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Abstract

Modern deduplication has become quite effective at
eliminating duplicates in data, thus multiplying the ef-
fective capacity of disk-based backup systems, and en-
abling them as realistic tape replacements. Despite these
improvements, single-node raw capacity is still mostly
limited to tens or a few hundreds of terabytes, forcing
users to resort to complex and costly multi-node sys-
tems, which usually only allow them to scale to single-
digit petabytes. As the opportunities for deduplication ef-
ficiency optimizations become scarce, we are challenged
with the task of designing deduplication systems that
will effectively address the capacity, throughput, man-
agement and energy requirements of the petascale age.

In this paper we present our high-performance dedu-
plication prototype, designed from the ground up to op-
timize overall single-node performance, by making the
best possible use of a node’s resources, and achieve three
important goals:scale to large capacity, provide good
deduplication efficiency, and near-raw-diskthroughput.
Instead of trying to improve duplicate detection algo-
rithms, we focus on system design aspects and introduce
novel mechanisms—that we combine with careful imple-
mentations of known system engineering techniques. In
particular, we improve single-node scalability by intro-
ducingprogressive sampled indexingandgrouped mark-
and-sweep, and also optimize throughput by utilizing
an event-driven, multi-threaded client-server interaction
model. Our prototype implementation is able to scale to
billions of stored objects, with high throughput, and very
little or no degradation of deduplication efficiency.

1 Introduction

For many years, tape-based backup solutions have dom-
inated the backup landscape. Most of their users have
been eager to replace them with disk-based solutions that
are faster, easier to use (search, restore, etc.) and less

fragile. In the past few years, disk-based backup systems
have gained significant momentum, and today most en-
terprises are rapidly adopting such solutions, especially
when the data volume is moderate.

One of the most important factors enabling the re-
cent success of disk-based backup is datadeduplica-
tion (“dedupe”)—a form of compression that detects and
eliminates duplicates in data, therefore storing only a sin-
gle copy of each data unit. By using dedupe in a disk-
based backup system one can multiply the effective ca-
pacity by 10-50 times, rendering the system a realistic
tape replacement, whose cost is on par with tape-based
systems, while also 1) making backup data always avail-
able online (for indexing, data mining, etc.), 2) enabling
effective remote backups by minimizing network traffic,
and 3) reducing client side I/O overhead by eliminating
the need to read unchanged, previously backed-up files.

The explosive increase in the amount of data corpora-
tions are required to store, however, puts great pressure
on the storage and backup systems, creating immediate
demand for new ways to address the capacity, perfor-
mance and cost challenges, and generally increase their
overall effectiveness.

The effectiveness of a deduplication system is deter-
mined by the extent to which it can achieve three mu-
tually competing goals:deduplication efficiency, scala-
bility, andthroughput. Deduplication efficiency refers to
how well the system can detect and share duplicate data
units—which is its primary compression goal. Scalabil-
ity refers to the ability to support large amounts of raw
storage with consistent performance. Throughput refers
to the rate at which data can be transferred in and out of
the system, and constitutes the main performance metric.

All three metrics are important. Good dedupe effi-
ciency reduces the storage cost. Good scalability reduces
the overall cost by reducing the total number of nodes
since each node can handle more data. High throughput
is particularly important because it can enable fast back-
ups, minimizing the length of a backup window. Among
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the three goals, it is easy to optimize any two of them,
but not all. To get good deduplication efficiency, it is nec-
essary to perform data indexing for duplicate detection.
The indexing metadata size grows linearly with the ca-
pacity of the system. Keeping this metadata in memory,
would yield good throughput. But the amount of avail-
able RAM would set a hard limit to the scalability of the
system. Moving indexing metadata to disk would remove
the scalability limit, but significantly hurt performance.
Finally, we can optimize for both throughput and scala-
bility, as in regular file servers, but then we lose dedupli-
cation. Achieving all three goals is a non-trivial task.

Another less obvious but equally important problem is
duplicate reference management: duplicate data sharing
introduces the need to determine who is using a particu-
lar data unit, and when it can be reclaimed. The computa-
tional and space complexity of these reference manage-
ment mechanisms grows with the amount of supported
capacity. Our field experience, from a large number of
deduplication product deployments, has shown that the
cost of reference management (upon addition and dele-
tion of data) has become one of the biggest real-world
bottlenecks, involving operations that take many hours
per day, and force a hard limit to scalability.

A lot of the research in the area has focused on opti-
mizing deduplication efficiency and index management,
without being able to sufficiently boost single-node ca-
pacity: with the current state-of-the-art a single node is
limited to a few tens, or hundreds, of terabytes—which is
far from sufficient for the petascale. Consequently, scal-
ability has been addressed mostly through the deploy-
ment of complex, multi-node systems, that aggregate the
limited capacity of each node in order to provide a few
petabytes of storage at very high (acquisition, manage-
ment, energy, etc.) cost. Surprisingly, the problem of ref-
erence management performance is largely ignored.

As the rate at which data are generated is rapidly in-
creasing, the pressure for high-performance,scalable and
cost-effective deduplication systems becomes more evi-
dent. We advocate that single-node performance is of key
importance to next-generation deduplication systems: by
making the most of a single node’s resources, it is pos-
sible to build a high-performance deduplication system
that will be able to scale to billions of objects. Based
on our field experience, we know that such a system
would be valuable to a very large number of users (e.g.,
small/medium businesses) where simplicity is also a top
priority. Additionally, we believe that improving single-
node performance is essential for multi-node systems as
well, since a lot of our techniques can be used to provide
more efficient building blocks for these systems, or even
collapse them into a single node.

This paper presents acomplete, single-node dedupli-
cation system that covers indexing, reference manage-

ment, and end-to-end throughput optimization. We con-
tribute new mechanisms to address dedupe challenges
and combine them with well-known engineering tech-
niques in order to design and evaluate the system consid-
ering all three dedupe goals.Progressive sampled index-
ing removes scalability limitations imposed by indexing,
while serving most lookup requests inO(1) time com-
plexity from memory. Our index uses sampling to per-
form fine-grained indexing, and greatly improves scala-
bility by requiring significantly less memory resources.
We address the problem of reference management by in-
troducinggrouped mark-and-sweep, a mechanism that
minimizes disk accesses and achieves near-optimal scal-
ability. Finally, we present a modular, event-driven, client
pipeline design that allows the client to make the most
of its resources and process backup data at a rate that
can fully utilize the dedupe server. As a result, our proto-
type can achieve high backup (1 GB/sec for unique data
and 6 GB/sec for duplicate data) and restore throughput
(1 GB/sec for single stream and 430 MB/sec for multi-
ple streams) and good deduplication efficiency (97%), at
high capacities (123 billion objects, 500 TB of data per
25 GB of system memory).

The rest of the paper is organized as follows: Section 2
gives a detailed description of the major challenges we
had to address. In Section 3 we describe how we address
them through our prototype’s novel mechanisms, and in
Section 4 we present our evaluation results.

2 Challenges

2.1 Indexing

Most deduplication systems operate at the sub-file level:
a file or a data stream is divided into a sequence of fixed
or variable sizedsegments. For each segment, a crypto-
graphic hash (MD5, SHA-1/2, etc.) is calculated as its
fingerprint (FP), and it is used to uniquely identify that
particular segment. Afingerprint indexis used as a cat-
alog of FPs stored in the system, allowing the detection
of duplicates: during backup, if a tuple of the form<
FP, locationon disk> exists in the index for a particular
FP, then a reference to the existing copy of the segment
is created. Otherwise, the segment is considered new, a
copy is stored on the server and the index is updated ac-
cordingly. In many systems, the FP index is also crucial
for the restore process, as index entries are used to locate
the exact storage location of the segments the backup
consists of.

