measure the size of the Eyo

metadata store on the generating devices, allow R to re-

connect and synchronize, let each device prune its meta-

data, and then measure the metadata store again. Fig-

ure 5 shows the before (square markers) and after (cir-

cle markers) sizes as a function of the disconnect inter-

val ∆t. The figure shows two regions, for ∆t before

and after 1000 minutes, the point at which most objects

have been modified. For ∆t ≫ 1000 minutes, the sys-

tem reaches a steady state where the size of the metadata

store is proportional to the amount of time passed, but af-

ter returning and synchronizing shrinks to a constant size

independent of the amount of time spent disconnected.

The amount of recoverable storage is the difference be-

tween the two curves. The current implementation stores

exactly one version beyond those strictly necessary to go

back to the newest unique ancestor for each object, which

is why this steady state size is larger than the initial stor-

System Description

Unison Delays of at least 1 second for small collections.
Large collections take significantly longer:

23 seconds for an existing collection of 500K objects
87 seconds for 1M objects

MobileMe Most updates arrive after between 5 and 15 seconds.
Occasionally as long as 4 minutes.
Delay does not depend on collection size.

Eyo All delays fall between 5 and 15 milliseconds.
Delay does not depend on collection size.

Table 4: Synchronization Delay Comparison: Time to

propagate one new update to an existing data collection

between two devices on the same local network.

age size, and why the post-synchronization size changes

during the initial non-steady state region.

A collection with more objects (for example, the one

shown in Section 5.2) would show a much smaller frac-

tion of recoverable storage than this example. The abso-

lute amount of recoverable space would be the identical

given the same sequence of updates.

All of the object types shown in Table 3 contain im-

mutable contents, so disconnected devices using those

data types cause overhead in Eyo’s metadata store, but

not the content store. If updates change content as well,

then the storage costs would be proportionally larger.

Figure 5 shows that a long-term uncommunicating de-

vice can cause unbounded growth of the metadata store

on other devices. If this absence persists long enough

that a device runs out of space, Eyo can present the user

with two options: turn on and synchronize the missing

device, or evict it from the system. Evicting the miss-

ing device, as discussed in Section 3.3, does not require

a consensus vote of the remaining devices. Temporarily

evicting a device allows the remaining devices to trun-

cate history and preserve data until re-adding the missing

device later.

These results show that users are unlikely to encounter

problems due to accumulating metadata in practice, as

large collections and infrequently used devices alone

cannot cause problems. It is instead the rate of individual

edits that consumes excess space. None of the applica-

tions we have examined generate changes anywhere near

the frequency that this experiment assumes.

5.5 Synchronization Comparison

This section compares the latency of exchanging a sin-

gle small update between two physically adjacent de-

vices using Eyo to two existing classes of synchroniza-

tion tools: a point-to-point file synchronizer, Unison [3],

and a cloud service, MobileMe [29]. In this experiment,

two devices initially hold a synchronized data collection
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with some number of existing small or metadata-only ob-

jects. One device then makes a single minimal change,

and we measure the time it takes for that update to ap-

pear on the second device. Table 4 summarizes the re-

sults. Since Unison is a stand-alone synchronizer, the

measurement time includes the time to start up the pro-

gram to send an update, which results in delays of around

one second even for very small data collections. After

starting, Unison first iterates over the local data collec-

tion to determine which files have changed. For large

data collections, this time dominates the end-to-end de-

lay, resulting in delays of tens of seconds for collections

of a few hundred thousand individual objects.

MobileMe and Eyo both run continuously and contin-

ually track object changes that need propagation to other

devices as applications edit data. Neither suffers a startup

delay, and delays are independent of the number of ob-

jects in the collection. Although both systems send sim-

ilar amounts of data (less than 10 kilobytes), MobileMe

updates take between several seconds to several minutes

to propagate, which is long enough for a person to notice

the delay. Eyo’s delays in this topology fall between 5

and 15 milliseconds.

MobileMe’s star topology requires that all updates

pass through a distributed cloud system, even if the two

devices are physically adjacent on the same local net-

work, as in this example. Eyo, in contrast, discovers local

network paths, and uses those to send updates directly to

the local device.

Eyo can share types of data for which the other two

are unsuited. Neither could store a music collection or a

photo catalog shared between devices. If two devices

read the catalog at startup and each later write some

changes, the last write would win, and the other de-

vice’s version of the file would be preserved separately

but marked as a conflict. The user would have to choose

one or the other versions, as the other synchronization

tools provide no help for the application to resolve the

concurrent changes automatically. Eyo, in contrast, natu-

rally shares metadata about for these types of collections

without requiring a user to routinely manage conflicts.

6 Related Work

The two systems most closely related to Eyo are Cim-

biosys [36] and Perspective [40]. Though neither at-

tempts to provide device transparency, Eyo shares ideas,

like placement rules, with both. Cimbiosys provides

an efficient synchronization protocol to minimize com-

munication overhead while partially replicating objects

across large groups of devices, but provides no way for a

device to learn of all objects without storing all such ob-

jects. Perspective allows users to see their entire collec-

tion spanning several devices, but disconnected devices

cannot continue to see the complete collection. Neither

of these systems preserve object history to help applica-

tions deal with concurrent updates. Polygraph [26] dis-

cusses extensions to Cimbiosys to guard against compro-

mised devices. Eyo could apply these approaches for the

same purposes.

Optimistic Replication Coda [22], Ficus [20],

Ivy [30], and Pangaea [39] provide optimistic replication

and consistency algorithms for file systems. Coda uses

a centralized set of servers with disconnected clients.

Ficus and Ivy allow updates between clients, but do not

support partial replicas. Pangaea handles disconnected

servers, but not disconnected clients. An extension to

Ficus [37] adds support for partial replicas, but removes

support for arbitrary network topologies.

BlueFS [31] and EnsemBlue [33] expand on ap-

proaches explored by Coda to include per-device affin-

ity for directory subtrees, support for removable de-

vices, and some consideration of energy efficiency.

Eyo’s lookup and watch notifications provide applica-

tions with similar flexibility as EnsemBlue’s persistent

queries without requiring that a central server know

about and process queries.

Podbase [35] replicates files between personal devices

automatically whenever network conditions permit, but

does not provide a way to specify placement rules or

merge or track concurrent updates.

Bayou [46] provides a device transparent view across

multiple devices, but does not support partial replicas,

and requires all applications to provide merge procedures

to resolve all conflicts. Bayou requires that updates be

eventually-serializable [12]. Eyo instead tracks deriva-

tion history for each individual object, forming a partial

order of happened-before relationships [24].

PersonalRAID [42] tries to provide device trans-

parency along with partial replicas. The approach taken,

however, requires users to move a single portable storage

token physically between devices. Only one device can

thus use the data collection at a given time.

Systems like TierStore [9], WinFS [27], PRACTI [4],

Pheme [49], and Mammoth [5] each support partial repli-

cas, but limit the subsets to subtrees of a traditional

hierarchical filesystems rather than the more flexible

schemes in Cimbiosys, Perspective, and Eyo. TierStore

targets Delay-Tolerant-Networking scenarios. WinFS

aims to support large numbers of replicas and, like Eyo,

limits update messages to the number of actual changes

rather than the total number of objects. PRACTI pro-

vides consistency guarantees between different objects

in the collection. Eyo does not provide any such con-

sistency guarantees, but Eyo does allow applications to

coherently name groups of objects through the exposed

persistent object version and content identifiers.

