
In-situ MapReduce for Log Processing

Dionysios Logothetis, Chris Trezzo* , Kevin C. Webb, and Kenneth Yocum
UCSD Department of Computer Science,* Salesforce.com, Inc.

Abstract

Log analytics are a bedrock component of running
many of today’s Internet sites. Application and click logs
form the basis for tracking and analyzing customer be-
haviors and preferences, and they form the basic inputs
to ad-targeting algorithms. Logs are also critical for per-
formance and security monitoring, debugging, and op-
timizing the large compute infrastructures that make up
the compute “cloud”, thousands of machines spanning
multiple data centers. With current log generation rates
on the order of 1–10 MB/s per machine, a single data
center can create tens of TBs of log data a day.

While bulk data processing has proven to be an es-
sential tool for log processing, current practice transfers
all logs to a centralized compute cluster. This not only
consumes large amounts of network and disk bandwidth,
but also delays the completion of time-sensitive analyt-
ics. We present an in-situ MapReduce architecture that
mines data “on location”, bypassing the cost and wait
time of this store-first-query-later approach. Unlike cur-
rent approaches, our architecture explicitly supports re-
duced data fidelity, allowing users to annotate queries
with latency and fidelity requirements. This approach
fills an important gap in current bulk processing systems,
allowing users to trade potential decreases in data fidelity
for improved response times or reduced load on end sys-
tems. We report on the design and implementation of
our in-situ MapReduce architecture, and illustrate how it
improves our ability to accommodate increasing log gen-
eration rates.

1 Introduction

Scalable log processing is a crucial facility for running
large-scale Internet sites and services. Internet firms
process click logs to provide high-fidelity ad targeting,
system and network logs to determine system health,
and application logs to ascertain delivered service qual-

ity. For instance, E-commerce and credit card compa-
nies analyze point-of-sales transactions for fraud detec-
tion, while infrastructure providers use log data to detect
hardware misconfigurations and load-balance across data
centers [6, 30].

This semi-structured log data is produced across one
or more data centers that contain thousands of machines.
It is not uncommon for such machines to produce data at
rates of 1–10 MB/s [4]. Even at the low end (1 MB/s), a
modest 1000-node cluster could generate 86 TB of raw
logs in a single day. To handle these large data sets, many
sites use data parallel processing systems like MapRe-
duce [12] or Dryad [20]. Such frameworks allow busi-
nesses to capitalize on cheap hardware, harnessing thou-
sands of commodity machines to process enormous data
sets.

The dominant approach is to move the data to a single
cluster dedicated to running such a bulk processing sys-
tem. In this “store-first-query-later” approach [13] users
load data into a distributed file system and then execute
queries.1 For example, companies like Facebook and
Rackspace analyze tens of terabytes of log data a day by
pulling the data from hundreds to thousands of machines,
loading it into HDFS (the Hadoop Distributed File Sys-
tem), and then running a variety of MapReduce jobs on a
large Hadoop cluster [17]. Many of the processing jobs
are time sensitive, with sites needing to process logs in
24 hours or less, enabling accurate user activity models
for re-targeting advertisements, fast social network site
updates, or up-to-date mail spam and usage statistics.

However, this centralized approach to log processing
has two drawbacks. First, it fundamentally limits its
scale and timeliness. For example, to sink 86 TB of log
data in less than an hour (48 minutes) would require 300
Gb/s of dedicated network and disk bandwidth. This lim-
its processing on the MapReduce cluster as the transfer
occupies disk arms, and places a large burden on the data

1Here we consider queries as single or related MapReduce jobs.

center network, even if well provisioned. Second, the
approach must sacrifice availability or blindly return in-
complete results in the presence of heavy server load or
failures. Current bulk processing systems provide strict
consistency, failing if not all data is processed. This
implies that either users delay processing until logs are
completely delivered or that their analytics run on incom-
plete data.

In fact, though, one does not have to make this either-
or choice. It is often possible to accurately summarize or
extract useful information from a subset of log data, as
long as we have a systematic method for characterizing
data fidelity. For example, if a user can ascertain whether
a particular subset of log data is a uniform sampling, one
can capture the relative frequency of events (e.g., failures
or user clicks) across server logs.

To meet these goals we present an “in-situ” MapRe-
duce (iMR) architecture for moving analytics on to the
log servers themselves. By transforming the data in
place, we can reduce the volume of data crossing the
network and the time to transform and load the data into
stable distributed storage. However, this processing en-
vironment differs significantly from a dedicated Hadoop
cluster. Nodes are not assumed to share a distributed file
system, implying that data is not replicated nor avail-
able at other nodes. And the servers are not dedicated
to log processing; they must also support client-facing
requests (web front ends, application servers, databases,
etc.). Thus unlike traditional MapReduce architectures,
our in-situ approach accepts that data may naturally be
unavailable either because of failures or because there
are insufficient resources to meet latency requirements.

This work makes the following contributions:

• Continuous MapReduce model: Unlike batch-
oriented workloads, log analytics take as input essen-
tially infinite input streams. iMR supports an extended
MapReduce programming model that allows users to de-
fine continuous MapReduce jobs with sliding/tumbling
windows [7]. This allows incremental updates, re-using
prior computation when data arrives/departs. Because
iMR directly supports stream processing, it can run stan-
dard MR jobs continuously without modification.

• Lossy MapReduce processing:iMR supports lossy
MapReduce processing to increase result availability
when sourcing logs from thousands of servers. To in-
terpret partial results, we presentC2, a metric of result
quality that takes into account the spatial and temporal
nature of log processing. In iMR users may set a target
C2 for acceptable result fidelity, allowing the system to
process a subset of the data to decrease latency, avoid ex-
cessive load on the log servers, or accommodate node or
network failures.

• Architectural lessons: We explore the iMR architec-

ture with a prototype system based on a best-effort dis-
tributed stream processor, Mortar [22]. We develop ef-
ficient strategies for internally grouping key-value pairs
in the network using sub-windows orpanes, and explore
the impact of failures on result fidelity and latency. We
also develop load cancellation and shedding policies that
allow iMR to maximize result quality when there are in-
sufficient server resources to provide perfect results.

Section 2 gives an overview of the system design, dis-
cusses related work, and describes how iMR performs
continuous MapReduce processing using windows. Sec-
tion 3 introduces our notion of result qualityC2, use-
ful ways to expressC2, and how the system efficiently
maintains that metric. Section 4 discusses our modifica-
tions to Mortar to support iMR. We evaluate the system
in Section 5, looking at system scalability, load shedding,
and data fidelity control. In particular we explore how
C2 affects results when extracting simple count statis-
tics, performing click-stream analysis, and building an
HDFS anomaly detector.

2 Design overview

iMR is designed to complement, not replace traditional
cluster-based architectures. It is meant for jobs that fil-
ter or transform log data either for immediate use or be-
fore loading it into a distributed storage system (e.g.,
HDFS) for follow-on analysis. Moreover, today’s batch
processing queries exhibit characteristics that make them
amenable to continuous, in-network processing. For in-
stance, many analytics are highly selective. A 3-month
trace from a Microsoft large-scale data processing sys-
tem showed that filters were often highly selective (17 -
26%) [16], and the first step for many Facebook log ana-
lytics is to reduce the log data by 80% [4]. Additionally,
many of these queries are update-driven, integrate the
most recent data arrivals, and recur on an hourly, daily,
or weekly basis.