The index needs to have three important properties:
1) scale to high capacities, 2) achieve good index-
ing throughput, and 3) provide high duplicate detection
rate—i.e., high deduplication efficiency. Table 1 demon-
strates how these goals become very challenging for a
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Item Scale Remarks
Physical capacityC C = 1,000 TB
Segment sizeS S= 4 KB
Number of segmentsN N = 250*109 segs N =C/S
Segment FP sizeE E = 22 B
Segment index sizeI I = 5,500 GB I = N∗E
Disk speedZ 400 MB/sec
Block lookup speed goal 100 Kops/sec Z/S

Table 1: An example system configuration, illustrating some of the
challenges involved.

Petascale system. If the system capacity is 1 PB, and the
segment size is 4 KB (for fine-granularity duplicate de-
tection), indexing capacity will need to be at least 5,500
GB to support all 250 billion objects in the system. Such
an index is impossible to maintain in memory Storing it
on disk, however, would greatly reduce query through-
put. To achieve a rate of 400 MB/sec, would require the
index—and the whole dedupe system for that matter—
to provide a query service throughput of at least 100
Kops/sec. Trying to scale to 1 PB by storing the index
on disk would make it impossible to achieve this level
of performance1. Making the segment size larger (e.g.,
128 KB) would make deduplication far more coarse and
severely reduce its efficiency, while still requiring no less
than 172 GB of RAM for indexing.

It becomes obvious that efficient, scalable indexing is
a hard problem. On top of all other indexing challenges,
one must point out that segment FPs are cryptographic
hashes, randomly distributed in the index. Adjacent in-
dex entries share no locality and any kind of simple read-
ahead scheme could not amortize the cost of storing in-
dex entries on disk.

2.2 Reference Management
Contrary to a traditional backup system, a dedupe system
shares data among files by default. Reference manage-
ment is necessary to keep track of segment usage and re-
claim freed space. In addition to scalability and speed, re-
liability is another challenge for reference management.
If a segment gets freed while it is still referenced by files,
data loss occurs and files cannot be restored. On the other
hand, if a segment is referenced when it is actually no
longer in use, it causes storage leakage.

Previous work [12, 19] mainly focused on indexing
and largely ignored reference management. Some recent
work [4, 18] started to acknowledge the difficulty of
the problem. But, for simplicity, only simple reference
counting was investigated without considering reliability
and recoverability. Reference counting, however, suffers
from low reliability, since it is vulnerable to lost or re-
peated updates: when errors occur some segments may

1Our measurements show that even high-end SSDs cannot achieve
more than 60 Kops/sec

be updated and some may not. Complicated transaction
rollback logic is required to make reference counts con-
sistent. Moreover, if a segment becomes corrupted, it is
important to know which files are using it so as to re-
cover the lost segment by backing up the file again. Un-
fortunately, reference counting cannot provide such in-
formation. Finally, there is almost no way to verify if the
reference count is correct or not in a large dynamic sys-
tem. Our field feedback indicates that power outages and
data corruption are really not that rare. In real deploy-
ments, where data integrity and recoverability directly
affect product reputation, simple reference counting is
unsatisfactory.

Maintaining a reference list is a better solution: it is
immune to repeated updates and it can identify the files
that use a particular segment. However, some kind of log-
ging is still necessary to ensure correctness in the case of
lost operations. More importantly, variable length refer-
ence lists need to be stored on disk for each segment.
Every time a reference list is updated, the whole list (and
possibly its adjacent reference lists—due to the lists’
variable length) must be rewritten. This greatly hurts the
speed of reference management.

Another potential solution is mark-and-sweep. Dur-
ing the mark phase, all files are traversed so as to mark
the used segments. In the sweep phase all segments are
swept and unmarked segments are reclaimed. This ap-
proach is very resilient to errors: at any time the pro-
cess can simply be restarted with no negative side ef-
fects. Scalability, however, is an issue. Going back to the
example of Table 1, we would need to deal withN = 250
billion segments. If a segment FP isE = 22 bytes, that
would beI = N * E = 5,500 GB of data. If we account
for an average deduplication factor of 10 (i.e., each seg-
ment is referenced by 10 different files), the total size
of files that need to be read during the mark phase will
be 55,000 GB. This alone will take almost 4 hours on a
400 MB/sec disk array. Furthermore, marking the in-use
bits for 250 billion entries is no easy task. There is no
way to put the bit map in memory. Once on disk, the bit
map needs to be accessed randomly multiple times. This
also takes significant amount of time. One might want
to mitigate the poor performance of mark-and-sweep by
doing it less frequently. But in practice this is not a vi-
able option: customers always want to keep the utiliza-
tion of the system close to its capacity so that a longer
history can be stored. With daily backups taking place,
systems rarely have the luxury to postpone deletion op-
erations for a long time. In our field deployment, deletion
is done twice a day. More than 4 hours in each run is too
much. In a large production-oriented dedupe system ref-
erence management needs to be very reliable and have
good recoverability. It should tolerate errors and always
ensure correctness. Although mark-and-sweep provides
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Figure 1: Client and deduplication server components. The server com-
ponents may be hosted on the same or different nodes.

these properties, its performance is proportional to the
capacity of the system, thus limiting its scalability.

2.3 Client-Server Interaction
Even if we solve the indexing and reference management
problems, high end-to-end throughput is not guaranteed.
An optimized client-server interface is necessary to reap
the benefits of deduplication. The typical dedupe client
performs the following steps during backup: 1) read data
from files, 2) form segments and calculate FPs, 3) send
FPs to the server and wait for index lookup results, and
4) for each index miss, transmit the relevant data to
the server—otherwise create references to the existing
segments. This process may suffer from three different
types of bottlenecks. First, reading files from disk is an
I/O-bound operation. Second, calculating cryptographic
hashes is a very CPU-intensive task, and the client may
not be able to compute FPs at the necessary rate. Finally,
high latency and low communication throughput may be-
come the main bottleneck for overall performance.

3 Prototype Design

3.1 Goals and System Architecture
We set our performance goals as follows:

• Scalability: store and index hundreds of billions of
segments.

• Deduplication efficiency: best-effort deduplica-
tion: if resources are scarce, sacrifice some dedu-
plication for speed and scale.

• Throughput : near-raw-disk throughput for data
backup, restore, and delete.

To that end, we have implemented a prototype of our
scalable duplication system aiming to validate the effec-
tiveness of the proposed mechanisms. Our implementa-
tion uses C++ and pthreads, on 64-bit Linux, and it is
based on the architecture shown in Figure 1.

The server side component consists of two main
modules—theFile Manager and the Segment Man-
ager—that implement all the deduplication and backup
management logic.

The File Manager (FM) is responsible for keeping
track of files stored on the deduplication server. The FM
manages file information using a three level hierarchy,
visible in Figure 1. The bottom level consists offiles,
each represented by a set of metadata and identified by a
file FP, calculated over all segment FPs that the file con-
sists of. The middle level consists ofbackups, that group
files belonging to the same backup session. At the top
level, multiple backups are aggregated to abackup group,
allowing the FM to perform coarse-granularity tracking
of file/backup changes in the system, so as to assist our
reference management mechanism.

