
Vsys: A programmable sudo

Sapan Bhatia∗, Giovanni Di Stasi†, Thom Haddow‡, Andy Bavier∗, Steve Muir♯, Larry Peterson∗

∗Princeton University †University of Napoli ‡Imperial College ♯Juniper Networks

We present Vsys, a mechanism for restricting access

to privileged operations, much like the popular sudo

tool on UNIX. Unlike sudo, Vsys allows privileges to

be constrained using general-purpose programming lan-

guages and facilitates composing multiple system ser-

vices into powerful abstractions for isolation. In use for

over three years on PlanetLab, Vsys has enabled over

100 researchers to create private overlay networks, user-

level file systems, virtual switches, and TCP-variants

that function safely and without interference. Vsys has

also been used by applications such as whole-system

monitoring in a VM. We describe the design of Vsys

and discuss our experiences and lessons learned.

1 Introduction

One of the key challenges we have faced when operating

PlanetLab [1, 11] is helping researchers to implement

and evaluate new ideas while maintaining a reasonable

level of isolation between experiments (each of which

runs in a separate slice). PlanetLab users may require

the ability to sniff a subset of network traffic for diagnos-

tic purposes, gain access to certain log data restricted to

administrators, view global system state that is typically

hidden from users, reserve TCP and UDP ports, create

IP-level rules, and so on. We have received these re-

quests frequently and continue to do so today [13]. Our

goal is to grant such privileges to enable research, while

simultaneously preserving isolation and the principle of

least privilege to the extent possible.

Service isolation can be imposed at multiple levels in

any system. A current trend is to equate virtual ma-

chines with service isolation, but different degrees of

isolation can be enforced by the hardware, virtual ma-

chines, operating system, and user-space tools. On a

PlanetLab node, Linux-Vservers [15] run each exper-

iment in a chroot environment that prevents cross-

domain actions between slices, and that provides a “su-

peruser” account with limited privileges. However, since

all slices share a single OS kernel, it is possible to grant

additional OS privileges to a particular slice, for exam-

ple, to let the “superuser” bind privileged ports or add

routes to the kernel’s IP forwarding table. But it is these

sorts of these privileges that, if misused, can unaccept-

ably impact other slices. We would like to limit a partic-

ular user to only bind port 53 to run his DNS service, and

to only change routes on virtual devices that he controls.

The problem is that the abstractions the OS gives us do

not support granting privileges to users while imposing

narrow limits on how they are used.

In this paper we describe Vsys, a framework that al-

lows users to invoke privileged operations via scripts

called extensions that precisely specify how these opera-

tions can be accessed. Vsys is inspired by the UNIX phi-

losophy of creating new system services by combining

simple OS primitives: Vsys enforces security policies

and achieves isolation through a combination of existing

OS primitives. For example, packet filters can block a

subset of IP traffic from a service, virtual devices com-

bined with bridging can be used to filter Ethernet traffic,

grep can filter access to files, IP policy routing can in-

stantiate key-based routes for packets, and so on.

Vsys began with the modest goal of being a sudo

compatible with chroot jails. The sudo [17] tool al-

lows users to run programs with the privileges of another

user. It enables coarse-grained admission control via an

access control list of commands that each user is allowed

to run, along with limited predicates on the arguments.

Vsys is designed with three primary goals that make it

an improvement over sudo: (1) ease of assembling new

extensions from existing OS abstractions and tools, us-

ing arbitrary programming languages; (2) ease of access-

ing extensions from the UNIX command line or within

arbitrary programs; and (3) maintaining a fine-grained

level of control over exactly what extensions users are

able to invoke and how. With Vsys, simple tools can be

used to rapidly develop extensions that multiple services

can access safely. Unlike modifications to the virtual

machine or OS layers of the system, a new Vsys exten-

sion can be developed and deployed on PlanetLab in a

matter of days and enhanced incrementally over time.