Below we summarize how in-situ MapReduce ensures
that log processing is:

Scalable: The target operating environment consists
of thousands of servers in one or more data centers, each
producing KBs to MBs of log data per second. In iMR,
MapReduce jobs run continuously on the servers them-
selves (shown on the right in Figure 1). This provides
horizontal scaling by simply running in-place, i.e, the
processing node count is proportional to the number of
data sources. This design also lowers the cost and latency
of loading data into a storage cluster by filtering data on
site and using in-network aggregation, if the user’s re-
duce implements an aggregate function [14].

Responsive: Today the latency of log analytics dic-
tates various aspects of a site’s performance, such as the

Figure 1: The in-situ MapReduce architecture avoids the
cost and latency of the store-first-query-later design by
moving processing onto the data sources.

speed of social network updates or accuracy of ad target-
ing. The in-situ MapReduce (iMR) architecture builds
on previous work in stream processing [5, 7, 9] to sup-
port low-latency continuous log processing. Like stream
processors, iMR MapReduce jobs can process over slid-
ing windows, updating and delivering results as new data
arrives.

Available: iMR’s lossy data model allows the system
to return results that may be incomplete. This allows
the system to improve result availability in the event of
failures or processing and network delays. Additionally,
iMR may pro-actively reduce processing fidelity through
load shedding, reducing the impact on existing server
tasks. iMR attaches a metric of result quality to each
output, allowing users to judge the relative accuracy of
processing. Users may also explicitly trade fidelity for
improved result latency by specifying latency and fidelity
bounds on their queries.

Efficient: A log processing architecture should make
parsimonious use of computational and network re-
sources. iMR explores the use of sub-windows or
panesfor efficient continuous processing. Instead of re-
computing each window from scratch, iMR allows incre-
mental processing, merging recent data with previously
computed panes to create the next result. And adaptive
load-shedding policies ensure that nodes use compute
cycles for results that meet latency requirements.

Compatible: iMR supports the traditional MapRe-
duce API, making it trivial to “port” existing MapReduce
jobs to run in-situ. It provides a single extension,un-
combine, to allow users to further optimize incremental
processing in some contexts (Section 2.3.2).

2.1 In-situ MapReduce jobs

A MapReduce job in iMR is nearly identical to that in
traditional MapReduce architectures [12]. Programmers
specify two data processing functions: map and reduce.
The map function outputs key-value pairs,{k, v}, for

each input record, and the reduce processes each group
of values,v[], that share the same keyk. iMR is designed
for queries that are either highly selective or employ re-
duce functions that are distributive or algebraic aggre-
gates [14]. Thus we expect that users will also specify the
MapReducecombiner, allowing the underlying system
to merge values of a single key to reduce data movement
and distribute processing overhead. The use of a com-
biner allows iMR to process windows incrementally and
further reduce data volumes through in-network aggrega-
tion. The only non-standard (but optional) function iMR
MapReduce jobs may implement isuncombine, which
we describe in Section 2.3.2.

However, the primary way in which iMR jobs differ is
that they emit a stream of results computed over contin-
uous input, e.g., server log files. Like data stream pro-
cessors [7], iMR bounds computation over these (per-
haps infinite) data streams by processing over awindow
of data. The window’srangeR defines the amount of
data processed in each result, while the window’sslide
S defines its update frequency. For example, a user
could count error events over the last 24 hours of log
records (R = 24 hours), and update the count every
hour (S = 1 hour). This sliding window, one whose
slideS is less than its rangeR, may be in terms of wall-
clock time or logical index, such as record count, bytes,
or any user-defined sequence number. Users specifyR
andS with simple annotations to the reduce function.

While sufficient for real-time log processing, a
MapReduce job in iMR may reference historical log data
as well. Doing so requires a job-level annotation that
specifies the point in the local log tobeginB and the to-
tal data to consume, theextentE. If unspecified, the job
continues to process, possibly catching up to real-time
processing.

2.2 Job execution

In general, MapReduce architectures have three primary
tasks: the parallel execution of the map phase, grouping
input records by key, and the parallel execution of the re-
duce phase. In cluster-based MapReduce systems, like
Hadoop, each map task produces key-value pairs,{k,v},
from raw input records at individual nodes in the clus-
ter. The map tasks then group values by their keyk, and
split the set of keys intor partitions. After the map tasks
finish, the system starts a reduce task for each partition
r. These tasks first download their partition’s key-value
pairs from each mapper (theshuffle), finish grouping val-
ues, and then call reduce once for every{k,v[]} pair.

iMR distributes the work of a MapReduce job across
multiple trees, one for each reducer partition. Figure 2
illustrates one such tree; iMR co-locates map processing
on the server nodes themselves, sourcing input records

Merge

Reduce

Map

GroupBy

Combine

GroupBy

Map

GroupBy

Combine

Map

GroupBy

Combine

local records

Map

GroupBy

Combine

Map

GroupBy

Combine

Map

GroupBy

Combine

Hadoop/HDFS cluster

Server pool

local records local records local records

local recordslocal records

Figure 2: This illustrates the physical instantiation of one
iMR MapReduce partition as a multi-level aggregation
tree.

(tuples) from the local node’s log file. The dedicated pro-
cessing cluster hosts the root, which executes the user’s
reduce function. This tree uses the combine API to ag-
gregate intermediate data at every mapper in a manner
similar to traditional MapReduce architectures. How-
ever, like Dryad [32], iMR can use multi-level aggrega-
tion trees to further reduce the data crossing the network.

In general, this requires aggregate ordecomposable
functions that can be computed incrementally [15, 23,
32]. Here we are interested in two broad categories of
aggregate functions [21].Holistic aggregates require
partial values whose size is in proportion to their input
data, e.g.,union, median or groupby. In contrast,
boundedaggregates have constant-sized partial values,
e.g.,sum or max, and present the greatest opportunities
for data reduction.

2.3 Window processing with panes

iMR supports sliding processing windows not just be-
cause they bound computation on infinite streams, but
because they also enable incremental computations.
However, they do not immediately lend themselves to
efficient in-network processing. Consider a simple ag-
gregation strategy where each log server accumulates all
key-value pairs for each logical window and nodes in the
aggregation tree combine these entire windows.

We can see that this strategy isn’t efficient for our ex-
ample sliding window query. In this case, every event
record would be included in 24 successive results. Thus
every input key-value pair in a sliding window would
be grouped, combined, and transmitted for each update
(slide) of the window orR/S times. To reduce these
overheads, iMR adapts the use of sub-windows orpanes
to efficiently compute aggregates over sliding windows.
While the concept of panes was introduced in prior work
for single-node stream processors [21]; here we adapt
them to distributed in-situ MapReduce processing.

rts=12 r59 r61 r80 r96
time stamped

Map(r)

Group/combine in pane

{k ,v}1 12 59 59 61 80 96
{k ,v}2 {k ,v}2 {k ,v}2 {k ,v}3 {k ,v}3

0 Min 60 Min 120 Min

P0= PV{k ,v }1 PV{k ,v }2 P1= PV{k ,v }2 PV{k ,v }3

log records

key-value

panes

pairs

Figure 3: iMR nodes process local log files to produce
sub-windows or panes. The system assumes log records
have a logical timestamp and arrive in order.

P
a
1 P

a
2 P

b
1 P

b
2

P
a
1
+P

b
1 P

a
2
+P

b
2

Aggregate pane partial values

P
a
0
+P

b
0

+P1 P2W1= OR +P0 P2W1=W0 -

A
Child

B
Child

Figure 4: iMR aggregates individual panesPi in the net-
work. To produce a result, the root may either combine
the constituent panes or update the prior window by re-
moving an expired pane and adding the most recent.