The Segment Manager (SM) is responsible for the in-
dexing and storage of raw data segments, and may run on
the same or a different server than the FM. Segments are
stored on disk in large (e.g., 16 MB) storage units, called
containers. Containers consist of raw data and a cata-
log which lists all FPs stored in the container. All disk
accesses are performed in the granularity of containers.
Storing adjacent segments in the same container greatly
improves dedupe performance, by reducing container I/O
and by improving indexing efficiency (as discussed in
Section 3.2.1). The SM also incorporates the dedupe in-
dex, and updates it when segments are added/removed.

The client component reads file contents or receives
data streams (e.g., data fromtar), performs segmenta-
tion, and calculates segment FPs. After querying the SM
index, the client creates references to the existing copies
of FPs located in the SM, and initiates data transfers for
new FPs. Once a file has been fully processed, the File
Manager is updated with file metadata.

Without loss of generality, we use fix-sized, 4 KB seg-
ments, for fine-granularity dedupe—although none of the
mechanisms relies on this assumption.

3.2 Progressive Sampled Indexing
Most dedupe systems, when performing backup restore,
rely on the index—or a similar catalog-like structure—
in order to determine the disk location of each segment.
This forces the strict requirement for at least onecom-
plete indexcontaining location information for all FPs,
that the system will have to maintain and protect against
crashes, corruption etc., because errors cannot be toler-
ated. If a segment’s disk location cannot be determined
due to index failure, the whole file or backup gets cor-
rupted. Maintaining such a data structure is a difficult
and resource consuming task, that almost certainly im-
pacts system scalability and performance, since the index
typically needs to be stored both in memory, for perfor-
mance, and on disk, for durability.
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In order to address the indexing challenges and scale
to billions of objects with high performance we had to
remove this restriction by introducingdirectly locatable
objects: when a file is stored in the system, file seg-
ment location information is stored with the file meta-
data, therefore removing the need to consult the index for
the exact location of file segments. For example, if fileF
consists of segments with FPsA, B andC, stored at disk
locations 1, 2 and 3 respectively,F would be represented
by the list ”A,1,B,2,C,3”—instead of just ”A,B,C”. The
increased file metadata size is not a problem, since meta-
data are stored on disk, while the indexing freedom we
get in exchange is extremely valuable.

By decoupling indexing and restore we no longer need
to maintain a full index. Instead, we introducesampled
indexing, that is based on the observation that given cer-
tain amounts of memory and raw capacity, we can cal-
culate the index size, and determine the number of en-
tries that need to be dropped. In particular, ifM is the
amount of memory available for indexing (in GB),S is
the dedupe segment size (in KB),E is the memory entry
size (in bytes), andC is the total supported storage (in
TB), then we can supportM/E billion entries, while the
system consists of a total ofC/Sbillion segments. There-
fore, if we assume a sampling periodT, signifying that
we maintain “1 outT” fingerprints in memory, we can
define a sampling rateRas follows:

R= 1/T = (M/E)/(C/S) = (M ∗S)/(E∗C) (1)

In the example of Table 1, using 22 bytes per index entry,
with 4 KB segments and 64 GB of memory for indexing,
we can support 11.6 TB of data with a sampling rate of
1 (i.e., a full index). Scaling to 1,000 TB, would require
a sampling rate of 0.0116—i.e., insert in the index one
out of 86 FPs. Using an 8 KB segment, we could double
the raw capacity, or double the rate to 1/43, sacrificing
some dedupe accuracy for higher index density. Increas-
ing the indexing capacity of the system by adding more
RAM is rewarded with higher sampling rates (i.e., better
dedupe efficiency), while increasing only the storage ca-
pacity results in a lower sampling rate, but this is often
acceptable, in return for “infinite” system scalability.

3.2.1 Dedupe efficiency: pre-fetching and
caching.

Since “1 out ofT” FPs is inserted in the index, index
hits—and, consequently, dedupe efficiency—would be
reduced by a factor ofT. However, when a lookup oper-
ation hits on a sampled FP (also referred to as a “hook”),
we locate the container it belongs to and pre-fetch all
FPs from that container’s catalog into a memory cache.
It has been shown [19] that the likelihood of subsequent
lookups hitting on the FP cache is high, due to spacial lo-
cality: if hook FPA was followed by dropped FPB, then

it is very likely thatA andB will reappear in order in the
future, in which caseA will have seeded pre-fetching of
its container catalog, resulting in a cache hit forB.

Container catalog pre-fetching can be extremely effec-
tive in improving the deduplication efficiency of a sam-
pled index. However, pre-fetching introduces a minimum
sampling rate: at least one FP per container (e.g., the
first FP stored in the container) must be in the mem-
ory index as a hook, in order to seed pre-fetching. Be-
cause of this, if container size isK MB, thenR≥ Rmin =
S/(K ∗ 210) and, subsequently, scalability is no longer
“unlimited”: the maximum supported capacity is now
C ≤ (M ∗K ∗ 210)/E. For 4 KB segments and 16 MB
containers, at least 1 out 4096 FPs needs to be sampled,
and with 64 GB of RAM, as in the example of Table 1,
C≤ 47,662 TB—which is still very high.

Deduplication efficiency. Although the combination
of sampling and FP pre-fetching can often yield up to
100% duplicate detection, random eviction of cache en-
tries may reduce deduplication. Using a simplified model
we can estimate the dedupe efficiency of the system.
Each container catalog contains at most(K ∗ 210)/S=
1/Rmin = Tmin entries. If we want to achieve deduplica-
tion efficiencyf %, and we sufferx misses from one con-
tainer, then:

f/100= 1− (x/Tmin)⇒ x= Tmin∗ (1− ( f/100)).

If a particular container suffers one eviction during a
large time frame (most likely scenario, especially when
LRU is used), then allx misses will fall between two con-
secutive hooks hitting on the index, and therefore:

T = 1/R= x+1⇒ T = Tmin∗ (1− ( f/100))+1⇒

⇒ (E ∗C)/(S∗M) = Tmin∗ (1− ( f/100))+1 (2)

Using Equation 2 we can calculate that in the example
of Table 1, with 64 GB of memory, the deduplication
efficiency will be f = 97.9%. Alternatively, for a given
target dedupe efficiency, we can calculate the necessary
values to achieve it: for example, if we wantf ≥ 95%,
and givenE, C andS, the amount of memory required is
M ≥ 26.7 GB.

3.2.2 Progressive Sampling.

A simple, yet important, optimization to sampled index-
ing is based on the observation that Equation 1 is using
the total storage capacity of the system, and, therefore,
calculates the value ofRtot, required to support allC/S
billions of objects. However, at any given time, only the
amount of data that are actually stored in the system need
to be indexed, which allows us to utilize aprogressive
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sampling ratethat calculatesR using the amount of stor-
ageused, as opposed to the maximum raw storage. Ini-
tially we setR= 1, and gradually decrease it as more stor-
age gets used. In our working example, with 64 GB of
RAM, R= 1 can index 11 TB of storage. As we approach
the 11 TB limit, we can setR= 0.5 and down-sample the
index (e.g., drop index FPs withFP mod2 6= 0), thus
doubling the indexing capacity. Eventually, as usage ap-
proaches 1,000 TB,Rwill converge toRtot = 0.0116.