This paper makes three contributions. First, we dis-

cuss the design of Vsys, an important feature of which

is an Access Control Policy (ACP). Vsys ACPs insert

policy code between the user, the Vsys extension, and

the OS to ensure that the invocation of a given building-

block command is consistent with the privilege granted

to the user. Second, with the help of four heavily-used

Vsys extensions, we show that existing OS primitives

can be composed into powerful isolation abstractions,

enabling functions such as virtual networking. While

variants of the security mechanisms underlying Vsys

have been explored before, Vsys is novel both in its de-

tails, and in its scope—for instance, in how extensions

crosscut multiple OS subsystems (packet filtering, rout-



ing, sockets, file systems, etc.). Furthermore, Vsys has

been used on a large scale for several years. Finally,

we describe our experiences with Vsys and draw some

lessons on creating new abstractions and fostering an ac-

tive user community. We hope that these lessons and

experiences will be helpful to designers of systems ser-

vices and frameworks.

2 User View

In this section we describe Vsys from the standpoint of

how extensions are added and invoked. In the next sec-

tion we explain how Vsys works.

Backend! Frontends!

/home/john/vsys!

/home/alice/vsys!

/vsys!

1. Alice writes 

"10.0.0.1"!
 4. Alice reads 

output!

3. output!

2. sliceip 

executed, 

input 

"10.0.0.1"!

Vsys!
viptables!

vrpm!

vfind!

sliceip!

vtcp!

packetseer!

vps!

viptables!

packetseer!

vtcp!

sliceip!

Figure 1: Basic use of Vsys

Figure 1 illustrates the basic operation of Vsys. Vsys

extensions are executable scripts placed in a backend di-

rectory. Vsys monitors the backend directory and de-

tects when new extensions are copied in. For each exten-

sion in the backend directory, Vsys also expects a corre-

sponding ACL of the contexts authorized to use the ex-

tension. A context is just a system identifier like a slice

or user ID. Vsys then creates special files (a pair of FIFO

pipes or a UNIX domain socket) in the frontend directo-

ries for contexts listed on the extension’s ACL. Each pair

of FIFOs (for extensions with text input and output) or

UNIX domain socket (for passing arbitrary data types)

in a frontend directory maps to a specific extension in

the backend directory.

Vsys requires that the special files it creates can only

be read and written by contexts authorized to access

the Vsys extension. In the chroot environment used

on PlanetLab, each frontend directory is only visible

within one slice’s filesystem and so access to the FIFOs

or socket is limited to the slice’s users. On a standard

UNIX system, the frontend could be any directory (e.g.,

a subdirectory of the user’s HOME directory), and file

system permissions limit access to a specific user.

In order to use an extension, a user simply opens

the FIFO pipes or connects to the UNIX socket bearing

the name of the extension and writes some arguments

to it (e.g., to use a Vsys extension named sliceip,

the user opens FIFOs called /vsys/sliceip.in and

/vsys/sliceip.out). Vsys reads the arguments,

runs the appropriate executable script on these argu-

ments with sufficient privileges, and returns the output

to the user through the pipe or socket.

3 Vsys Design

Vsys is intended to dispatch requests from non-

privileged users to privileged extensions in a controlled

manner. While there could be many approaches to im-

plementing this functionality, we started with three de-

sign requirements. First, the Vsys framework should

leverage existing UNIX primitives where possible. The

philosophy of reusing OS building blocks when creat-

ing services inspired us to create Vsys; the Vsys design

should also follow this philosophy. Second, users should

be able to invoke Vsys using native operations on UNIX

and on the command line, rather than via a new API or

protocol. Third, one needed to be able to develop Vsys

extensions using native code in any programming lan-

guage. Our goal was to bundle Vsys as close to the OS

as possible, not tying it with proprietary libraries, and

to encourage users and administrators to contribute ex-

tensions by letting them program in their preferred pro-

gramming environment.

These requirements led us to model our interface af-

ter the everything-is-a-file idiom as in Plan9 [12]. Users

see Vsys extensions as special files in a /vsys directory,

and the Vsys daemon dispatches events back and forth

between these special files and processes running exten-

sions. The files that users interact with can be FIFO

pipes or UNIX domain sockets. While the former are

convenient to use, the latter support sending and receiv-

ing objects such as file and socket descriptors.

Vsys extensions are associated with access control

policies (ACPs). An ACP is a program that defines a fil-

ter on the arguments passed to an operation, admitting a

caller into the guarded operation only if the combination

of the arguments and the current calling context is al-

lowed by its policy. Each privileged operation wrapped

by a Vsys extension is associated with two ACPs: an in-

vocation ACP and a syscall ACP. The invocation ACP is

run before the Vsys extension is executed and filters the

arguments passed to the extension. The syscall ACP is

triggered every time the extension makes a system call.