2.3.1 Pane management

Panes break a window into multiple equal-sized sub-
windows, allowing the system to group and combine
key-value records once per sub-window. Nodes in the
system generate panes and send them to their parents in
the aggregation tree. Thus in iMR, interior nodes in a
tree aggregate panes and the root node combines them
into each window result. This supports the fundamen-
tal grouping operation underlying reduce, a holistic ag-
gregate. By sending panes, rather than sending the en-
tire window up the tree, the system sends a single copy
of a key’s value, reducing network traffic. Additionally,
issuing values at the granularity of panes gives the sys-
tem fine-grain control on fidelity and load shedding (Sec-
tion 3.4). It is also the granularity at which failed nodes
restart processing, minimizing the gap of dropped data
(Section 4.4.2).

Figure 3 illustrates how a single node creates panes
from a stream of local log records. Typically, we set
the pane size equal to the slideS, though it may be
any common divisor ofR andS, and each node main-
tains a sequence of pane partial valuesPi. This example
uses a processing window with a slide of 60 minutes.
When log records first enter the system, iMR tags each
one with a non-decreasing user-defined timestamp. The
system then feeds these records to the user’s map func-
tion. After mapping, the system assigns key-value pairs

to each pane, where they are grouped/combined. Note
that a pane is complete when a log entry arrives for the
following pane (log entries are assumed to be in order).

2.3.2 Window creation

In iMR, the root of each reducer partition must
group/combine all keys in the window before executing
the user’s reduce function and computing the result. Fig-
ure 4 illustrates two strategies the root may employ to do
so. Here two log serversA andB create panesP1 and
P2 and send them to the root. The root first groups (and
possibly combines) panes with the same index.

The first strategy leverages panes to allow incremen-
tal processing with the traditional MapReduce API. The
strategy simply uses the existing combine API to merge
adjoining panes. In this example each window consists
of two panes andW1 may be constructed by merging
P a+b

1 with P a+b

2 . This improves efficiency by having
each overlapping window re-use a pane’s partial value;
merging window panes is cheaper than repeatedly com-
bining the raw mapped values for each window. This
benefit increases with the number of values per key.

However, for sliding windows it is sometimes more ef-
ficient to removeexpired data and then add new data to
the priorW . For instance, consider our 24 hour query
that updates every hour. In this case the root must com-
bine 24 panes to produce each window. In contrast, the
root could remove and add a pane’s worth of keys to
the prior windowW , greatly reducing the volume of
keys touched. Assuming that the cost of removing and
adding keys toW is equivalent, this strategy is always
more efficient than merging all constituent panes when
the slide is less than half the range. This requires “differ-
ential” [21] functions, i.e. aggregates that are commuta-
tive/associative under removals as well as additions. iMR
only uses an uncombine strategy when the slide is less
than half the range and a user supplies an uncombiner.

3 Lossy MapReduce processing

This section describes the features of iMR that allow it
to accommodate data loss. As described earlier, data
loss may occur because of node or network failures, or
as a consequence of result latency requirements. In such
cases, an iMR job may need to report a result before the
system has had time to process all the data in the win-
dow. The key challenges we address here are a.) how
to represent and calculate result quality to allow users to
interpret partial results, and b.) how to use this metric to
trade result fidelity for improved result latency.

50% C Completeness
2

window panes

n
o
d
e
s

A

C

B

D

P1 P2 P3 P4
window panes

A

C

B

D

P1 P2 P3 P4

Figure 5: C2 completeness describes the set of panes
each log server contributes to the window. Here we show
two different ways in whichC2 represents 50% of the
data area: all the nodes process half the data or half the
nodes process all the data.

3.1 Measuring data fidelity

A good measure of data fidelity should inform users not
only that data is missing, but allows users to ascertain the
impact of data loss on query accuracy. One measure of
result quality used for in-network aggregates iscomplete-
ness, the number or fraction of nodes whose data is repre-
sented in the final answer [22, 25]. Alternatively, systems
like Hadoop Online (HOP) output partial answers as data
arrives, and annotate them withprogress, the percent of
total data processed. Unfortunately, neither metric is suf-
ficiently descriptive for window-based processing. Com-
pleteness cannot differentiate between a single node that
produces log records that span the entire window and a
node that does not. Similarly, a simple progress metric
fails to account for the source of processed data.

Here we present a completeness metric,C2, that lever-
ages the natural distribution of log data across both space
(log server nodes) and time (the window range).C2 rep-
resents the dataarea included in the final result as the
number of unique data panes that have been successfully
integrated into the window. Logically, the root maintains
C2 like a scoreboard, with a mark for every successfully
received pane in the window (Figure 5). ThusC2 tracks
the set of nodes whose log data contributed to the win-
dow, as well as how that log data was distributed across
the result window. iMR can summarize this raw infor-
mation as independent percentages of temporal (x-axis)
and spatial (y-axis) completeness or simply as an area,
the total result coverage.

Figure 5 illustrates howC2 may reflect two different
scenarios that process the same data area (in this caseC2

=50%). In the first case, all the nodes process half the
data and in the second, half the nodes process all the data.
There are, of course, other scenarios where the product
of the percentage of nodes and percentage of the window
processed will be 50%, andC2 allows users to differ-
entiate between them. Note thatC2 explains what was
included in the result, not what wasmissing, which is a
much harder (and often query specific) metric to provide.

To measure fidelity, interior nodes aggregateC2 for

individual panes as they make their way up each reduce
tree. Since each pane is by definition temporally com-
plete, representing data for that portion of the window,
this per-paneC2 simply maintains a count and the IDs of
data sources summarized in a particular pane. As panes
are merged in the aggregation tree, so too is theirC2 in-
formation. The root representsC2 as a histogram with
a bin per pane that counts the nodes that responded for
that pane. This allows the root to summarizeC2 as the
percent of nodes reporting (unique nodes responding di-
vided by total nodes) and the percent window computed
(non-empty panes divided by total panes per window).

3.2 UsingC2: applications

This section examines how applications useC2 to bound
result quality and to understand imperfect results. Users
specify minimum fidelity requirements by annotating
queries with a target fidelity that constrains results along
particular spatial and temporal dimensions. For exam-
ple, applications may specifyC2 as a minimum areaA,
giving the system a large degree of freedom to meet fi-
delity requirements, as any set of panes will do. Or appli-
cations may specifyC2 as percentages of temporal and
spatial completeness:(%time, %space). For example,
one could require panes in the window to be 100% spa-
tially complete (as they are in the left-hand of Figure 5),
but relax the requirement for the other axis.

The goal for an application is to set a fidelity bound
that allows users to determine result quality fromC2. In
particular, they should fix the axes along which result
quality is unpredictable. Thus two results may both meet
the fidelity bound, but users can ascertain relative result
quality by comparing how they did so. To illustrate these
concepts, we now describe four generalC2 specifications
and their fidelity/latency tradeoffs.

Area (A) with earliest results: ThisC2 specification
gives the system the most freedom to decrease result la-
tency (or shed load). Without failure or load shedding,
iMR will return the firstA% panes from each log server
for the result window. These results will correctly sum-
marize event frequencies only if events were uniformly
distributed across the log servers. This is the case with
simple applications, such as Word Count, where an ap-
proximate answer could be used to estimate the relative
frequency of words. However, if some words (events) are
associated with some servers more than other words, the
data will be biased.