3.2.3 Implementation

The index and cache have been implemented in C++
using a highly parametrizable hash table design, which
we call dhash, optimized for high performance and ef-
ficient memory usage. TheM GB of memory available
for indexing are divided to fixed size buckets (1 KB
by default), allowing us to have a maximum ofY =
M/bucketsizein KB millions of buckets. No pointers
are used in a dhash structure, and all operations use off-
sets, allowing us to 1) perform custom memory manage-
ment (bucket slab allocator), 2) get memory savings by
replacing each 8-byte pointer with 6 bytes of offset data,
and 3) make the dhash easily serializable (e.g., when
checkpointing to disk at system shutdown).

If a dhash is used at the role of the index, we aim
to accommodate as many sampled FP entries as pos-
sible. We utilize 2b buckets for the hash table, where
b= log2(Y∗220)−k. The system parameterk determines
the number of buckets reserved for collision handling.
Each index entry contains a partial FP (since theb least
significant bits of the FP are encoded in the hash table
position), and the container number the FP belongs to.
For simplicity we use 128-bit MD5 (which is not strong
enough for production, but adequate for our testing pur-
poses), leading to a typical entry size of 18 bytes2. Each
index dhash also utilizes a Bloom filter, to avoid unnec-
essary lookup operations, which greatly improves perfor-
mance.

A cache dhash is optimized mainly for performance:
it will use all buckets for the hash table, and handle col-
lisions by running a cache eviction algorithm. A cache
dhash can employ one of three eviction policies when
collisions for a particular bucketQ occur: Immediate
evictionwill empty Q, and consider all the containers of
Q’s previous entries as evicted from the cache. This pol-
icy is very fast since it performs lazy eviction of FPs, al-
lowing for subsequent lookups to hit on those entries. On
the downside, this policy penalizes multiple containers at
once.Eviction by thresholdis similar to immediate evic-
tion, but the containers whose entries are being removed
from Q will not be considered as evicted until a certain
percentage of their total entries has been removed from

2With a stronger 160-bit hash, the entry size becomes 22 bytes.

all cache buckets. This imposes less of a penalty to con-
tainers with entries inQ, but may lead to poor deduplica-
tion if the threshold is high, since a particular container
may not be pre-fetched even though many of its entries
have been evicted.Container LRUwill evict the entries
of the least recently pre-fetched container. If that does not
free up space inQ, the process is repeated. Although this
is the policy that yields maximum dedupe efficiency, it is
also the one with the most overhead. Our default policy
is immediate eviction, which provides good deduplica-
tion efficiency, and performance only slightly lower than
eviction by threshold.

In order to provide high dedupe efficiency after sys-
tem reboots or crashes, we must ensure that a relatively
recent index checkpoint is stored persistently3. Bucket
change-tracking combined with our pointer-free imple-
mentation make checkpointing efficient (only a few sec-
onds per checkpoint). Our current policy creates check-
points every few minutes, and on system shutdown.

SSD indexing. Although sampling provides an effi-
cient way around scalability restrictions imposed by
memory limitations, we wanted to also provide a way to
improve scalability even with modest amounts of mem-
ory, and without having to resort to very low sampling
rates. To that end we have also implemented a (persis-
tent) SSD-based version of our sampled index. Sam-
pled fingerprints are stored on sorted SSD blocks and
all available memory is used for three performance op-
timizations: 1) create an SSD summary data structure
SSDsum, 2) maintain a Bloom Filter for the SSD index,
and 3) maintain an FP cache of pre-fetched containers—
similar to that used for the memory index. TheSSDsum
data structure keeps track of the first FP in each of
the SSD’s (sorted) blocks, thus allowing us to perform
any lookup with at most one SSD block read: when a
lookup(X)operation is performed,X may be found in the
cache, or it may be found by reading the SSD blocki,
whereSSDsum(i)≤ X < SSDsum(i +1). The SSD in-
dex is read-only, eliminating the need for shared lock-
ing during accesses. All SSD index updates are cached
and logged. Eventually, index updates are performed in
batches (and with the SSD exclusively locked): for our
128 GB SSD a full update takes less than 9 minutes, and
we can afford to update the SSD many times per day.

3.3 Grouped Mark-and-Sweep
The challenge in reference management, as discussed in
Section 2.2, is to ensure reliability while ensuring that
the reference management mechanism is also both scal-
able and fast enough to keep up with the backup speed.
A mark-and-sweep approach is very reliable, but offers

3Notice that even if we lose all index index entries, correctness is
preserved.
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Figure 2: Example illustrating the scalability of grouped mark-and-
sweep.

poor scalability because it needs to touch every file in
the system. To address this challenge we propose the
grouped mark-and-sweep(GMS) mechanism, which is
reliable, scalable, and fast. The key idea is to avoid touch-
ing every file in the mark phase and every container in
the sweep phase. GMS achieves scalability because its
workload becomes proportional to the changes—instead
of the capacity of the system.

The operation of GMS is based on change-tracking
within the File Manager. As presented in Figure 1, the
File Manager keeps track of files, backups, and backup
groups. A file can be a regular file, a database backup
stream, an email, etc. A backup is a set of files, e.g., all
files under a set of directories. The creation and contents
of backups are in the control of the user.

Backup groups aim to control the number of entries
that GMS needs to manage, and are created and man-
aged by the File Manager. When backups are small, we
aggregate multiple small backups to one bigger backup
group. The File Manager tracks changes to each backup
group, and for each changed backup group, it further
tracks whether files have been added to or deleted from
it. During a GMS run, the following steps take place:

1. Mark changed groups. Only mark the changed
backup groups and do nothing for unchanged
backup groups. As an example in Figure 2, as-
sume that File Manager’s change tracking shows
that, since the last GMS cycle, we deleted some
files from group Group1, added some files to group
Group3, and made no modifications to Group2. In
this case we only need to touch files in backup
groups Group1 and Group3. Usually, most backup
groups (e.g., Group2) are not changed and files in
those groups don’t need to be marked. The mark re-
sults of G1 and G3 are recalculated by traversing all
files in Group1 and Group3 and recalculating G1
and G3 for all containers that have segments used
by those files. A group’s mark results, say G1, is a
bitmap implemented as a file for each container.

2. Add affected containers to the sweep list.Only
containers used by groups that have deleted files
need to be swept because only those containers may

have segments freed. In the example of Figure 2,
Group1 has files deleted and it has used containers
1 and 2. So we put these two containers in the sweep
list. The segments in other containers are either still
referenced by files in the unchanged groups (say
Group2), or referenced by new files in new groups
(say Group3).

3. Merge, sweep, and reclaim freed space.For each
container in the sweep list, we merge the mark re-
sults of all groups using that container. If a segment
is not used, it can be reclaimed. In the example of
Figure 2, for Container 1, we merge (the old) G2
and (the new) G1, to determine potentially unused
segments. Similarly, we merge (the new) G3 and
(the new) G1, to determine potentially unused seg-
ments in Container 2.

As it becomes clear from the example of Figure 2,
GMS provides two important scalability benefits. First,
old mark results (e.g., G2) can be reused, without having
to re-generate them in every mark-and-sweep cycle. Each
set of mark results is stored and reused in the future, mak-
ing the mark phase scalable by avoiding to touch the ma-
jority of the unchanged backup groups. Secondly, unlike
conventional mark-and-sweep where all the entries are
swept to determine the unused entries, in GMS we know
which containers have reference removal operations, and
the system only needs to sweep that subset of contain-
ers. Therefore the majority of containers in the system
are usually not touched in the sweep step.