Several of these systems make use of application-

specific resolvers [38, 23], which require developers to
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construct stand-alone mechanisms to interpret and re-

solve conflicts separately from the applications that ac-

cess that data. Eyo’s approach instead embeds resolu-

tion logic directly into the applications, which avoids the

need to recreate application context in separate resolvers.

Presenting version history directly to the applications, in-

stead of just the final state of each conflicting replica, per-

mits applications using Eyo’s API to identify the changes

made in each branch.

Star Topologies Many cloud-based storage systems

provide a traditional filesystem API to devices (e.g.,

Dropbox [10], MobileMe’s iDisk [21], and ZumoD-

rive [50]) or an application-specific front end atop one

of the former systems (e.g., Amazon’s Cloud Player [1]).

These systems require that the central cloud service store

all content in the system, and provides a filesystem API

for devices. While these systems provide a central-

ized location for storing content, they do not enable dis-

connected updates between devices, or handle metadata

about the objects that changes on multiple devices. Other

systems such as Amazon’s S3 [2], use a lower-level put-

get interface, and leave all concurrency choices to the ap-

plication using it. Eyo could use a system like S3 as one

repository for object content or for metadata collection

snapshots for added durability.

A number of systems build synchronization operations

directly into applications so that multiple clients receive

updates quickly, such as one.world [19], MobileMe [29],

Live Mesh [25] , and Google Gears [17]. In these sys-

tems a centralized set of servers hold complete copies

of the data collections. Applications, either running on

the servers themselves or on individual clients, retrieve a

subset of the content. Clients can neither share updates

directly nor view complete data collections while discon-

nected from the central hub.

Point to point synchronization: Point-to-point syn-

chronization protocols such as rsync [48], tra [7], and

Unison [3] provide on-demand and efficient replication

of directory hierarchies. None of these systems easily

extend to a cluster of peer devices, handle partial repli-

cas without extensive hand-written rules, or proactively

pass updates when connectivity permits.

Attribute Naming Storage system organization based

on queries or attributes rather than strict hierar-

chical names have been studied in several single-

device settings (e.g., Semantic File Systems [15],

HAC [18], and hFAD [41]) and multi-device settings

(e.g., HomeViews [14]), in addition to optimistic repli-

cation systems.

7 Summary

Eyo implements the device transparency abstraction,

which unifies collections of objects on multiple devices

into a single logical collection. To do so, Eyo uses

a novel storage API that (1) splits application-defined

metadata from object content and (2) allows applications

to define placement rules. In return for using the new

API, Eyo provides applications with efficient synchro-

nization of metadata and content over peer-to-peer links.

Evaluation of several applications suggests that adopting

Eyo’s API requires only modest changes, that most con-

flicting updates can be handled automatically by the ap-

plications without user intervention, and that Eyo’s stor-

age and bandwidth costs are within the capabilities of

typical personal devices.
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Abstract
People use an increasing number of personal elec-

tronic devices like notebook computers, MP3 players and
smart phones in their daily lives. Making sure that data
on these devices is available where needed and backed up
regularly is a time-consuming and error-prone burden on
users. In this paper, we describe and evaluate PodBase, a
system that automates storage management on personal
devices. The system takes advantage of unused storage
and incidental connectivity to propagate the system state
and replicate files. PodBase ensures the durability of data
despite device loss or failure; at the same time, it aims to
make data available on devices where it is useful.

PodBase seeks to exploit available storage and pair-
wise device connections with little or no user attention.
Towards this goal, it relies on a declarative specification
of its replication goals and uses linear optimization to
compute a replication plan that considers the current dis-
tribution of files, availability of storage, and history of
device connections. Results from a user study in ten real
households show that, under a wide range of conditions,
PodBase transparently manages the durability and avail-
ability of data on personal devices.

1 Introduction

Modern households have multiple personal electronic
devices, such as digital cameras, MP3 players, gaming
devices and smart phones, in addition to desktop and
notebook computers. As users increasingly depend on
such devices, it is important to ensure the durability of
data in the event of loss or failure of a device, and the
availability of the latest data on all appropriate devices.

Ensuring that data is durable is an onerous task even
for a single home computer, and the situation is getting
worse as the number and diversity of devices increase.
Users must keep track of all devices that need to be
backed up and perform the appropriate actions on a reg-
ular basis. Anecdotal evidence suggests that many users

fail to ensure the durability of their data [14, 17]. Thus,
users face the risk of data loss, just as they are becoming
increasingly dependent on digital information.

Making sure that a given data object is available on all
the devices that need it is equally burdensome. A user
must regularly connect and synchronize devices to en-
sure, for instance, that changes to her address book are
propagated to all communication devices, and that addi-
tions to her music library are present on all devices capa-
ble of playing music.

In this paper we present PodBase, a system that man-
ages data on personal devices in an autonomous, decen-
tralized, device- and operating system-independent man-
ner. The system is transparent to the user, takes advan-
tage of unused storage space and exploits incidental pair-
wise connectivity that naturally occurs among the de-
vices, (e.g., via Wi-fi, Bluetooth or USB).

With PodBase, each device stores metadata that de-
scribes a household’s devices and data. During pair-
wise connections, devices reconcile their metadata and
exchange data. Over time, metadata and data propagate
among a household’s devices. PodBase progresses to-
ward a state where, subject to available storage and in
order of decreasing priority, (i) the contents of any failed
device are restored to a replacement device, (ii) each ob-
ject has a certain minimal number of replicas, and (iii)
each object is available on devices that can potentially
use it.

Results from our user study show that many house-
holds have sufficient storage and connectivity to permit
full replication. However, there is typically not one hub
device with plenty of storage to which all other devices
are regularly connectedwith sufficient bandwidth. To en-
sure full and timely replication, PodBase must therefore
be able to use free space on all devices, replicate data be-
tween any pair of devices, and possibly even move data
via sequential pairwise connections.
Given the vast space of possible configurations, de-

vice connection sequences and replication plans, design-

1
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ing an appropriate replication algorithm for PodBase is
not straightforward. Simple, greedy algorithms are stable
and robust but tend to get stuck in local minima. PodBase
instead uses linear optimization to compute an adaptive
replication plan from a declarative specification of the
goal state, and a local view of the current replication,
available storage and history of device connections. As
a result, PodBase is highly adaptive and provably stable.
Moreover, it finds sophisticated solutions in unexpected
scenarios. For instance, without being programmed for
this case, the system takes advantage of “sneakernets”,
i.e. mobile devices, to transport data between home and
office, thus avoiding slow broadband connections.
The rest of this paper is structured as follows. Sec-

tion 2 states the requirements. We discuss related work
in Section 3. Section 4 presents the design of PodBase
and Section 5 describes its replication algorithm. Sec-
tion 6 presents our evaluation and Section 7 concludes.

2 Requirements

PodBase is intended for a household with one or more
users and a set of shared personal devices. Based on the
results of a feasibility study [20], we can characterize this
environment as follows:

• Devices are periodically connected, such that any
pair of devices can eventually communicate via a
series of sequential pairwise connections.