Area (A) with random sampling: This C2 specifi-
cation gives the system less freedom to decrease result
latency, but tries to ensure that a partial result correctly
reproduces the relative occurrence of events in the result
window, no matter how events are distributed across the
log servers. Here each iMR node randomly creates panes

with a probability in proportion toA. This takes longer
to reach the fidelity bound than the first strategy, but will
correctly sample the log data. Note applications must
check theC2 score to verify a sufficient sample in the
event of pane loss due to node or network failures.

Spatial completeness(X, 100%): This specification
ensures that each pane in the result window contains data
from 100% of the nodes in the system. It is useful for
applications that must correlate log events on different
servers that occur close in time. For example, consider a
basic click-stream analysis that allows web sites to char-
acterize user behavior. With load-balanced web and ap-
plication serving architectures, a user’s click events may
arrive at any log server. Intuitively thisC2 specifica-
tion captures a spatial “slice” of the log data, collecting a
snapshot of user activity across the servers during a pane.

Temporal completeness(100%, Y): This specifica-
tion ensures thatY percent of the nodes in the sys-
tem respond with 100% of the panes in the result win-
dow. It is useful for applications that must correlate log
events on the same server across time. For example, if in
the click-stream analysis, individual users had been as-
signed/pinned to particular servers, this would be theC2

to employ.

3.3 Result eviction: trading fidelity for
availability

iMR allows users to specify latency and fidelity bounds
on continuous MapReduce queries. Here we describe the
policies that determine when the root evicts results. The
root has final authority to evict a window and it uses the
window’s completeness,C2, and latency to determine
eviction. Thus a latency-only eviction policy may return
incomplete results to meet the deadline, while a fidelity-
only policy will evict when the results meet the quality
requirement.

Latency eviction: A query’s latency bound deter-
mines the maximum amount of time the system spends
computing each successive window. If the timeout pe-
riod expires, the operator evicts the window regardless
of C2. Before the timeout, the root may evict early un-
der three conditions: if the window is complete before
the timeout, if it meets the optional fidelity boundC2,
or if the system can deduce that further delays will not
improve fidelity. Like the root, interior nodes also evict
based on the user’s latency deadline, but may do so be-
fore the deadline to ensure adequate time to travel to the
root [23].

Fidelity eviction: The fidelity eviction policy deliv-
ers results based on a minimum window fidelity at the
root. As panes arrive from nodes in the network, the root
updatesC2 for the current window. When the fidelity
reaches the bound the root merges the existing panes in

the window and outputs the answer.
Failure eviction: Just as the system evicts results that

are 100% complete, the system may also evict results if
additional wait time can not improve fidelity. This oc-
curs when nodes are heavily loaded or become discon-
nected or fail. iMR employsboundarypanes (where
traditional stream processors use boundary tuples [26])
to distinguish between failed nodes and stalled or empty
data streams2. Nodes periodically issue boundary panes
to their parents when panes have been skipped because
of a lack of data or load shedding (Section 3.4).

Boundary panes allow the root to distinguish between
missing data that may arrive later and missing data that
will never arrive. iMR maintains boundary information
on a per-pane basis using two counters. The first counter
is theC2 completeness count; the number of success-
ful pane merges. Even if a child has no local data for
a pane, its parent in the aggregation tree may increase
the completeness count for this pane. However, children
may skip panes either because they re-started later in the
stream (Section 4.4.2) or because they canceled process-
ing to shed load (Section 3.4). In these cases, the parent
node increases anincompletenesscounter indicating the
number of nodes that will never contribute to this pane.

Both interior nodes and the root use these counts
to evict panes or entire windows respectively. Interior
nodes evict early if the panes are complete or the sum
of these two counters is equal to the sum of the children
in this sub tree. The root determines whether or not the
user’s fidelity bound can ever be met. By simply sub-
tracting incompleteness from the total node count (per-
fect completeness), the root can set an upper bound on
C2 for any particular window. If this estimate ofC2 ever
falls below the user’s target, the root evicts the window.

Note that the use of fidelity and latency bounds pre-
sumes that the user either received a usable result or can-
not wait longer for it to improve. Thus, unlike other ap-
proaches, such as tentative tuples [8] or re-running the
reduction phase [10], iMR does not, by default, update
evicted results. iMR only supports this mode for debug-
ging or determining a proper latency bound, as it can be
expensive, forcing the system to repeatedly re-process
(re-reduce) a window on late updates.

3.4 Load cancellation and shedding

When the root evicts incomplete windows, nodes in the
aggregation tree may still be processing panes for that
window. This may be due to panes with inordinate
amounts of data or servers that are heavily loaded (have
little time for log processing). Thus they are comput-
ing and merging panes that, once they arrive at the root,

2In reality, all panes contain boundary meta data, but nodes may
issue panes that are otherwise empty except for this meta data.

will no longer be used. This section discusses mecha-
nisms that cancel or shed the work of creating and merg-
ing panes in the aggregation tree. Note that iMR as-
sumes that mechanisms already exist to apportion server
resources between the server’s normal duties and iMR
jobs. For instance, iMR may run in a separate virtual
machine, letting the VM scheduler allocate resources
between log processing and VMs running site services.
Here our goal is to ensure that iMR nodes use the re-
sources they are given effectively.

iMR’s load cancellation policies try to ensure that in-
ternal nodes do not waste cycles creating or merging
panes that will never be used. When the root evicts a
window because it has met the minimumC2 fidelity re-
quirement, there is almost surely outstanding work in the
network. Thus, once the root determines that it will no
longer use a pane, it relays that pane’s index down the
aggregation tree. This informs the other nodes that they
may safely stop processing (creating/merging) the pane.

In contrast, iMR’s load shedding strategy works to
prevent wasted effort when individual nodes are heavily
loaded. Here nodes observe their local processing rates
for creating a pane from local log records. If the expected
time to completion exceeds the user’s latency bound, it
will cancel processing for that pane. It will then estimate
the next processing deadline that it can meet and skip
the intervening panes (and send boundary panes in their
place).

Internal nodes also spend cycles (and memory) merg-
ing panes from children in the aggregation tree. Here in-
terior nodes either choose to proceed with pane merging
or, in the event that it violates the user’s latency bound,
“fast forward” the pane to its immediate parent. As we
shall see in Section 5, these policies can improve result
fidelity in the presence of straggler nodes.

4 Prototype

Our implementation of in-situ MapReduce builds upon
Mortar, a distributed stream processing system [22]. We
significantly extended Mortar’s core functionality to sup-
port the semantics of iMR and the MapReduce program-
ming model along four axes:

• Implement the iMR MapReduce API using generic
map and reduce Mortar operators.

• Pane-based continuous processing with flow con-
trol.

• Load shedding/cancellation and pane/window evic-
tion policies.

• Fault-tolerance mechanisms, including operator re-
start and adaptive tuple routing schemes.

4.1 Building an in-situ MapReduce query

Mortar computes continuous in-network aggregates
across federated systems with thousands of nodes. This
is a natural fit for the map, combine, and reduce functions
since they are either local per-tuple transforms (map) or
often in-network aggregates. A Mortar query consists
of a single operator, or aggregate function, which Mortar
replicates across nodes that produce the raw data streams.
These in-situ operators give iMR the opportunity to ac-
tively filter and reduce intermediate data before it is sent
across the network. Each query is defined by its opera-
tor type and produces a single, continuous output data
stream. Operators push, as opposed to the pull-based
method used in Hadoop, tuples across the network to
other operators of the same type.