One drawback of GMS is that a group needs to be re-
marked even if just one file has been deleted from it. For-
tunately the overhead is surprisingly small: segments can
be marked at a rate of 26 GB/sec. Since most bitmaps are
not changed, there are little work in the sweep phase.

Overall, GMS makes mark-and-sweep scalable by
only touching the changed objects, while maintaining the
reliability of mark-and-sweep. If errors occur, the whole
process can start over and all operations are idempotent.
Finally, the mark results (e.g., G1 and G2 for Container
1) serve as a coarse reference list for segments in the con-
tainers. When data corruption occurs in a container, the
mark results can give us a complete list of backup groups
that use that particular container. This limits the set of
affected files significantly, and greatly enhances recover-
ability. Otherwise, we would need to go through all files
in the system to determine which files are using that con-
tainer.

Discussion. An interesting issue related to reference
management is concurrent reference updates (data dele-
tion) and data backup. In the example of Figure 2,
Backup 5 may still be active when it gets marked, and
after all changed backup groups are marked, GMS deter-
mines that segmentx can be deleted. If Backup 5 uses
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x between the time Backup 5 was marked and the time
that GMS deleted segmentx, data loss will occur as a
backup uses deleted/non-existent segments. HYDRAs-
tor [4] uses a read-only phase to freeze the system while
updating segment reference counts. In practice, the vi-
ability is dubious. On a busy system, there are always
some active backups. It is very unlikely to find a time
window when the system can be frozen.

Our system uses an in-memory protection map to ad-
dress this problem: after GMS begins, all segments used
by current active backups are protected by storing their
segment fingerprints in a protection map in memory.
GMS only deletes segments whose fingerprint is not in
the protection map. This way GMS can be certain that
segments in use will never get deleted. The protection
map grows while GMS is running and gets deleted once
GMS completes. This is another reason why GMS needs
to be fast enough to prevent the protection map from
using too much memory. To mitigate the time spent in
GMS, and limit the growth of the protection map, GMS
can be done more frequently.

3.4 Client-Server Interaction
Even with high-performance server components, it is im-
possible to achieve high throughput, unless the client is
able to push data to the server at a high-enough rate.
To that end, our client component is based on an event-
driven, pipelined design, that utilizes a simple, fully
asynchronous RPC implementation.

Our RPC protocol is implemented via message pass-
ing over TCP streams or system IPC mechanisms (e.g.,
named pipes), depending on whether communication is
remote or local. The TCP implementation utilizes mul-
tiple TCP connections to keep up with the throughput
requirements. All RPC requests are asynchronous and
batched in order to minimize the round-trip overheads
and improve throughput. A client can register different
callback functions for each type of RPC. The callback
functions are used to deliver the RPC results to the caller
as they become available.

Based on our asynchronous RPC protocol, we have
implemented an event-driven client pipeline, presented
in Figure 3, where each backup step is implemented as a
separate pipeline stage.

First, the reader threadR receives the backup sched-
ule, reads large chunks of data (e.g., 256 segments), and
enqueues requests to the hash queueHQ. The hashing
threadH dequeues requests from HQ, performs segmen-
tation for each data chunk, and calculates FPs. Calcu-
lating cryptographic hashes is a computationally expen-
sive operation, and, in order to fully utilize multiple CPU
cores, H employsn MD5 worker threads (H1,H2, . . . ,Hn)
that calculate FPs asynchronously. Once a chunk’s seg-
ment FPs have been calculated, callback functionCB1

Figure 3: Client pipeline, consisting of five main event-handling
threads connected using queues.

enqueues the updated request to the lookup queueLQ.
The lookup threadL receives requests from LQ and

issues one single, batched, asynchronous lookup RPC to
the server, incurring a single RPC round-trip for all 256
FPs. Callback functionCB2 delivers the RPC reply and
creates references to the containers of the FPs that were
found on the server. If one or more FPs were not found,
CB2 enqueues the updated request in the store queueSQ.

The store threadS receives requests from SQ, and
sends raw data blocks to the back-end through one sin-
gle, batched, asynchronous RPC. Callback functionCB3
ensures that the write operation was successful, and for-
wards the last request for each file to the close queueCQ.

Finally, close threadC, receives the final request from
CQ, performs cleanup, calculates file metadata, and up-
dates the File Manager.

Client queues allow us to better understand system be-
havior. For instance, on a client with low hash calcula-
tion throughput, we can observeHQ to be full most of
the time, while low network performance will lead to
LQ andSQbeing mostly full. In such cases, more than
one threads can be used for each pipeline stage. By using
two store threads, for example, we can consume requests
from SQat a higher rate.

4 Evaluation

Our main test-bed is an 8-core Xeon E5450 at 3 GHz
with 32 GB RAM, running Linux. Our 24 TB disk array
consists of 12 disks, 2 TB each, and uses RAID 04 to
stripe all physical disks to a single logical volume.

We used two main data sets for testing. Our synthetic
data set consists of multiple 3 GB files, each with glob-
ally unique data segments. Our second data set con-
sists of virtual machine images, which are a very com-
mon real-world enterprise use-case, that takes advantage
of deduplication. We use a VMware “gold” disk image
(VM0), hosting a Microsoft Windows XP installation,
and created three additional versions of it (VM1, VM2,
andVM3), each with incremental changes: VM1 is VM0
with all Microsoft updates and service packs, VM2 is

4RAID 0 is not recommended for a high-availability system, but
we used it to achieve maximum performance and mitigate the disk
bottleneck—thus emulate a high-end array.
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VM1 with a large anti-virus suite installed, and VM3
is VM2 after the installation of various utilities (docu-
ment readers, compression tools, etc.). This data set aims
to measure the “real-world” dedupe performance of our
system, using a file type of great importance for the en-
terprise.

For both data sets we configured the system to use
a sampling rate ofR= 1/101, which is low enough to
stress the system. For the synthetic tests performed on
our current test-bed, the index uses 25 GB memory to
hold 1.23 billion FPs. With a sampling rate of 1/101, this
is equivalent to a full index of 124 billion FPs, or 500 TB
of raw storage—given that our segment size is 4 KB5.

4.1 Throughput
4.1.1 Backup Throughput

Index throughput. Before performing any macro-
benchmarks, we used micro-benchmarks to ensure that
the index can support our goals—e.g., in the exam-
ple of Table 1, at least 400 MB/sec. In all the micro-
benchmarks the index could easily handle the de-
sired rates: insert/lookup/remove cost does not exceed
7,619/12,020/16,836 cycles, respectively, even when in-
dex occupancy is more than 97%. For instance, on a 3
GHz CPU, and in the worst-case scenario where all in-
coming FPs exist in the system (and the Bloom filter is
of no help), the index can sustain a backup rate of around
975∗T MB/sec, where T is the sampling period. For our
test configuration,T = 101, and the index can sustain a
rate of about 98.5 GB/sec.

Unique data: baseline vs. prototype. Figure 4 shows
the backup throughput using the synthetic data set. We
vary the number of concurrent backups, in steps of 1, 4,
16, 32, 64, 128 and 256, in order to evaluate the system’s
capability for concurrency. For consistency, all backups
consist of multiple 3 GB files that add up to 768 GB.