• A device may fail or be lost at any time. However,
the failure or loss of many devices during a short
period of time is unlikely.

• Devices may be turned off when not in use; it cannot
be assumed that any one device is always online.

• The system must be able to handle a wide range
of usage patterns and device configurations, with-
out attention from an expert system administrator.

An important aspect of the target environment is that
most users don’t have the expertise, interest or time to
manage data and storage on their devices. They expect
the system to do something reasonable automatically.
Unlike a system designed for expert users (like the au-
thors and readers of this paper), PodBase must be able to
achieve its goals with little user expertise and attention.

2.1 Desired system behavior
In this section, we describe the desired system behavior
intuitively and by example. A more detailed description
of PodBase’s properties, design and implementation fol-
lows in subsequent sections.

PodBase aims to relieve users from having to worry
about the durability and availability of their data. Dura-
bility requires that the failure or loss of a device not result
in the loss of user data. Availability requires that each
device store the latest collection of data relevant to that
device. For example, each communication device should
store the latest version of the address book and, subject to
available storage space, a shared music collection should
be available on all devices capable of playing music.

As an example, Alice and Bob share a household. Al-
ice has a notebook, an MP3 player and an external USB
hard drive. Bob has a notebook and a desktop computer
at his office. Their home has a wireless network con-
nected to the Internet via a broadband connection. On
workdays Alice and Bob bring their notebooks to their
offices and perform their daily work, such as writing doc-
uments and using email.

At night both return home with their notebooks and
use them to surf the web, play games, or listen to mu-
sic. Although they have important data stored on their
notebooks, they rarely back up their data.

PodBase should automatically perform the following
tasks without any explicit action by Alice or Bob:

• Every night, new or modified files are replicated, in
cryptographically sealed form, between Alice and
Bob’s notebooks via the wireless network. (This
works even when they are on vacation, e.g., when
the pictures Alice uploads from her camera are
replicated on Bob’s notebook.)

• When Bob purchases a new CD and rips it to his
hard drive, a replica of the mp3 file is later moved
to Alice’s notebook. When Alice connects her MP3
player to charge, it also receives the new music.

• Whenever Alice or Bob edit their personal address
books, the changes are automatically propagated to
their other communication devices.

• Whenever Alice’s USB hard drive is connected to
her laptop, additional replicas of the files and repli-
cas on her laptop are made.

• Bob’s office desktop is connected to his home via
a broadband connection. Rather than transfer data
using the slow connection, the system uses Bob’s
notebook disk to rapidly replicate data between
home and work.

• When Bob’s notebook is running low on disk space
(after removing any replicas), the system asks Bob
if it should move not recently accessed movie files
to Alice’s USB drive, which has plenty of space.

2
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PodBase can recover from otherwise costly incidents.
For example, imagine Alice’s laptop is stolen. With Pod-
Base, she is able to restore the data on the lost device’s
hard drive to her replacement notebook. When she con-
nects over the wireless network to Bob’s notebook, some
files from her stolen notebook are restored on the new
device. When she later connects her new notebook to
the USB drive, the remaining files are restored. Thanks
to the replication between home and Bob’s office, they
could recover all data even after a total loss of the home
or office devices.

An important goal we set ourselves for PodBase is
transparency: the system’s background activity should
not affect users’ experience during normal operation. By
default, the system does not remove user files, automati-
cally propagate changes to user files or attempt to recon-
cile conflicting versions of concurrently modified files.
Instead, PodBase maintains all versions of a file along
with their modification history. Optional plug-ins can
define file type-, device-, or application-specific consis-
tency semantics.

PodBase’s transparency is consistent with the princi-
ple of least surprise: by default, the installation of the
system should not change a device’s user-visible behav-
ior during normal operation. Advanced behavior (e.g.,
automatic propagation of changes to the address book)
can be enabled explicitly by enabling appropriate plug-
ins.

3 Related work

PodBase is in the spirit of Weiser’s Ubiquitous Comput-
ing vision [39], as it transparently manages storage on
personal devices. To the best of our knowledge, no prior
system provides automatic durability and availability of
data on personal devices, without relying on central stor-
age, a fast Internet connection or explicit user attention.
With Personal Server [37], users carry a personal stor-

age device and use input/output devices found in the en-
vironment. In Omnistore [10], data is maintained on a
central store, while other devices interact to cache data or
relay data to the store. The Roma system [32] provides
a shared, centralized metadata service that can be used
to build higher-level services for synchronization, con-
sistency and availability. Apple TimeMachine [34] and
Windows Home Server [40] provide automatic backup
to a dedicated storage node. Unlike PodBase, the above
systems rely on a dedicated storage device, are vulnera-
ble to the failure or loss of that device, and cannot exploit
unused storage on other devices.

Availability of data on a set of devices can be provided
by a distributed file system that supports disconnected
operation, like Bayou [33], Ficus [19], and Coda [12].
Some systems additionally support partial replication to

meet the needs of mobile devices, e.g. PRACTI [1],
WinFS [42], Roam [24], Ensemblue [18], the Few File
system [22] and Segank [29]. Oasis [25] is an SQL-
based data management system for pervasive computing
applications. PodBase differs from these systems in that
it replicates data for availability and durability, is fully
automatic, takes advantage of pairwise connections and
unused storage efficiently, requires no centralized server,
and is device, vendor and OS-independent.

Cimbiosys [23] is a platform for content-based par-
tial replication. Like PodBase, Cimbiosys carefully man-
ages the amount of information that has to be exchanged
during pair-wise connections. The goal of Cimbiosys is
to facilitate replication by propagating updates between
peer devices. Applications or users are expected to spec-
ify filters for what each device should store. Unlike Pod-
Base, Cimbiosys does not specify a replication policy for
either availability or durability, and instead provides a
replication platform for higher level applications. For
replication to eventually reach the desired state, Cim-
biosys assumes that all devices that replicate a given col-
lection of objects form a tree, such that a parent stores
a superset of the objects stored by its children and chil-
dren regularly connect to their ancestors. PodBase, on
the other hand, achieves eventual consistency as long as
any two devices are repeatedly connected via a sequence
of pairwise connections.
Like PodBase, Perspective [27] supports automatic

partial replication among mobile devices, without rely-
ing on a centralized server. However, Perspective as-
sumes that a view is defined for each device, which spec-
ifies the set of files that should be present on the device.
Files are then replicated along sequences of pairwise
connections, where a file must be contained in the view
of each device that appears on the path. PodBase, on
the other hand, uses multi-step replication plans, where
files can be placed on intermediate devices solely for the
purpose of transporting them to another device. Pod-
Base computes a replication plan automatically and dy-
namically to maximize durability and availability given
the available free space on devices, without requiring the
specification of per-device views.

One could try to simulate the effect of PodBase’s repli-
cation policy in Perspective by specifying that each de-
vice’s view include all files. Perspective would then
replicate all files greedily as device connections occur,
until each device either replicates all files or its space
is exhausted. Unless most devices have enough space
to store most files, however, this would likely lead to
uneven replication levels and poor availability. Finally,
PodBase was evaluated using an actual user deployment.