Mortar supports two query types: local and in-network
queries. A local query processes data streams indepen-
dently at each node. In contrast, in-network queries use
a tree of operators to aggregate data across nodes. Either
query type may subscribe to a local, raw data source such
as a log file, or to the output of an existing query. Users
compose these query types to accomplish more sophisti-
cated tasks, such as MapReduce jobs.

Figure 6 illustrates an iMR job that consists of a lo-
cal query for map operators and an in-network query for
reduce operators. Map operators run on the log servers
and partition their output among co-located reduce op-
erators (here there are two partitions, hence two reduce
trees). The reduce operator does most of the heavy lift-
ing, grouping key-value pairs issued by the map opera-
tors before calling the user’s combine, uncombine, and
reduce functions. Unlike traditional MapReduce archi-
tectures, where the number of reducers is fixed during
execution, iMR may dynamically add (or subtract) re-
ducers during processing.

4.2 Map and reduce operators

Like other stream processors, Mortar uses processing
windows to bound computation and provides a simple
API to facilitate programming continuous operators. We
implemented generic map and reduce operators using
this API to call user-defined MapReduce functions at
the appropriate time and properly group the key-value
pairs. We modified operator internals so that they op-
erate on panes as described in Section 2.3. Operators
take as input either raw records from a local log or they
receive panes from upstream operators in the aggrega-
tion tree. Internally, iMR represents panes as (possibly
sorted) hash maps to facilitate key-value grouping.

In iMR operators have two main tasks: pane creation,
creating an initial pane from a local data source, and
pane merging, combining panes from children in an ag-

Partition 1

Final Output

Node C

Reduce 1

Node A
Source

Map

Reduce 1 Reduce 2

Node B
Source

Map

Reduce 1 Reduce 2

Partition 2

Final Output

Node D

Reduce 2

"the for the"

< the, 4 > < for, 2 >

< the, 2 > < for, 1 > < for, 1 >< the, 2 >

"the for the"

Figure 6: Each iMR job consists of a Mortar query for
the map and a query for the reduce. Here there are two
MapReduce partitions (r = 2), which result in two ag-
gregation trees. A word count example illustrates parti-
tioning map output across multiple reduce operators.

gregation tree. Pane creation operates on a record-by-
record basis, adding new records into the current pane. In
contrast, pane merging combines locally produced panes
with those arriving from the network. Because of dif-
ferences in processing time and network congestion, op-
erators maintain a sequence of panes that the system is
actively merging (they have not yet been evicted). We
call this the active pane list or APL.

To adapt Mortar for MapReduce processing, we in-
troduce immutable timestamps into the system. Mortar
assumes logically independent operators that timestamp
output tuples at the moment of creation. In contrast, iMR
defines processing windows with respect to the original
timestamps on the input logs, not with respect to the time
at which an operator was able to evict a pane. iMR as-
signs a timestamp to each data record when it first enters
the system (using a pre-existing timestamp from the log
entry, or the current real time). This timestamp remains
with the data as it travels through successive queries.
Thus networking or processing delays do not alter the
window in which the data belongs.

4.2.1 The map operator

The simplicity of mapping allows a streamlined map op-
erator. The operator calls the user’s map function for
each arriving tuple, which may contain one or more log
entries3. For each tuple, the map operator emits zero
or more key-value pairs. We optimized the map oper-
ator by permanently assigning it a tuple window with a
range and slide equal to one. This allowed us to remove
window-related buffering and directly issue tuples con-
taining key-value pairs to subscribed operators. Finally,

3Like Hadoop, iMR includes handlers that interpret log records.

the map operator partitions key-value pairs across sub-
scribed reduce operators.

4.2.2 The reduce operator

The reduce operator handles the in-network functional-
ity of iMR including the grouping, combining, sorting
and reducing of key-value pairs. The operators maintain
a hash map for each pane in the active pane list. Here
we describe how the reduce operator creates and merges
panes.

After a reduce operator subscribes to a local map op-
erator it begins to receive tuples (containing key-value
{k,v} pairs). The reducer operator first checks the log-
ical timestamp of each{k,v} pair. If it belongs to the
current pane, the system inserts the pair into the hash ta-
ble and calls the combiner (if defined). When a{k,v}
pair arrives with a timestamp for the next pane, the sys-
tem inserts the prior pane into the active-pane list (APL).
The operator may skip panes for which there is no local
data. In that case, the operator inserts boundary panes
into the APL with completeness counts of one.

Load shedding occurs during pane creation. As tuples
arrive, the operator maintains an estimate of when the
pane will complete. The operator periodically updates
this estimate, maintained as an Exponentially Weighted
Moving Average (EWMA) biased towards recent obser-
vations (α = 0.8), and determines whether the user’s la-
tency deadline will be met. For accuracy, the operator
processes 30% of the pane before the first estimate up-
date. For responsiveness, the operator periodically up-
dates and checks the estimate (every two seconds). For
each skipped pane the operator issues a boundary pane
with an incompleteness count of one.

The APL merges locally produced panes with panes
from other reduce operators in the aggregation tree. The
reduce operator calls the user’s combiner for any group
with new keys in the pane’s hash map. The operator peri-
odically inspects the APL to determine whether it should
evict a pane (based on the policies in Section 3.3). Re-
duce operators on internal or leaf nodes forward the pane
downstream on eviction.

If the operator is at the tree’s root, it has the additional
responsibility of determining when to evict the entire
window. The operator checks eviction policies on pe-
riodic timeouts (the user’s latency requirement) or when
a new pane arrives (possibly meeting the fidelity bound).
At that point, the operator may produce the final result
either by using the optional uncombine function or by
simply combining the constituent panes (strategies dis-
cussed in Section 2.3). After this combining step, the
operator calls the user-defined reduce function for each
key in the window’s hash map.

4.3 Pane flow control

Recall that the goal of load shedding in iMR isn’t to use
less resources, but to use the given resources effectively.
Given a large log file, load shedding changes the work
done, not its processing rate. Thus it is still possible
for some nodes to produce panes faster than others, ei-
ther because they have less data per pane or more cycles
available. In these cases, the local active pane list (APL)
could grow in an unbounded fashion, consuming server
memory and impacting its client-facing services.

We control the amount of memory used by the APL
by employing a window-oriented flow control scheme.
Each operator monitors the memory used (by the JVM in
our implementation) and issues a pause indicator when
it reaches a user-defined limit. The indicator contains
the logical index of the youngest pane in the operator’s
APL. Internally, pane creation waits until the indicator
is greater than the current index or the indicator is re-
moved. Pause indicators are also propagated top-down in
the aggregation tree, ensuring that operators send evicted
panes upward only when the indicator is greater than the
evicted indices or it is not present.

4.4 MapReduce with gap recovery

While load shedding and pane eviction policies improve
availability during processing and network delays, nodes
may fail completely, losing their data and current queries.
While traditional MapReduce designs, such as Hadoop,
can restart map or reduce tasks on any node in the cluster,
iMR does not assume a shared filesystem. Instead, iMR
providesgap recovery[19], meaning that the system may
drop tuples (i.e., panes) in the event of node failures.

4.4.1 Multi-tree aggregation

Mortar avoids failed network elements and nodes by
routing data up multiple trees. Nodes route data up a sin-
gle tree until the node stops receiving heart beats from its
parent. If a parent becomes unreachable, it chooses an-
other tree (i.e., another parent) to route tuples to. For this
work, we use a single tree; this simplifies our implemen-
tation of failure eviction policies because internal nodes
know the maximum possible completeness of panes ar-
riving from their children.