The unique data throughput test aims to measure the
prototype’s behavior in the absence of duplicates. Unique
data can be significant when a client performs the ini-
tial backup or a lot of changes have been made. This
test stresses the disk and the network systems as large
amounts of data need to be transferred.

To get a sense of the performance of raw hardware,
we first measured a baseline throughput. The baseline
throughput of the disk array (“Baseline” in Figure 4), is

5Testing our system with a configuration that supports a raw capac-
ity of 500 TB per node may seem inadequate at first. One should keep
in mind, however, that 1) We are stressing the system by using4 KB
segments. Most systems use significantly larger segments, leading to
higher raw capacities. 2) This issingle-nodecapacity with only 25 GB
memory for indexing. As such, it is higher than that of most systems
we know of (as presented in Section 4.4). Unfortunately we don’t have
access to servers with more memory or larger disk arrays so asto test
higher capacities.
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Figure 4: Aggregate throughput for our synthetic data set, with varying
number of concurrent backups. Our system is capable of 6 GB/sec for
duplicate data backup, and close to 1 GB/sec for concurrent backups of
unique data. Dedupe efficiency is 97%, and we support 200 TB storage
for every 10 GB of system memory (500 TB for 25 GB in this test).

measured by writing the same synthetic workload to the
file system. For a single backup, the baseline through-
put is around 1 GB/sec. This is the maximum throughput
of the storage system. The baseline throughput quickly
drops to around 300 MB/sec for storing multiple back-
ups concurrently because disk contention increases with
the number of concurrent backups.

Backing up the same data set (“Unique data” in Fig-
ure 4) using our prototype achieves a steady throughput
of about 950 MB/sec as we scale to multiple concurrent
backups, which is significantly better than the regular file
server. This is mainly because our prototype performs
segmentation on all incoming data, and manages the se-
rialization of containers to disk (regardless of content
source), therefore decreasing concurrent disk accesses.

Duplicate data backup throughput. After backing up
the unique data workload using our prototype, we backup
the same files again (“Duplicate data - cold cache” line
in Figure 4). This time, all segments are duplicates, and
we aim to observe how our prototype performs when it
only needs to reference existing data, instead of physi-
cally storing new data. This test mainly stresses the index
lookup and disk pre-fetching operations.

Initially, for low levels of concurrency, the penalty for
small random disk reads, for container FP catalog pre-
fetching, dominates performance. Throughput improves
steadily as we increase the level of concurrency and du-
plicate elimination pays off, with aggregate disk through-
put reaching over 6.6 GB/sec for 64 concurrent backup
streams. When disk accesses are already random, con-
current access doesn’t introduce more randomness. On
the other hand, concurrent accesses can fully utilize ev-
ery disks in the disk array. Thus the aggregate through-
put increases. After 64 concurrent streams, the disk ar-
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Backup Unique Duplicates Duplicates
streams data (cold cache) (warm cache)

1 840 (-4.9%) 699 (-26.4%) 1,989 (12.9%)
4 992 (-0.5%) 2,556 (-6.3%) 6,326 (0.6%)
16 999 (1.9%) 4,802 (-0.2%) 11,992 (5.1%)
32 985 (0.3%) 6,420 (1.3%) 12,134 (5.3%)
64 984 (-0.2%) 6,621 (0.1%) 11,865 (3.3%)
128 988 (3.2%) 6,315 (1.6%) 11,755 (2.1%)
256 955 (1.9%) 6,041 (-1.1%) 11,946 (12.3%)

Table 2: We repeated the experiments of Figure 4 using the SSD index.
Results are in MB/sec. The percentages in parentheses show how much
faster/slower the SSD index is from the memory index.

ray’s capacity for pre-fetching is saturated and mild ef-
fects from concurrency overhead (index/cache locking,
disk accesses etc.) are becoming obvious: duplicate data
backup throughput falls to 6 GB/sec and remains mostly
constant.

To verify our conjecture that duplicate data backup
throughput limitations are mainly due to disk bottleneck
(container FP catalog pre-fetching) instead of CPU, we
backup the same files a third time immediately after the
second backup. In this case, many FPs are already in the
cache and fewer disk pre-fetches will be necessary. The
throughput is shown as “Duplicate data - warm cache”
in Figure 4. First we observe that overall throughput is
much higher, reaching 11.5 GB/sec at around 16 streams,
confirming that the bottleneck in our previous tests was
in the disk random access performance, which deter-
mines the duplicate backup throughput. Additionally, we
observe that the effects of concurrency are barely visi-
ble: aggregate throughput is stable up to 128 concurrent
backups, but at 256 concurrent streams the overhead of
pthread shared locks used for protected accesses to the
FP cache buckets, as well as a few cache evictions that
render the cache less “warm”, take their toll—slightly
lowering the aggregate throughput (10.6 GB/sec).

SSD indexing throughput. Using SSD index imple-
mentation on an 128 GB SSD drive, we repeated the
throughput experiments of Figure 4 in order to 1) test
the efficiency of our SSD indexing design, and 2) verify
the effects of shared locking to duplicate data backups—
since the SSD index is read-only and uses no shared
locks. For our tests, we maintained the same sampling
rate (R= 1/101) and used the same amount of memory
for caching as before (2 GB)—so as to make a fair com-
parison. Notice that with this setup we are now using a
total of only 10 GB and the amount of raw storage the
system can support rose from 500 to 1,600 TB. Due to
our efficient SSD index design and the lack of shared
locking, most throughput results were similar or superior
to those of the memory index. Table 2 summarizes the
results and difference between the SSD index and mem-
ory index throughput. Notice, however, that these results

CPU Unique 100% Duplicates 100% Duplicates
cores data (cold cache) (warm cache)

1 347 354 356
2 599 612 612
4 900 1,167 1,172
8 907 1,983 2,004
14 925 2,373 2,485

Table 3: End-to-end backup throughput using a varying number of
CPU cores. All numbers in MB/sec.

include the cost of updating the SSD every time 65,536
new sampled entries have accumulated. A less (more)
frequent SSD update policy would yield faster (slower)
throughput results.

End-to-end throughput. Our next test attempted to in-
clude client performance in our evaluation, in an end-
to-end system test, using a single 25 GB backup stream
of unique segments. As presented in Table 3, we var-
ied the number of CPU cores dedicated to MD5 cal-
culation, and performed three tests for each configura-
tion: an initial backup, a second backup of the same
data with cold caches, and a third run with warm caches.
All backups were performed using a 16-core Intel Xeon
E5520 “client”, with 32 GB of RAM, running RedHat
Enterprise Linux 5. The results of Table 3 show that
backing up unique data does not get much faster with
more than 4 cores. Careful observation revealed two rea-
sons for this behavior. First, even when using the Linux
loopback interface, we could not get throughput higher
than 10 Gbps, on that particular host. Notice that when
bulk data transfers become unnecessary, the performance
reaches 2.49 GB/sec. Second, we realized that careful
optimization of our simple RPC mechanism might be
able to yield better performance. However, optimizing
network behavior and the RPC implementation is be-
yond the scope of this study. In order to evaluate the
real throughput of our client design we made the assump-
tion of an infinitely fast network/RPC infrastructure, and,
temporarily, eliminated the network performance bottle-
neck. This revealed the client’s full potential: running on
our (slower) main Intel Xeon 5450 server, the client was
able to push 360/697/1,023/1,319MB/sec of unique data,
with 1/2/3/4 cores dedicated to MD5, respectively.