Device Transparency [30] is a storage model for mo-
bile devices, where each device maintains global meta-
data. PodBase uses a similar capability as a building

3
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block to support transparent data replication for avail-
ability and durability. Moreover, PodBase can also sup-
port devices too small to store metadata for all objects in
the system.
Synchronization tools like Unison [36] synchronize

data among devices, and attempt to reconcile replicas
that have diverged due to concurrent edits. Windows
Live Sync [41] and Live Mesh [13] allow users to sync
folders on their machines. File synchronization tools like
these can be used as a plug-in for PodBase. Groove [9]
provides a collaborative workspace that propagates file
edits automatically among a group of users. PodBase is
also concerned with durability and focuses on intermit-
tently connected devices in the home.
Pastiche [4] and FriendStore [35] implement cooper-

ative backup on users’ machines in a peer-to-peer net-
work. PodBase replicates data for availability and dura-
bility, within a household, on intermittently connected
devices, and without relying on third-party storage.
Cloud storage services (e.g. [5,15,28,31]) provide au-

tomatic backup or synchronization for mobile devices at
a charge. PodBase is free, can replicate much faster be-
cause it is not limited by the upstream bandwidth of a
broadband connection, exploits unused storage on exist-
ing devices, replicates among devices that are away from
home (e.g. on vacation), and avoids the dependence on
a single provider for data protection. Nevertheless, Pod-
Base can take advantage of a Cloud storage service to
maintain additional off-site replicas for added safelty.

Keeton et al. [11] advocate the use of operations re-
search techniques in the design and implementation of
systems. PodBase is an example of a system that uses
linear optimization to adapt to its environment. Other
examples include Rhizoma [43] and Sophia [38], which
use logic programming to optimize cloud computing and
network testbed environments, respectively. Pandora [2]
uses linear optimization to optimize bulk data transfers
for cost and timeliness, using a combination of Internet
data transfers and the shipping of storage devices.
Since PodBase shares data among a set of intermit-

tently connected devices, it implements a form of delay
tolerant network (DTN) [6]. PodBase can be viewed as
a data management application on top of a specialized
DTN. The Unmanaged Internet Architecture [8] (UIA)
provides zero-configuration naming and routing for per-
sonal devices. PodBase addresses the complementary
problem of data management for personal devices.

A prior workshop paper [20] sketches a preliminary
design of PodBase and presents results from a trace-
based feasibility study. This paper contributes a revised
design, a full implementation, a new replication algo-
rithm, support for space-constrained devices, a plug-in
architecture to add file type and device specific behavior,
an extensive evaluation and a user study.

4 PodBase design

We start with an overview of PodBase, its user interface,
operation, plug-in architecture and security aspects.

4.1 Overview
PodBase is implemented as a user level program. It keeps
track of user data at the granularity of files. PodBase is
oblivious to file and device types. However, PodBase
supports a plug-in architecture, by which file type and
device specific data management policies can be added.

PodBase distinguishes between active devices and
storage devices. Storage devices include hard drives, me-
dia players and simple mobile phones. Active devices
run the PodBase software and provide a user interface.
An active device contains at least one storage device; ad-
ditional storage devices can be connected internally or
via Bluetooth or USB. The set of devices in a household
form a PodBase pool. In each pool, there must be at least
one active device, which runs the PodBase software.

Active devices communicate via the network and han-
dle the exchange of data. Whenever two active devices
communicate, a storage device is attached to an active
device, or two storage devices are attached to the same
active device, we say that these devices are connected.
Data propagates during these pair-wise connections.

There are three different types of data on each storage
device: (1) regular user data, (2) PodBase file replicas,
and (3) PodBase metadata. Although logically separate,
all of these data are stored in the device’s existing file
system. The PodBase replicas and metadata are crypto-
graphically sealed and stored under a single directory.

Metadata describes a device’s most recent view of the
pool’s state. Included in the metadata is the set of known
devices and their capacities, a logical clock for each stor-
age device and a list of all user files that PodBase man-
ages, along with their replication state. Capacity con-
strained devices may store only a subset of the system’s
metadata, as described in Section 4.3.2.
Some of the space on a device not occupied by user

data or metadata is used to replicate files for durabil-
ity and availability. User data has priority over replicas.
PodBase continuously monitors its storage use and seeks
to keep a proportion fmin of the device’s capacity free at
all times.
When a file is modified by an application or the user,

PodBase creates a new version of the file and replicates
both the old and new version independently. Plug-ins
(see Section 4.4) can be used to automatically apply
consistent file updates, reconcile conflicting versions or
purge obsolete versions in a file type-specific manner.
Users can manually retrieve copies of old versions or
even deleted files.
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4.2 User interaction
Next, we describe how users typically interact with Pod-
Base. Though PodBase is designed to minimize user in-
volvement, some interaction is required. Moreover, in-
terested, tech-savvy users have the option to change its
policies.
Device Registration. When a new device is connected
for the first time, PodBase asks the user if the device
should be added to the storage pool.
Device Deregistration. A storage device may perma-
nently disappear due to loss, permanent failure or re-
placement. If a device has not been connected for an
extended period (e.g., a month), PodBase prompts the
user to connect the device or else deregister it.
Data Recovery. When a storage device fails, PodBase
can recover the files it stored. The user informs PodBase
that she wishes to recover the data from a particular lost
device onto a replacement device or onto an existing de-
vice. The PodBase software on the recovery device then
obtains copies of the appropriate files during each con-
nection.
Externalization. By default, users and applications can-
not directly access replicas stored on a device. How-
ever, users with the appropriate credentials can external-
ize replicas, that is decrypt and move the cleartext of a
replica into the user file portion of the device. Alterna-
tively, externalization can be automated using a plug-in.
Warnings. PodBase warns the user when it is unable to
replicate files because there is insufficient storage space
or connectivity, with specific instructions to buy an addi-
tional disk or connect certain devices.

4.3 Device interaction
When two devices are connected, they reconcile their
view of the system and exchange data. First, the devices
reconcile their metadata. Then, PodBase determines if
any of the replicas on either device should be moved,
copied or deleted. Next, we detail these steps.

4.3.1 Metadata contents

The metadata consists of the following items (their pur-
pose will become clear in the subsequent discussion):
1. Vector Clock: A vector clock, consisting of the most
recent known logical clock values for each device in the
pool. A device’s logical clock is incremented upon each
metadata change. When a device is removed from the
system, its logical clock is set to a special tombstone
value. Also, the metadata includes the most recently ob-
served vector clock of each device in the storage pool.

2. Connection History: A list of the past 100 connec-
tions that have been observed between each pair of de-
vices, their time, duration, their average and maximum
throughput, as well as the network addresses used by the
devices.
3. Policies: The current policy settings. Policies can be
modified by sophisticated users. Installed plug-ins (Sec-
tion 4.4) can also modify the policies.
Items 1–3 are included in the metadata of all devices.
4. Set of user files: Keeps track of the user files stored on
each device in the pool. The content hash value, size and
last modification time are recorded for each unique file.
In addition, the content hashes of the last v (v = 10 by
default) versions of each file are included (modification
history).
5. Set of replicas: Keeps track of the replicas stored on
each device in the pool. For each replica, its size, content
hash value, and replica id are recorded.
6. Reverse map of unique files in the pool: Maps a con-
tent hash value to the set of files whose content matches
the value. This mapping is used to determine the current
replication level for each unique data file, considering
that different files may have identical content. (PodBase
de-duplicates files prior to replication.)
Each record in items 4–6 contains a version number,
which corresponds to the device’s logical clock at the
time when the record was last modified. A small device
may include only a subset of the records in items 4–6.