Mortar employs new tuple routing rules to retain a de-
gree of failure resilience. If a parent becomes unreach-
able, the child forwards data directly to the root. This
policy allows data to bypass failed nodes at the expense
of fewer aggregation opportunities. Mortar also designs
its trees by clustering network coordinates [11], and we
use the same mechanism in our experiments. We leave
more advanced routing and tree-building schemes as fu-
ture work.

4.4.2 Operator re-install

iMR guarantees that queries (operators) will be installed
and removed on nodes in an eventually consistent man-
ner. Mortar provides a reconciliation algorithm to ensure
that nodes eventually install (or un-install) query opera-
tors. Thus, when nodes recover from a failure, they will
re-install their current set of operators. While we lose the
data in the operator’s APL at the time of failure, we need
to re-start processing at an appropriate point to avoid du-
plicate data. To do so, operators, during pane creation,
maintain a simple on-disk write-ahead log to indicate the
next safe point in the log to begin processing on re-start.
For many queries the cost of writing to this log is small
relative to pane computation, and we simply point to the
next pane.

5 Evaluation

Our evaluation explores both the baseline performance
of our prototype and the ability of our system to deliver
results in the event of delays or failures. Unless noted
otherwise, we evaluated iMR on a 40 node cluster of
HP DL380G6 servers, each with two Intel E5520 CPUs
(2.27 GHz), 24 GB of memory, and 16 HP 507750-B21
500GB 7,200 RPM 2.5” SATA drives. Each server has
two HP P410 drive controllers, as well as a Myricom 10
Gbps network interface. The network interconnect we
use is a 52-port Cisco Nexus 5020 datacenter switch. The
servers run Linux 2.6.35, and our implementation of iMR
is written in Java. iMR experiments use star aggregation
topologies.

0 5 10 15 20 25 30
0
2
4
6
8

10
12
14

Workers

M
ill

io
n

tu
pl

es
 p

er
 s

ec
on

d

1 root
2 roots
3 roots
4 roots

Figure 7: Scaling iMR as the number of workers (and
processing nodes) increases.

5.1 Scaling

We first establish the scale-out properties of our process-
ing architecture. The purpose of these experiments is to
verify the ability of the system to scale as we increase
both the number of mappers and the number of reducer

partitions. Here we use synthetic input data and a re-
ducer that implements a word count function. The query
uses a tumbling window where the range is equal to the
slide; in this case the window range is 150 million input
records, approximately 1GB of input data. We allow the
job to run for five minutes and take the average through-
put. Unlike Hadoop, the iMR job is configured to read
the log from local disk.

Figure 7 plots the records per second throughput of
iMR as we increase the total cluster capacity. Each line
represents a different configuration that increases the re-
ducer and physical node count by one. Here three reduc-
ers provide sufficient processing to handle the 30 map
tasks. We see that, as long as the reducer is not the bottle-
neck, adding additional nodes increases throughput lin-
early. Similarly, reducers can also add a linear increase
in throughput.

0 20 40 60 80 100
0

20

40

60

80

100

Load (%)

F
id

el
ity

 (
%

)

Baseline
Timeout
Shedding

(a) Fidelity

0 20 40 60 80 100
0

20

40

60

80

100

120

Load (%)

La
te

nc
y

(m
in

)

Baseline
Timeout
Shedding

(b) Latency

Figure 8: Impact of load shedding on fidelity and latency
for a word count job under maximum latency require-
ment and varying worker load.

5.2 Load shedding

These iMR experiments evaluate the ability of load shed-
ding to improve result fidelity under limited CPU re-
sources. We execute a word count MapReduce query on
a single node; this node installs a single map and reduce
operator. We vary the CPU load by running a separate
CPU burn application. The query specifies a tumbling
window (R = S) that contains 20 million records and we
configure the system to use 20 panes per window. We ex-
ecute the query until it delivers 10 results and report the
average latency (Figure 8(a)) and fidelity (Figure 8(b)) as
we increase CPU load.

The baseline query has no latency requirement and al-
ways delivers results with 100% fidelity. The timeout
query has a latency requirement equal to the observed
baseline window latency, which is 160 seconds. Though
results meet the latency requirement, quality degrades as
the load increases. Without load shedding the worker
attempts to process all panes, even if very few can be
delivered in time. In contrast, load shedding allows the

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
co

un
t e

rr
or

 (
%

)

100% time, X% space
X% time, 100% space
Random X%

(a) Count error

0 20 40 60 80 100
0

50

100

150

200

250

Data volume (%)

R
el

at
iv

e
fr

eq
ue

nc
y

er
ro

r
(%

)

100% time, X% space
X% time, 100% space
Random X%

(b) Frequency error.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
X% time, 100% space
Random X%

(c) Result latency.

Figure 9: The performance of a count statistic on data skewedacross the log server pool. Enforcing either random
pane selection or spatial completeness allows the system toapproximate count frequencies and lower result latency.

worker to use the available CPU intelligently, processing
only the panes that can be delivered on time and increas-
ing average fidelity substantially.

5.3 Failure eviction

Here we show how failure eviction can deliver results
early if nodes fail. We execute a word count MapReduce
query on 10 workers. The query uses a tumbling window
with 2 million records, 2 panes, and a 30 second latency
requirement. After starting the query, we emulate tran-
sient failures by stopping an increasing number of work-
ers. The experiment finishes when the query delivers 20
results.

In Figure 10, we report application goodput as the
number of panes delivered to the user per time. Note
that this metric is not a direct measure of how fast work-
ers can process raw data. Instead it reflects the ability of
the system to detect failures and deliver panes to the user
early. The higher the metric, the less the user waits to get
the same number of panes. Without failure eviction the
root times out (30 seconds) before it delivers incomplete
results. With failure eviction, the root can deliver results
before the timeout, improving goodput by 57-64%.

5.4 UsingC2

This section explores how we use theC2 framework for
three different application scenarios: word count with
non-uniformly distributed keys, click-stream analysis,
and an HDFS anomaly detector. These experiments used
a 30-node cluster of Dual Intel Xeon 2.4GHz machines
with 4GB of RAM connected by gigabit Ethernet.

5.4.1 Word Count

Our first experiment performed a word count query
across synthetic data placed on ten log servers in our lo-
cal cluster. This configuration allows us to explore the

0 20 40 60 80 100
0

1

2

3

4

Failed workers (%)
P

an
es

/m
in

Timeout
Failure eviction

Figure 10: Application goodput as the percentage of
failed workers increases. Failure eviction delivers panes
earlier, improving goodput by up to 64%.

impact of different fidelity bounds on absolute count es-
timations and relative word frequency. We distribute the
words in the synthetic data across the log servers in a
skewed fashion, where some words are more likely to be
on some servers than others. In these experiments the
window range (and slide) is 100MB, the pane size is 10
MB, and there is no latency bound.

Here we explore three differentC2 settings: temporal
completeness, spatial completeness, and area with ran-
dom pane selection. Figure 9 shows the relative error in
reported count, the relative error of the word frequency
(with std. dev.), and the result latency as we increase the
data fidelity. As expected, the count error (Figure 9(a))
improves linearly as we force the system to include more
data in each window (data volume).