Backup throughput conclusions. In summary, our
backup throughput experiments show that, when back-
ing up unique data, our system is nearly as efficient as a
normal file server for single stream backup (no penalty
for deduplication) and several times faster for multi-
stream backups. This shows that our system can better
organize the data on disks to achieve high throughput
even with concurrent backups. When data are mostly du-
plicates, we can achieve 950 MB/sec for single stream
backup and 6 GB/sec for multi-stream backups. Multiple
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Figure 5: The reference update time for a given amount of data backed
up or deleted when the system is empty and nearly full. The time is pro-
portional to the data changed, and the slope shows the updatethrough-
put (3 GB/sec). Notice that the throughput is stable regardless of the
capacity of the system or the amount of changed data.

streams help improve the aggregate throughput because
they maximize the throughput of container FP catalog
pre-fetching.

The major limitations that we observed are due
to hardware restrictions: limited container pre-fetching
throughput and CPU/networking bottlenecks in our
end-to-end performance tests. On a production system
equipped with hundreds of fast-seeking physical disks,
and utilizing faster network connectivity, we expect to
see much higher throughput. The only software limi-
tation we observed was due to pthread locks, and is
considered of secondary importance since it only im-
pacts throughput minimally for more than 128 concur-
rent backup streams.

4.1.2 Reference Update Throughput

A critical property that is not often tested in deduplica-
tion systems, is the performance of reference updates, es-
pecially when we need to delete data—an operation that
happens almost daily. Figure 5 shows reference update
times measured when the synthetic data set gets backed
up or deleted, both when the system is empty and near
full capacity. The time is linear with the size of data
backed up or deleted, because we need to update the ref-
erence of each segment that gets used.

The slope of the line corresponds to the throughput
of the reference update, which is 3.2 GB/sec for data
addition, and 3.1 GB/sec for data deletion. Deletion is
slightly slower because when segments get deleted, they
also need to be removed from the index. Contrary to a
regular file-system, the deletion throughput of the dedu-
plication system is slow because we pay the price of
data sharing. However, it is still faster than the backup
throughput of new data, which prevents the backup pro-

Unique Total Ideal Real De-
segs unique MBs MBs dupe

VM0 518,326 518,326 2,123 2,211 96%
VM1 733,267 921,522 3,775 3,938 96%
VM2 904,579 1,189,230 4,871 5,085 96%
VM3 1,145,029 1,616,585 6,621 6,860 97%

Table 4: Deduplication efficiency results for subsequent backups of
four different versions of a Windows XP VMware image file.

cess from having to stall and wait for the deletion mech-
anism to free up space.

4.1.3 Restore Throughput

Deduplication system benchmarks are dominated by
backup testing and testing of restore is mostly ignored—
probably because the restore process is usually slow, and
correctness is the main concern. However, restore is an
important operation and we wanted to ensure that our
prototype provides sufficient performance. During our
tests all data were restored correctly. Our single stream
restore throughput was measured around 1 GB/sec, and
430 MB/sec for two or more concurrent restore streams.
Single stream restore is fast because most accesses are
sequential, while multiple concurrent restore streams in-
troduce disk seeking. The use of directly locatable ob-
jects allows us to perform restore without using the in-
dex, making the whole process very scalable.

4.2 Deduplication Efficiency
Although we are willing to sacrifice some dedupe ac-
curacy for high scalability, we still want to make sure
the system provides adequate duplicate detection. In par-
ticular, since sampling provides the desired scalability,
dedupe efficiency will be mostly determined by the ef-
fectiveness of pre-fetching.

In our synthetic data set, the true (“ground truth”) du-
plication is 100%. Our prototype consistently eliminates
no less than 97% of duplicates. This is consistent with
the theoretical expectation, based on Equation 2: when
we pre-fetch FPs from the container catalog, and because
the sampling rate is 1 out of 101, the first 100 FPs may
not be found. After the first hit, (101st FP in the worst
case), we pre-fetch all FPs in that container. So theoreti-
cally we may fail to detect 100 over 4096 FPs, i.e., 2.4%.

For our VMWare data set we used our test sampling
rate of 1/101, and a small FP cache (256 MB) in order to
ensure that the cache cannot hold the whole working set.
We performed multiple backups of each VM image, ob-
serving 100% dedupe efficiency for each run, with very
high throughput (2.4 GB/sec). A more interesting exper-
iment, however, presented in Table 4, is the dedupe ef-
ficiency achieved when backing up VM0, VM1, VM2,
and VM3 back-to-back. Image VM0 has 518,326 4 KB
segments, taking up 2,211 MB of disk space, instead
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of 2,123 MB, giving us 96% of the ideal dedupe effi-
ciency. Backing up VM1 introduced 403,196 new seg-
ments (330,071 of VM1’s segments were also in VM0),
taking up 3,938 MB, for a steady dedupe efficiency of
96%. Similarly, VM2 and VM3 were deduplicated at
96% and 97% of the optimal dedupe rate, which is a very
satisfying result for a cache of only 256 MB. These re-
sults are particularly encouraging, since field experience
has demonstrated that VM image backups are one of the
most common and effective uses of dedupe.

4.3 Scalability
In order to test the scalability of the system we first pop-
ulated it to near-full capacity (480 out of 500 TB i.e.,
95.5%) with unique data. Because our disk array is only
24 TB, we stored everything except the actual segment
data. As the code mainly operates on the metadata, dis-
carding segment data has no impact on the correctness
of the test. After the system was populated we repeated
the same throughput tests, during which everything was
stored on disk (including segment data).

Figure 6 presents a throughput comparison between an
empty and near-full system. For multi-stream through-
put, the system occupancy has negligible performance
impact because for both unique and duplicate data the
throughput is, once again, bounded by the disk’s sequen-
tial write and random read performance, respectively.
When the system is near full capacity, the index lookup
and update time increase slightly. But the main bottle-
neck is still disk I/O—overshadowing the effects of CPU
overhead. This means that the throughput of the system
will scale well in terms of system capacity while disk
I/O is the main bottleneck—which is probably going to
be true in the foreseeable future.

The index overhead does show up for single stream
throughput. The throughput of single stream backup near
full capacity is slower than that of the empty system be-
cause single stream throughput is CPU bound and ac-
cessing a “fuller” index takes a little bit more CPU time.

Figure 5 also compares reference update performance
when the system is empty and near-full. As expected,
the time for reference update is almost the same, since
the grouped mark-and-sweep algorithm only touches the
changed backup groups. The majority of the references,
regardless of how many they are when the system is near
full capacity, are not touched by the grouped mark-and-
sweep. Finally, we also checked the deduplication effi-
ciency for both the synthetic and real data sets and ob-
served no degradation in a near-full system.

Our results demonstrate that all parts of our prototype
are able to scale to high capacity, with almost no perfor-
mance decrease. We are confident that our system would
scale to higher capacities, given more resources. More-
over, the raw capacity supported by our system (200 TB
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Figure 6: Throughput scalability tests show that there is no signifi-
cant throughput drop when we get close to full capacity. We incur O(1)
cost for most index operations, and throughput is disk-bound for both
unique and duplicate data backups.

for every 10 GB of memory) is higher than the capacity
of any other single-node system presented in Section 4.4.