4.3.2 Metadata reconciliation

Metadata reconciliation is straightforward in the com-
mon case when two devices that carry the full metadata
are connected. They compare their vector clocks to de-
termine which has the more recent metadata for each de-
vice in the pool. For each such device, the more recent
metadata is then merged into the reconciled metadata.

PodBase also supports devices too small to hold the
full metadata. (In practice, devices smaller than about
100 MB are excluded. This is a mild limitation, since
smaller storage devices are already rare at the time of
this writing.) Such devices hold the full metadata for the
files and replicas they store, plus some amount of partial
metadata about other devices.

PodBase ensures progress and eventual consistency of
metadata, even if some devices are only ever sequentially
connected via small devices. To this end, PodBase seeks
to place on small devices metadata that are needed to up-
date other devices. For this purpose, it checks the last
known vector clocks of all devices. PodBase selects par-
tial metadata subject to the available space on the small

A second preimage resistant hash function is used
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device, while ensuring that (i) metadata needed by more
devices are more likely to be chosen, and (ii) a roughly
equal number of metadata items are included for each
device that the small device may encounter. This policy
seeks to maximize the spread of useful information and
ensure convergence of device metadata even in extreme
situations where different sets of devices are connected
only via a small device.

When reconciling any device L with a small device
S, PodBase checks if the metadata on S can be used to
update L. For a given device d whose partial metadata
appears in a small device, all metadata are included that
have changed within some range of versions i < j of d’s
metadata. This metadata can be used to update L if L’s
current metadata version for d is at least i and less than j.
If so, PodBase merges the metadata about d from S into
L’s metadata.

4.3.3 Replication

Once the metadata is reconciled, PodBase determines the
actions, if any, that should be performed on the data.
PodBase may copy a replica of a file, in which case the
file is stored on the target device with a new random
replica id (used to distinguish between replicas), while
the original replica remains on the source device. A de-
vice may also move a replica, in which case the replica is
stored on the target device with the same replica id and
then deleted from the source device. Finally, a device
may delete a replica, to make room for another replica
that it believes is more important. During replication,
data is transmitted in a cryptographically sealed form,
and a hash of each replica’s content is attached to ensure
data integrity. How PodBase determines the actions that
should be performed is described in Section 5.

4.3.4 Data recovery

After a device loss or failure, data can be recovered onto
a replacement device at users’ request. During each con-
nection to another device, the replacement device re-
stores as many files as possible, guided by the recon-
ciled metadata. The most recent available version of each
file is restored. Users can speed up the recovery pro-
cess by connecting appropriate devices under the guid-
ance of PodBase. The restoration is complete when the
replacement device has received, directly or indirectly,
from each device in the pool a metadata update no older
than the time at which the lost device went out of service,
and the reconciled metadata indicates that all files were
restored.

4.3.5 Replica deletion

PodBase removes replicas when the free space on a de-
vice falls below fmin, the minimal proportion of a de-
vice’s storage that PodBase keeps available at all times
(by default, fmin = .15). When PodBase frees space, it
considers the most replicated files first. Among files with
the same replication level, PodBase first deletes repli-
cas that have the lowest (randomly assigned) replica id
among the replicas of a file, then the second lowest id,
and so on. This policy ensures that different devices
delete replicas of the same file only when a shortage
of space dictates it, but never as a result of inconsistent
metadata in partioned sets of devices. (PodBase never
deletes the original or any externalized replica.)

4.4 Plug-ins
Plug-ins can be used to implement policies and mecha-
nisms that are specific to particular file types, collections
of files, device types or specific devices. Following are
some example plug-ins.
Consistency: PodBase replicates each version of a file
independently. A plug-in can be used to automatically
propagate changes or reconcile concurrent modifications
under a given consistency policy. There is a large body
of work on consistency, and powerful tools exist for rec-
onciling specific file types, e.g. [7,16,26]. Such tools can
be integrated as plug-ins in PodBase.
Unified Namespace: By default, PodBase does not au-

tomatically externalize replicas. A plug-in could export
files as part of a global uniform namespace on all de-
vices. This would allow users to browse the contents of
all devices, and access files available locally (subject to
user access control restrictions). In combination with a
plug-in that provides consistency, this would provide a
simple distributed file system.
Digital Rights Management (DRM): Media files stored
on a user’s devices may be protected by copyright.
Usually, copyright regulations allows users to maintain
copies on several of their personal devices. However,
if restrictions apply, then the policies appropriate for a
given media type can be implemented as a plug-in.
Archiving: A plug-in can automatically watch for large,
rarely accessed user files (e.g. movies). If such files oc-
cupy space on a device that is nearing capacity, the plug-
in suggests moving the collection to a different device
with sufficient space. If the user approves, PodBase au-
tomatically moves the files.
Content-specific policy: A content-specific plug-in can,
for example, replicate and automatically externalize mp3
files on devices capable of playing music. Moreover, the
plug-in can select a subset of the music collection for
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placement on small devices. For instance, when replicat-
ing music on a device with limited space, a plug-in may
select the most recently added music, the most frequently
played music, and a random sample of other music.

As a proof of concept, we developed a plug-in that au-
tomatically externalizes replicas of mp3 files and imports
them into iTunes. The plugin required around 100 lines
of Java code, and two simple OS specific AppleScript
scripts to interact with iTunes.

4.5 Security
PodBase uses authenticated and secure channels for all
communication among devices within a pool. When a
device is introduced to a PodBase pool, it receives ap-
propriate key material to enable it to participate. Users
have to present a password when they wish to interact
with PodBase. Metadata and replicas are stored in cryp-
tographically sealed form when stored on devices, in or-
der to minimize the risk of exposing confidential data
when a device is stolen. PodBase respects the file ac-
cess permissions of user files – encrypted replicas can be
externalized only by a user with the appropriate permis-
sions on the file. By default, PodBase manages all of a
device’s contents; it can be configured to manage only
specific subtrees in the namespace of a device.

The strength of PodBase’s access control within a
household is designed to be at least as strong as the ac-
cess control between different users on the same com-
puter. If stronger security isolation is required between
devices or users, then they should not join the same pool.
For instance, if a user’s office computer contains confi-
dential material that must not leave company premises,
then it must not join the user’s home PodBase pool.

5 Replication

We considered a number of replication algorithms.
Greedy algorithms place under-replicated files on the
first connected device that has space. These algorithms
are simple, stable, and replicate files at the first opportu-
nity, which is good. Unfortunately, the initial placement
of a file is often sub-optimal and cannot be changed. (By
definition, greedy algorithms never reconsider an earlier
choice and cannot move replicas if a better placement
turns out to be possible in the future.) A more sophis-
ticated class of algorithm seeks to equalize the storage
utilization of connected devices, thereby moving repli-
cas toward devices that have space. Unfortunately, these
algorithms cannot take advantage of a “shuttle device”
to transport data between clusters of devices, e.g., home
and office.