However, because the data are not uniformly dis-
tributed, the frequency error (Figure 9(b)) is large for
the temporal completenessC2 specification,(100%, Y).
Note in this experiment we achieve varying levels of tem-
poral completeness by randomly selecting specific nodes
to fail to report for an entire window. By removing data
from a source completely, some keys may completely
lose their representation and the remaining key’s fre-

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

R
el

at
iv

e
er

ro
r

(%
)

100% time, X% space
X% time, 100% space
Random X%

(a) Average error peruserID

0 20 40 60 80 100
0

20

40

60

80

100

Data volume (%)

%
 u

se
rI

D
s

fo
un

d

100% time, X% space
X% time, 100% space
Random X%

(b) PercentageuserID’s found.

0 20 40 60 80 100
0

2

4

6

8

10

12

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
X% time, 100% space
Random X%

(c) Result latency.

Figure 11: Estimating user session count using iMR and differentC2 policies. Random pane selection and temporal
completeness provide significantly higher data fidelity than enforcing spatial completeness.

quencies shift. Both random pane selection and spatially
complete results do much better, since they effectively
sample from the entire server pool.

Finally, these three policies differ substantially in the
latency of the results they deliver. Figure 9(c) plots the
result latency for eachC2 specification. Clearly, provid-
ing temporal completeness requires each node to finish
processing the entire window before returning a result.
In contrast, by asking for spatial completeness, the root
can return as soon as the first x% of the panes complete,
allowing the best latency.

5.4.2 Click-stream analysis

Here we develop a simple click-stream analysis. This
analysis takes as input a log of click records that con-
tain userID and timestamp fields. We developed a re-
duce function to calculate three different click analysis
metrics: the number of user sessions, the average session
duration, and the average number of clicks per session.
We use our differentC2 specifications and study the rel-
ative error each provides.

These experiments use 24 hours of publicly available
server logs from the 1998 World Cup [1] as input. We
partition this data (4.5GB in total) across ten of our
servers, preserving the characteristic that clicks from a
single user are often served by different nodes in the
trace. The window (and slide) of the MapReduce job is
set to two hours and we set the pane size to be 6 minutes
(20 panes per window). We run each query for the entire
data set (12 windows).

Figure 11 shows how the number of sessions per
user changes as we accept different levels of data fi-
delity. Surprisingly, requiring data from all nodes for
each pane,(X, 100%), leads to large relative errors (per
user). This is primarily becauseuserIDs are not uni-
formly distributed across time and enforcing spatial com-
pleteness does not give a decent sample. However, ran-
domly sampling at each log server lowers relative error

to 20% (per user), even when computing across less than
50% of the window’s data.

Figure 11(b) shows that those policies also recover a
large fraction of the totaluserID space even when they
sample a relatively small total fraction of data. Thus for
this application, the bestC2 specification is random pane
selection, as it not only provides the best results but also
allows the system to lower result latency as well (Fig-
ure 11(c)).

5.4.3 HDFS log analysis

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Data volume (%)

K
−

S
 s

ta
tis

tic

Random X%
X% time, 100% space
100% time, X% space

(a) KS-test

0 20 40 60 80 100
0

100

200

300

400

500

Data volume (%)

La
te

nc
y

(s
ec

)

100% time, X% space
Random X%
X% time, 100% space

(b) Latency

Figure 12: (a) Results from the Kolmogorov-Smirnov
test illustrate the impact of reduced data fidelity on the
histograms reported for each HDFS server. (b) For
HDFS anomaly detection, random and spatial complete-
nessC2 improve latency by at least 30%.

Our last application analyzes logs from the Hadoop
distributed file system (HDFS) to determine faulty stor-
age nodes. The iMR MapReduce job first filters the local
HDFS log, finding all unique block write events. The
reduce function then computes a histogram of the block
write service times. This collection of histograms, one
per HDFS server, is then analyzed to determine anoma-
lies in the cluster [27].

We generated 48 hours of HDFS logs by running the

GridMix Hadoop workload generator [3] on our 30-node
cluster. Each node’s log is approximately 2.5 GB, yield-
ing appr. 75 GB in total. This analysis compares the
quality of the histograms produced under differentC2

specifications to the histogram produced with no loss.
The query has a window range (and slide) of 48 hours
and uses 1 hour panes.

We use the Kolmogorov-Smirnov test to compare the
per-server histograms with perfect and incomplete data.
Figure 12(a) shows the percentage of histograms that
when using incomplete data represent a markedly dif-
ferent distribution (reject the null hypothesis). Here the
(100%, Y) policy generates perfect data, since, if a node
reports, all data is included. The otherC2 strategies re-
sult in a majority of the histograms failing the null hy-
pothesis when using less than 80% of the data.

However, since those strategies can lower result la-
tency significantly at that data volume (about 30% in Fig-
ure 12(b)), users must decide whether that is an accept-
able tradeoff. Going forward we intend to look at how
this ultimately impacts the ability to find failing HDFS
nodes.

5.5 In-situ performance

0 2 4 6 8 10
0

20

40

60

80

100

niceness

F
id

el
ity

 (
%

)

Shedding
No shedding

(a) Fidelity

0 2 4 6 8 10
60

70

80

90

100

niceness

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

%
)

(b) Hadoop performance

Figure 13: Fidelity and Hadoop performance as a func-
tion of the iMR process niceness. Hadoop is always
given the highest priority, nice= 0.

We designed iMR to effectively process log data “on
location.” This experiment illustrates the ability of the
iMR architecture to produce useful results when run side-
by-side with a real application. Specifically, our 10-
node cluster will execute Hadoop and iMR simultane-
ously. Here, Hadoop executes a workload generated by
the GridMix generator and iMR executes a word count
query with a window of 2 million records, 20 panes per
window, and a 60 second timeout. We vary the CPU al-
located to iMR by changing the priority (niceness) as-
signed to the iMR process by the kernel scheduler and
report the average result fidelity. We also report the rela-
tive change in the Hadoop performance, in terms of jobs

completed per time. Each data point is the average of five
runs.

Figure 13(a) shows that without load shedding, result
fidelity falls almost linearly as the iMR process’ priority
decreases. In contrast, load shedding greatly improves fi-
delity until there is insufficient CPU remaining to process
any pane by the deadline (nice= 9). Looking at Hadoop
performance in Figure 13(b), we see that the cost for giv-
ing them equal priorities is a decrease in job throughput
of 17%. Even when using nice, a relatively coarse-grain
knob for resource allocation, to assign a lower priority
to log processing, Hadoop can improve job throughput
(< 10% penalty) and iMR can still deliver useful results.

6 Related work

“Online” bulk processing: iMR focuses on the chal-
lenges of migrating initial log analytics to the data
sources. A different (and complementary) approach has
been to optimize traditional MapReduce architectures for
log processing themselves. For instance, the Hadoop
Online Prototype (HOP) [10] can run continuously, but
requires custom reduce functions to manage their own
state for incremental computation and framing incom-
ing data into meaningful units (windows). iMR’s design
avoids this requirement by explicitly supporting sliding
window-based computation (Section 2.1), allowing ex-
isting reduce functions to run continuously without mod-
ification.

Like iMR, HOP also allows incomplete results, pro-
ducing “snapshots” of reduce output, where the reduce
phase executes on the map output that has accumu-
lated thus far. HOP describes incomplete results with
a ”progress” metric that (self admittedly) is often too
coarse to be useful. In contrast, iMR’sC2 framework
(Section 3) not only provides both spatial and temporal
information about the result, but may be used to trade
particular aspects of data fidelity for decreased process-
ing time.