4.4 Comparison to State-of-the-art

When evaluating dedupe systems it is often the case that
custom methods and private workloads are used to quan-
tify the effectiveness of the proposed mechanisms (e.g.,
[19] and [12]). Comparisons to other systems are usually
difficult, and limited to references to results reported by
vendors, mostly because there is no agreed deduplication
benchmark that would make benchmarking and compar-
isons fair and meaningful. Furthermore, when aiming to
top the performance of state-of-the art systems, it is al-
most impossible to justify the cost and effort of obtain-
ing, deploying and benchmarking even a single one of
them. In our evaluation we tried to use data sets that will
exercise the system in interesting ways, and that are rel-
atively easy to be recreated and tested by other systems.

Table 4.4 presents some of the most popular high-
performance deduplication solutions available as of
April 2011. Assuming that all systems provide adequate
deduplication efficiency (specifications do not provide
precise numbers), we can see that our prototype’s peak
performance is similar to or better than that of all sys-
tems, with the exception of NEC’s HydraStor. However,
notice that HydraStor utilizes a large distributed system
(55 “accelerator” and 110 “storage” nodes) in order to
achieve its maximum throughput, and yet its raw capac-
ity is limited to only 1.3 PB. Our prototype’s single-
node scalability competes with that of all systems and
surpasses most of them, especially considering the lim-
ited amount of resources we have used (e.g., only 25 GB
of RAM per 500 TB forR= 1/101, on an older 8-core
server). Notice, however, that our goal to increase single-
node scalability is not meant to replace all multi-node
systems, but to potentially improve them by enabling
each node to make better use of its resources and increase
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Product Backup Capacity Nodes
(MB/sec) (TB)

DataDomain DD890 [3] 4,083 384 1
HP D2D4324 [7] 1,110 18 1

IBM ProtecTier [8] 1,000 1,000 2
Greenbytes GB4000 [6] 950 216 1

NEC HydraStor 55 +
HS8-3110R [14] 41,250 1,300 110

Our prototype 6,000 500 1

Table 5: Summary: state-of-the art dedupe products as of April 2011.

data density per node. By doing so we could decrease
the number of nodes necessary for a particular deploy-
ment, thus significantly decreasing the overall (acquisi-
tion, management, energy, etc) cost.

5 Related Work

Since the days of early deduplication systems, that per-
formed mostly file-level or naive block-level deduplica-
tion [1, 11, 16], a lot of effort has been put into optimiz-
ing duplicate detection. In particular, many systems have
investigated methods to perform content-aware segment
boundary calculation, aiming to improve better dupli-
cate coverage. Any degradation in dedupe efficiency was
considered unacceptable. Such variable-size segmenta-
tion algorithms, utilize different variations of byte-level
approaches, such as sliding window approaches (e.g.,
[5]), rolling hashes (e.g., [15]), Rabin fingerprints [2],
and bimodal chunking [10]. For instance, systems like
MAD2 [18], HYDRAstor [4, 17], as well as dedu-
plication solutions by DataDomain [19] and Hewlett-
Packard [12], utilize variable-size segments, in an at-
tempt to achieve maximum compression. However, even
if these algorithms make the best of raw storage (which
is not always the case, as observed by [9]), single-node
capacity is limited. Our work takes a different approach:
we are willing to sacrifice some deduplication efficiency
in order to achieve higher single-node scalability.

A sampling method is used in [12] to address indexing
scalability restrictions. However, that approach is signifi-
cantly different from ours, since it uses sampling to prob-
abilistically identify “super-segments” that are used to
perform coarse-granularity deduplication. Our segmen-
tation algorithm operates at fine granularity at all times,
and sampling is not used for pattern-matching, but for in-
dexing actual file segments. Additionally, our approach is
significantly more scalable, and can operate under heavy
memory constraints, with good sampling rates: in a set-
ting similar to the experiments presented in [12], our
sampled index would require about 74% less memory
(4.4 GB instead of 17 GB, withR= 1/101).

A lot of systems have used spacial locality to perform

some type of caching (e.g., [18, 19]), but, to our knowl-
edge, it has not been used before in combination with
an aggressive sampling approach, such as the one we are
proposing.

Our key assumption difference from previous efforts
is that we are willing to relax our duplicate detection ef-
ficiency requirements, in order to addressall threemajor
challenges of single-node deduplication. Most other sys-
tems have provided good solutions for a subset of prob-
lems, usually excluding single-node scalability and ref-
erence management. For instance, DataDomain [19] ad-
dressed the disk bottleneck, by introducing a series of
optimizations, including a Bloom filter, and spacial local-
ity. However, their system can support a limited amount
of raw storage, and is limited by network performance,
since duplicate detection is performed only at the server.
Additionally, it is not clear whether DataDomain’s sys-
tem can perform truly scalable resource reclamation.

HYDRAstor [4] on the other hand, achieves good scal-
ability, but it does so by using a highly distributed, hierar-
chical model, with each node holding only a few tens of
TB of storage. This design yields a high backup through-
put, but at the cost of a highly distributed, costly system.
Deletions in HYDRAstor, are implemented with a dis-
tributed reference counting method, which is difficult to
maintain correctly, and scale without a large performance
hit.

MAD2 [18] also uses a distributed storage system to
provide scalability, as well as a number of optimizations
that include spacial locality caching, and Bloom filters.
Deletions are a very challenging operation in this system
as well: they are performed only at the file level, and they
are also handled by a variant of reference counting, with
all the scalability and correctness problems discussed in
Section 2.2. To our knowledge, our grouped mark-and-
sweep approach is the only truly scalable, documented
reference management implementation, that is also very
resilient to errors.

Many scalable systems have adopted the event-driven
design, however it is interesting that the nature of our ap-
plication requires that we utilize it for theclient, rather
than the server. A pipelined client design was also pro-
posed by [13], but it is significantly different from our
design: it assumes pipeline stages whose operation re-
quires a fixed amount of time, making it unrealistic for
network operation. It also uses disk-based, client-side in-
dexing, it implements a lot of functionality in the kernel,
and it achieves scalability and throughput that is orders
of magnitude lower than those of our client design.

6 Conclusion

Important engineering challenges need to be addressed
in order to achieve the scalability, throughput and dedu-
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plication efficiency necessary to provide next-generation
deduplication support. We have presented a clean-slate
design that aims to maximize overall single-node ef-
fectiveness, and introduces new mechanisms that ad-
dress the most pressing of these challenges. Our di-
rectly locatable objects enable the use of progressive
sampled indexing—in memory or on SSD—which pro-
vides superior single-node scalability and memory us-
age efficiency—unlike any other system we know of.
Our grouped mark-and-sweep mechanism attacks the
difficult, and often neglected, resource management
and reclamation problem, in a truly scalable and effi-
cient manner. Additionally, we have proposed an asyn-
chronous interface to the server back-end, capable of
pushing data to the server at a high-enough rate.

The performance of our prototype validates the ef-
fectiveness of our design. Progressive sampled index-
ing achieves very good deduplication efficiency, while
using only 10 GB of memory per 200 TB of raw stor-
age (25 GB for 500 TB in our tests). Additionally, we
were able to achieve backup throughput ranging from
950 (all unique data) to 6,000 MB/sec (all duplicate
data), with deduplication efficiency no less than 97%,
while our grouped mark-and-sweep approach can pro-
cess data with speeds higher than 3.1 GB/sec, demon-
strating that single-node dedupe effectiveness can be
greatly improved by making good use of available re-
sources.
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