Extending the algorithms to cover these and other im-
portant cases while avoiding degenerate performance in

unexpected cases seemed daunting. Instead, we decided
to pose optimal replication declaratively as a linear opti-
mization problem. This approach minimizes design time
assumptions about system configurations and usage pat-
terns, computes optimal solutions to unexpected cases at
runtime, and has provable stability properties.
Whenever two devices connect, PodBase uses an LP

solver to compute a multi-step replication plan that
moves the system toward the goal state. The plan consid-
ers the current system state and likely future device con-
nections, and specifies which replicas should be deleted,
copied or moved during each connection accordingly.
In general, only the first step of the replication plan is

relevant, as it concerns the currently connected devices.
The subsequent steps are speculative, since they depend
on which future device connections actually occur. If
the actual device connected next differs from the current
plan, a new plan is computed. The following subsec-
tions describe the approach in more detail. Additional
detail about the LP problem formulation can be found in
a technical report [21].

5.1 Replication objective
First, we wish to guarantee that files are evenly repli-
cated on as many devices as the available space allows.
As a secondary goal, we want to maximize availability
by placing copies of each file on devices where it is po-
tentially useful. In the rest of this section we define these
two properties more formally.
Let D be the set of participating devices and let F

be the set of files that are managed by the system. For
each device d ∈ D, let spaced denote its capacity, i.e., the
amount of space available at d for storage of both user
and replica files. For a set of files S ⊆ F , size(S) denotes
the amount of storage required to keep a copy of S. For
each device d, the set of user files stored in that device is
denoted by user-files(d). In particular, for each device d,
size(user-files(d)) ≤ spaced .

The goal of a storage management system is to deter-
mine and maintain, for each device d, a suitable selection
of files, store-files(d) ⊆ F , to be stored on it. Files are
replicated when they are selected for storage at several
different devices. Moreover, at any time, such a selec-
tion must satisfy

• user-files(d) ⊆ store-files(d), user files are never
moved or deleted from devices;

• size(store-files(d)) ≤ spaced , the files stored on a
device may not exceed its capacity.

Given a particular store-files selection, we say that its
replication factor is the number of copies k of the least
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replicated file in the system. More formally,

k = min
f∈F

|{d ∈ D : f ∈ store-files(d)}| .

Moreover, we say that the replication factor is optimal if
there is no other file selection store-files

′ with a higher
replication factor.

In order to model availability, plug-ins have the op-
tion to provide an availability selection that assigns to
each device d ∈ D a set of files like-files(d) that it should
preferably store. The availability score, or av-score, of
a file selection store-files is then defined as the num-
ber of file copies that match the preference expressed by
like-files, i.e.,

av-score = ∑
d∈D

|like-files(d)∩ store-files(d)| .

In a desired goal state, PodBase places at each device
d ∈ D, a set store-files(d) of replicas such that the fol-
lowing properties are satisfied:
Durability. The replication factor is optimal, i.e., files
are maximally replicated on the existing devices.
Availability. Among the file selections with optimal
replication factor, store-files has a maximal av-score; i.e.,
files are replicated in devices where they are useful.

5.2 Problem formulation
The system state, the effects of the actions, as well as
the objectives are modeled as a set of linear arithmetic
constraints. Care must be taken to ensure the problem
formulation scales. To make the optimization problem
tractable, we group files into equivalence classes called
categories. All files that are stored on the same set of
devices are in the same category. The system state is
then encoded by specifying, for each category, the total
amount of space occupied by all files in that category.
This significantly reduces the number of variables in the
problem formulation, which no longer depends on the
number of files but on the number of devices in a pool,
without any loss of accuracy.

To model the connectivity among devices, a graph is
constructed with a link between each pair of devices that
can potentially be connected. The link weight specifies
the estimated cost of data transfer among the devices.
This cost is calculated based on the maximum connec-
tion speed and the probability that the devices will be
connected on a given day, based on the history of past
connections. In this calculation, more recent connections
are weighted more heavily; individual measurements are
filtered appropriately to reduce noise [21].
Finally, we model the actions (copy, move, delete)

PodBase can perform, and their effects on the system

state. In general, a sequence of connections may be re-
quired in order to affect a certain state change (e.g., copy
some files from A to B, and then from B to C). The for-
mulation then encodes how the possible sequences of ac-
tions modify the number of bytes in each category.

Encoding the problem this way enables us to symbol-
ically describe all the possible plans that PodBase could
execute in order to manipulate the distribution of files.
Given this formalization, the goal is to find a plan that
optimizes the desired goals.

The optimization involves multiple stages, narrowing
the set of candidate replication plans in each. First,
the maximal replication factor k is computed based on
the available space in the system. Then, we optimize
for durability by computing replication plans that can
achieve a k-replication for all files. Next, we optimize for
cost by narrowing the set of plans to those that minimize
the sum of the link weights. In the next stage, we select
among the remaining plans those that maximize avail-
ability. In the final stage, we select a plan that minimizes
the number of necessary replication steps. PodBase then
executes the first step of the resulting replication plan,
by copying, moving or deleting replicas on the currently
connected devices. For efficiency, we do not consider
plans with more than three replication steps. (Few inter-
esting plans with more steps occur in practice.)

The optimization favors cost over availability, because
high cost plans are highly undesirable: they may rely on
links with low bandwidth or rare connectivity. Notably,
this choice still permits good availability, because the
cost optimization generally leaves many candidate plans
from which the availability optimization can select. The
reason is that all plans involving the same set of connec-
tions have the same cost, and there is a combinatorially
large number of such plans, corresponding to the differ-
ent placements of replicas that can occur as a result of
these connections.

The cost optimization does, however, eliminate plans
that create more than k replicas, even if availability calls
for more. To enable additional replication for availabil-
ity, PodBase changes the order of optimizations once the
durability goal has been achieved. In this case, availabil-
ity is optimized before cost.
In a final step, the categories are mapped back onto in-

dividual files. In cases where the solution would require
a file to be split by an action, file integrity can be fed back
into the optimizer as an additional constraint. The repli-
cation process is guaranteed to converge in a bounded
number of steps after the set of primary data files stabi-
lizes.

Additional parameters could be added to the optimiza-
tion by the system designer. For example, if device reli-
ability data is available, this information can be consid-
ered by modeling a replica stored on a less reliable device
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as contributing less to the durability of the associated file
than a replica stored on a more reliable device. In gen-
eral, such extensions are straightforward to implement.
However, they do require some expertise with linear opti-
mization to make sure the additional inputs or constraints
do not cause an blow-up in the complexity and runtime
of the optimization.

6 Experimental evaluation

Next, we present experimental results obtained with a
prototype implementation of PodBase. We sketch the
implementation, report on its overheads and verify that
the system behaves as expected. Then we present mea-
sured results from a user study. Additional results, in-
cluding a comparison with a simple greedy replication
algorithm, are presented in the technical report [21].