Dremel [24] is another system that, like iMR, aims to
provide fast analysis on large-scale data. While iMR tar-
gets continuous raw log data, Dremel focuses on static
nested data, like web documents. It employs an efficient
columnar storage format that is benefitial when a frac-
tion of the fields of the nested data must be accessed.
Like HOP, Dremel uses a coarse progress metric for de-
scribing early, partial results.

Log collection systems:A system closely related to
iMR is Flume [2], a distributed log collection system
that placesagentsin-situ on servers to relay log data to
a tier of collectors. While a user’s “flows” (i.e., queries)
may transform or filter individual events, iMR provides
a more powerful data processing model with grouping,
reduction, and windowing. While Flume supports best-

effort operation, users remain in the dark about result
quality or latency. However, Flume does provide higher
reliability modes, recovering events from a write-ahead
log to prevent data loss. While not discussed here, iMR
could employ similarupstream backup[19] techniques
to better support queries that specify fidelity bounds.

Load shedding in data stream processors:iMR’s
load shedding (Section 3.4) and result eviction policies
(Section 3.3) build upon the various load shedding tech-
niques explored in stream processing [9, 28, 29]. For
instance, iMR’s latency and fidelity bounds are related
to the QoS metrics found in the Aurora stream proces-
sor [9]. Aurora allows users to provide “graphs” which
separately map increased delay and percent tuples lost
with decreasing output quality (QoS). iMR takes a dif-
ferent approach, allowing users to specify latency and
fidelity bounds above which they’d be satisfied. Addi-
tionally, iMR leverages the temporal and spatial nature
of log data to provide users more control than percent
tuples lost.

Many of these load shedding mechanisms insert tu-
ple dropping operators into query plans and coordinate
drop probabilities, typically via a centralized controller,
to maintain result quality under high-load conditions. In
contrast, our load shedding policies act locally at each
operator, shedding sub-windows (panes) as they are cre-
ated or merged. These “pane drop” policies are more
closely related to the probabilistic “window drop” oper-
ators proposed by Tatbul, et al. [29] for aggregate op-
erators. In contrast, iMR’s operators may drop panes
both deterministically or probabilistically depending on
theC2 fidelity bound.

Distributed aggregation: Aggregation trees have
been explored in sensor networks [23], monitoring wired
networks [31], and distributed data stream process-
ing [18, 22]. More recent work explored a variety
of strategies for distributed GroupBy aggregation re-
quired in MapReduce-style processing [32]. Our use
of sub-windows (panes) is most closely related to their
Accumulator-PartialHashstrategy, since we accumu-
late (through combining) key-value pairs into each sub-
window. While they evicted the sub window based on
its storage size (experiencing a hash collision), iMR uses
fixed-sized panes.

7 Conclusion

This work explores moving initial log analysis steps out
of dedicated clusters and onto the data sources them-
selves. By leveraging continuous in-situ processing,
iMR can efficiently extract and transform data, improv-
ing system scalability and reducing analysis times. A
key challenge is to provide a characterization of result fi-
delity that allows users to interpret results in the face of

incomplete data. For a handful of applications, we illus-
trated how theC2 framework allows users to explicitly
trade specific aspects of data fidelity in the event failures
lose data or the system cannot meet latency requirements.
Future work will consider how the system can assist in
setting appropriateC2 fidelity bounds, and whether sim-
ilar techniques could be applied in dedicated processing
cluster environments.

Acknowledgements

We’d like to thank Geoff Voelker and our shepherd,
Leendert van Doorn, for their helpful feedback. This
work was supported in part by the National Science
Foundation through grant CCF-1048296.

References

[1] 1998 World Cup Web Server Logs.
http://ita.ee.lbl.gov/html/traces.html.

[2] Flume: Open source log collection system.
http://github.com/cloudera/flume.

[3] The GridMix Hadoop Workload Generator.
http://hadoop.apache.org/mapreduce/docs/current/gridmix.html.

[4] Windows Azure and Facebook teams. Personal communications,
August 2008.

[5] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherni-
ack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvk-
ina, N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis
Stream Processing Engine. InBiennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, January 2005.

[6] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and A. Wolman.
Volley: Automated data placement for geo-distributed cloud ser-
vices. InNSDI’10, April 2010.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. InSymposium on Principles
of Database Systems, March 2002.

[8] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.
Fault-tolerance in the Borealis distributed stream processing sys-
tem. InSIGMOD’05, June 2005.

[9] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Moni-
toring streams—a new class of data management applications. In
VLDB’02, September 2002.

[10] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein. MapRe-
duce online. InNSDI’10, San Jose, CA, April 2010.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decen-
tralized network coordinate system. InSIGCOMM’04, August
2004.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. InOSDI’04, San Francisco, CA, December
2004.

[13] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, alexRus-
sakovsky, and N. Thomre. Continuous analytics: Rethinking
query processing in a network-effect world. InProc. of CIDR,
January 2009.

[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-
totals. Data Mining and Knowledge Discovery, 1(1), 1997.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data Cube: A Re-
lational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals.Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[16] B. He, M. Yang, zhenyu Guo, R. Chen, W. Lin, B. Su, and
L. Zhou. Batched stream processing: A case for data intensive
distributed computing. InACM Symposium on Cloud Computing
(SOCC), June 2010.

[17] T. Hoff. How Rackspace Now Uses MapReduce
and Hadoop To Query Terabytes of Data, Jan 2008.
http://highscalability.com/how-rackspace-now-uses-mapreduce-
and-hadoop-query-terabytes-data.

[18] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker,
and I. Stoica. Querying the Internet with PIER. InProc. of VLDB,
September 2003.

[19] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, and
S. Zdonik. High-availability algorithms for distributed stream
processing. InProc. of ICDE, April 2005.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential buildingblocks.
In EuroSys’07, March 2007.

[21] J. Li, D. Maier, K. Tufte, V. Papdimos, and P. A. Tucker. No
pane, no gain: efficient evaluation of sliding-window aggregates
over data streams.SIGMOD Record, 34(1), March 2005.

[22] D. Logothetis and K. Yocum. Wide-scale data stream manage-
ment. InUSENIX Annual Technical Conf., June 2008.

[23] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a
tiny aggregation service for ad-hoc sensor networks. InOSDI’02,
December 2002.

[24] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel : Interactive Analysisof
Web-Scale Datasets.Proceedings of the VLDB Endowment, 3,
September 2010.

[25] R. N. Murty and M. Welsh. Towards a dependable architecture
for Internet-scale sensing. InSecond HotDep06, November 2006.

[26] U. Srivastava and J. Widom. Flexible time management indata
stream systems. InProc. of PODS 2004, June 2004.

[27] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan.
SALSA: analyzing logs as state machines. In1st USENIX Work-
shop on Analysis of System Logs, page 6, December 2008.

[28] N. Tatbul, U. Cetintemel, and S. Zdonik. Staying FIT: Efficient
load shedding techniques for distributed stream processing. In
VLDB’07, August 2007.

[29] N. Tatbul and S. Zdonik. Window-aware load shedding forag-
gregation queries over data streams. InVLDB’06, August 2006.

[30] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Min-
ing console logs for large-scale system problem detection.In
Workshop on Tackling Computer Systems Problems with Machine
Learning Techniques), Dec 2008.

[31] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. InSIGCOMM’04, September 2004.

[32] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: Interfaces and implementations. In
SOSP’09, October 2009.