6.1 Implementation
PodBase is implemented as a user-level program writ-
ten in Java. Most of the code (48,512 lines) is platform-
independent, with the exception of a small amount (about
1000 lines) of custom code for each supported platform
(Windows 2000 and higher, Mac OS X). The platform-
specific code deals with mounting disks and naming files.
The implementation currently requires that storage de-
vices export a file system interface, and that active de-
vices are able to run Java 1.5 bytecode.

Running PodBase on platforms like cell phones or
game consoles is feasible, but requires additional en-
gineering effort. We feel that our prototype strikes a
reasonable trade-off between engineering effort and re-
search goals, because it can use the majority of devices
in our study.

In our deployment, active devices contact a server
(2.6Ghz AMD Opteron) running CPLEX 11.2.1 (a com-
mercial LP solver) to compute replication plans. Using
the server simplifies the installation of PodBase and is
not fundamental to the system. With an additional in-
stallation step, PodBase can be configured with a local
solver, like the free LP solver package clp [3].

PodBase rate-limits network and disk I/O, marks I/O
as non-cacheable and runs single-threaded to avoid com-
peting with other applications for resources. To the ex-
tent possible, we tried to ensure that users did not notice
that PodBase was running in the background.

6.2 Computation and storage overhead
PodBase periodically crawls file systems to monitor the
state of files. Each time a new file is discovered or an
existing file is modified, the file is hashed and added to
the pool’s metadata. We measured the amount of time

the first crawl took when a new drive was added to the
system. The measurements were taken on a 2.4 GHz
Apple MacBook Pro, running OS X, one author’s pri-
mary computing device. The internal notebook disk con-
tained 165,105 files with a total size of 87.4GB. The ini-
tial crawl took approximately 5 hours to complete. Sub-
sequent crawls, which only re-compute hashes for new
or modified files, took on the order of 10 minutes. (Both
OS X andWindows support APIs that notify applications
of any folder or file modifications. Using these APIs can
dramatically reduce the need for crawling, but our imple-
mentation did not use them.)

The size of the system’s metadata grows proportion-
ally with the number of files and replicas managed by a
PodBase pool. In our user study, the uncompressed meta-
data size ranged from 270MB to 2.5GB. This amounts to
only a small fraction of the capacity of most modern stor-
age devices. For the devices in our user study, storing the
full metadata was possible in all cases. However, smaller
storage devices (e.g. older USB sticks or cameras) are
supported via the partial metadata mechanism.
Using the LP solver to compute a replication plan

takes between one and thirty seconds for most house-
holds, and 180 seconds for the largest household in the
user study. When two devices connect, replication starts
immediately on a speculative basis, while the optimiza-
tion runs in the background. For instance, PodBase starts
to replicate greedily those files that appear the most un-
derreplicated or that should reside on one of the devices
for availability, according to the reconciled metadata.
This replication can later be (partly) undone, in the case
that some of it is inconsistent with the computed plan.

6.3 Data restoration
Next, we test PodBase’s ability to successfully restore
the contents of a lost device. We simulated the loss of
a notebook after the replication phase was completed.
PodBase successfully restored to a USB hard drive all
211206 files (75GB) that were present at the time of the
last crawl of the “lost” notebook. The restoration took 5
hours 27 minutes to complete, which includes decrypting
the replicas.

6.4 Partial metadata reconciliation
Next, we experiment with small devices that carry partial
metadata. In our example, there are three devices: two
full metadata devices, which never directly connect to
each other; and a small device, which is connected to
each of the other devices once per day. The small device
is able to carry 100MB of metadata about other devices,
and unable to carry actual data. The total metadata size
is 2GB.
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Initially, the large devices were completely unaware
of each other. No new data was added after the experi-
ment began. It took ten days or 21 connections for the
metadata on the two large devices to converge, which is
expected based on the relative size of the metadata and
the small device. This example shows that metadata con-
verges even in extremely constrained cases. In our expe-
rience, most devices are larger and connectivity tends to
be much richer in practice, leading to much faster con-
vergence.

6.5 User study
To study how PodBase performs in a real deployment,
we asked ten members of our institute to deploy the sys-
tem in their households and collected trace data over a
period of approximately one month. We asked the users
to, as much as possible, ignore the presence of PodBase
and use their devices the way they would normally use
them. Three users were given an external one terabyte
USB disk, because they had insufficient free space to al-
low their files to be replicated.

For practical reasons, the number of households and
users in our study is limited and covers a relatively short
period of time. Moreover, at least one member of each
household was a computer science researcher. Therefore,
there is a likely bias towards users who have an interest
in technology. As a result, our results may not be repre-
sentative of a larger and more diverse user community, or
a long-term deployment. Nevertheless, we feel that the
study was tremendously valuable in identifying the diffi-
cult issues, in building our confidence that the system is
feasible and addresses a real need, and in understanding
the system’s performance in practice.

The system was deployed and actively used over the
course of two years. The data collected for the re-
sults presented in this paper were collected between
July and September 2009. During this period, we col-
lected anonymized data about file creation, modification
and deletion on each device, when and where replicas
were created, and which devices were connected at what
times. We use these logs to generate the graphs used in
the rest of this section.

First, we provide a brief overview of the households
used in our deployment and the characteristics of the de-
vices used in each.

Figure 1 shows the number of storage and active de-
vices in each household. The number of active devices
ranged from one to seven. Some households had no ad-
ditional storage devices, while others had up to three.
Households 1, 4 and 5 received an additional one ter-
abyte USB disk, which is reflected in the data. House-
hold 4 has a virtual device that is backed by 10GB .Mac
cloud storage. PodBase uses this device like any other,
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Figure 1: Number and type of devices, by household.
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Figure 2: Storage capacity and free space on devices be-
fore PodBase begins replication. Additional space corre-
sponds to the USB disks given to households 1, 4, 5.

considering its capacity and connection bandwidth.
Figure 2 depicts, for each household, the total size of

the household’s storage pool, divided into used storage
and available storage at the beginning of the deployment
and before PodBase was activated. The additional stor-
age given to households 1, 4 and 5 is shown as “addi-
tional space”. After this addition, seven of the house-
holds had at least half of their total storage capacity avail-
able. This does not imply that the remaining three house-
holds cannot replicate their data; whether they can de-
pends on how much duplication there is among their ex-
isting user files.

6.5.1 Replication results

In this section, we evaluate the performance of PodBase
by looking at the replication state at the beginning and
the end of the (one month long) trace collection.
Let us look at the replication state of the system before

the households ran PodBase. As shown in Figure 3 (left
bars), many households had files that existed on only one
device, leaving these files vulnerable to data loss if the
device were to fail. Also, many households had a signif-
icant number of files already replicated, either as copies
of the same file or different files with identical content.

The right bar in Figure 3 shows the replication state
at the end of the trace collection. Five households (1–

The result for household 7 was obtained by re-playing the trace,
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Figure 3: The initial (left bar) and final (right bar) replication status of each household.

3, 8–9) had most (more than 97%) of their files repli-
cated. With the exception of household 9, which had not
quite finished replicating its original files, the remaining
households’ unreplicated files were recently created or
modified and had not yet been replicated at the end of the
trace. Households 4, 5, and 7 were not able to replicate as
much, as these households had only intermittent connec-
tivity between a pair of their devices. These households
each had two well-connected devices and one device that
was either mostly offline or connected via a slow DSL
connection. In these cases, all of the data was replicated
between the well connected devices, but the data on the
poorly connected device was not replicated fully.

Households 6 and 10 did not have enough space to
replicate the remaining 19% and 10% of their files, re-
spectively. In order to improve upon these results, the
users would have had to purchase inexpensive additional
storage. As a sanity check we had users from households
4 and 10 bring in their notebooks in order to confirm the
diagnosis described above. Simply having household 4
bring its notebook into the office, where there was good
connectivity between devices, allowed its data to be fully
replicated. For household 10, we attached a one terabyte
external drive to an active device that had data to be repli-
cated. After doing this, less than 0.5% percent of files
remained to be replicated.
Several households (1–5, 7 and 9) were able to achieve

a replication factor greater than two for some of their
files, enabling these files to survive multiple device fail-
ures. In Household 2, 80% of the user files were repli-
cated 4 times or more.

6.5.2 Availability results

A secondary goal of PodBase is to place replicas on de-
vices where they are likely to be useful. Specifically, our
mp3 plug-in causes music files to be preferentially placed
on devices that are capable of playing music.

In analyzing the trace, we found that one household
had no mp3s and three households had already replicated

because a bug was discovered during the user study that had influenced
the final state of this household

all of their music files on the relevant devices. Thus, Pod-
Base did not have an opportunity to improve availability.
However, it did provide a significant gain in availabil-
ity for several other households. Household 3 had its
entire music library of 415 music files made available
on all three of its devices. Households 7 and 8 had 851
and 1318music files made available by PodBase, respec-
tively. Household 9 had 1500 music files from a music
library, which was otherwise loosely synchronized be-
tween its devices, made available on two additional de-
vices. An additional two households originally had a sig-
nificant number of mp3 files on their laptops but not on
their desktops. PodBase replicated these files onto the
desktops, and the mp3 plug-in described in section 4.4
had externalized the music files. This happened during
an earlier run of PodBase, therefore it did not show up in
our trace. The users gained access to 426 songs and 2611
songs, respectively, on their desktop computers. (The
songs were previously stored only on their notebooks.)
As described in Section 5.2, the replication first op-

timizes for durability, then cost (time to complete), and
finally availability. A concern might be that this choice
limits the availability the system can provide. We looked
at the impact of this optimization process on household
9, for which the final replication plan had not achieved
full replication for availability. In this household the fi-
nal replication plan yields 95% of the optimal availabil-
ity. The remaining 5% were not achieved because the
replication had not yet finished at the end of the trace,
and not because of a limitation in the algorithm.
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6.5.3 Replication latency and throughput

We next look at the maximal replication throughput in
each of the households. Since all households had many
files to replicate at the beginning of the trace collection,
the rate at which data was replicated early in the trace
is a lower bound for the total replication throughput of
a pool. This value in turn provides a lower bound for
the rate of new or modified data that a household could
generate, such that PodBase would still be able to keep
up with replicating.

Figure 4 shows that the peak throughput ranges from
1.4 to 110 GB per day. This result shows that PodBase
can keep up with a high to very high rate of data genera-
tion, using only existing pair-wise connectivity.

We now examine the replication latency, i.e., the
elapsed time until a new or modified file becomes repli-
cated. If a file is not yet replicated at the end of the trace,
we include it in the CDF as having an infinite latency.
We first examine those households with relatively short
latencies. Figure 5(a) shows a CDF of how long it took
to replicate a file. For households 2 and 4, over 50%
of files were replicated within approximately one day.
Households 1 and 7 took longer because there were ex-
tended periods with no connectivity. Household 9 repli-
cated gradually over the course of the trace, as connectiv-
ity allowed. Second, we show the latency of the house-
holds that took significantly longer to replicate their files
in Figure 5(b). In these households, device connectivity
is the dominant factor in the replication latency. When
there is connectivity, there are sharps jumps as files get
replicated, followed by periods of disconnection, where
no replication happens.

We note that our measured replication latencies are
conservative, because in most households, PodBase was
busy replicating the user files found initially on the de-
vices during a large part of the trace collection. In steady
state, PodBase would have to replicate only newly cre-
ated or modified files, reducing the latencies consider-
ably. Nevertheless, PodBase was able to replicate data in
a timely fashion, subject to available storage and device
connectivity.

6.5.4 Rate of new or modified data

Next, we look at the rate of new or modified data that is
being generated. Each of the households in the user study
had on average 528,187 files taking up 332GB. After the
initial crawl, an average of 21GB per day was generated
by the addition of new and modifications of existing files.
These numbers are skewed by a household that stored the
disk image of an active virtual machine in the file system;
without this household, the value was 381MB per day.
(Of course, PodBase could be optimized to handle this
case more efficiently.)

Our normal households generate new or modified data
at a minimal/average/maximal rate of 4.5/36.1/316 Kb/s,
while the “heavy” household generates 2.3 Mb/s. Let
us consider how well a backup system based on cloud
storage alone would perform in our households. At an
assumed broadband upload bandwidth of 1 Mb/s, trans-
ferring the initial data to the cloud while keeping up with
updates would require between 3.7 and 121.6 (median
31.82) days for the normal households. For the heavy
household, cloud storage would be infeasible, because
the rate of new data exceeds the network bandwidth.

These results show that for timely replication of data,
PodBase’s use of peer connections and local storage de-
vices is important. For the normal households, a broad-
band connection would suffice to replicate new data, but
the heavy household would require a faster Internet con-
nection. Even for the normal households, relying solely
on a broadband connection to the cloud would require
a long period of full network utilization to replicate the
initial data, and increase the replication latency in steady
state (and therefore the window of vulnerability for new
and modified files that have not yet been replicated).

6.6 Discussion
PodBase has been developed by the first author over a
period of two years, with three user deployments at dif-
ferent stages. Significant engineering effort was required
to make sure our users (most of whom where not affili-
ated with the project) and their families felt comfortable
running it on their personal devices. Users demanded
not to have to notice the presence of the system in their
daily activity or be surprised by it actions, yet expected
the system to do “the right thing” without requiring their
attention. Moreover, different households used their de-
vices in very different ways, some of which we could not
have imagined (see the discussion of results for different
households in Section 6.5). This forced us to emphasize
non-intrusiveness (not interfering with user’s activities),
autonomy (making reasonable choices without user’s in-
put) and adaptivity to unexpected scenarios far more than
efficiency. Apart from the quantitative results reported in
this section, the most important indicator of the project’s
success may be the fact that ten households (which in-
cluded members who had little interest and patience for
our project) agreed to use the system for the duration of
the study and beyond.

7 Conclusion

PodBase transparently manages the data stored on per-
sonal devices for durability and availability. The system
takes advantage of existing free storage space and inci-
dental connectivity among devices. Thus, it reduces the
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Figure 5: Replication latency for all households

need for dedicated backup storage or an external storage
provider and avoids the bottleneck of a home broadband
uplink. PodBase relies on optimization techniques to
achieve highly adaptive replication. The system is fully
decentralized and does not depend on the health of any
one device. Experimental results from a user deployment
in ten real households indicate that the system is effec-
tive in replicating data without any user attention, and in
many cases without requiring additional storage.
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