Figure 2 provides an overview of how Vsys works.

Referring to the circled numbers:

1. A client process writes arguments into the input

FIFO or UNIX domain socket corresponding to a

particular Vsys extension. Vsys leverages UNIX file

permissions and chroot to limit access to the FIFO

or socket to a particular context (e.g., to a UID or a

PlanetLab slice).

2. The Vsys daemon reads the arguments from the

input FIFO or socket and looks up the corresponding



client!

In! Out!

Invocation ACP!

Syscall ACP!

Vsys extension!

Intercept 

syscalls!

input! output!

ctx,!

input!

ctx, args!

output!

1! 5!

2!

3!

4!

Vsys!

Figure 2: Vsys control flow

context. It passes the context ID and the arguments to

the extension’s invocation ACP. The invocation ACP

runs and returns either success or failure.

3. If the invocation ACP returns success, the Vsys

daemon executes the appropriate extension, passing in

the original arguments and the calling context.

4. Vsys uses UNIX’s ptrace facility to intercept

system calls made by the extension. For each system

call, Vsys executes the corresponding syscall ACP to

allow or deny the call. This enables Vsys to limit the

extension to touching specific resources (e.g., only

opening certain ports).

5. Vsys writes output from the extension to the output

FIFO or UNIX domain socket, from which it can be

read by the client process.

Just like Vsys extensions themselves, ACPs are ex-

ecutables written in arbitrary programming languages.

Sticking to our belief in re-using existing tools, we did

not invent a new language to implement ACPs. In most

cases, policies can be encoded with the help of regular

expressions. Alternatively, lexing and parsing libraries

such as GNU lex and yacc may also be used.

The design of Vsys relies on our assumed threat

model: that extension developers are trusted, even

though end users are not. On PlanetLab, all Vsys ex-

tensions are vetted by an administrator before they are

deployed. We believe that the Vsys design provides a

reasonable amount of security against the threat of ma-

licious users. The Vsys daemon is simple and does little

more than read and write FIFOs and execute processes.

It is written in Ocaml [21], a type-safe functional lan-

guage that adds robustness to this simplicity. The bound-

ary between end users and Vsys extensions is stringent

and cannot be circumvented as Vsys extensions run in a

separate process address space. Extensions themselves

are controlled using ptrace, which is a weak security

mechanism [5]. However, security at that layer focuses

on narrowing the interface to system calls that may be

called with tainted data—i.e., inputs from an end user. It

does not protect against malicious extension developers.

Finally, we expect Vsys extensions to follow good cod-

ing practices by checking user-provided data and com-

posing provably correct inputs to sensitive operations, as

opposed to passing such tainted data directly or a trans-

formed version of it.

4 Vsys Extension Library

An active user community has contributed a number of

powerful extensions to Vsys over the years. This section

presents several extensions that have been deployed and

used on PlanetLab.

4.1 sliceip

sliceip enables users to create service-specific route

tables. It is invoked with the same syntax as the ip com-

mand that creates and manages routes on Linux.

sliceip implements isolation through IP policy

routing, a mechanism that extends the definition of the

hash key used in routing to include fields other than the

destination IP address. sliceip uses a packet tag,

which associates packets with the sending or receiving

user, as part of this route key. Thus, even when two users

define separate routes to a single destination address, the

tag determines whether a packet should take the route

defined by the first user, the second user, or whether it

should take the default route. There are many ways to

set this packet tag to associate packets with users. The

easiest way is to use the intermediate step of a network

interface. The pl tuntap extension discussed below

lets users create and manage isolated virtual interfaces.

Since local packets hold a record of the interface that

emitted them, the name or ID of this interface can be

used as the packet tag to identify the user.

Combined with pl tuntap, sliceip enables

users to create virtual overlay networks—one problem

that the Linux community tackled by implementing the

netns module for the Linux kernel. In contrast to

netns which took over four years to develop and is still

under active development, the deployment timeline for

sliceip was of the order of months.

4.2 fusemount

FUSE [10] is a Linux-based framework for implement-

ing and managing filesystems in userspace. A new

filesystem can be developed by implementing standard

filesystem operations such as directory and file lookups,



and exporting these operations via the FUSE userspace

library. An in-kernel component implemented as a ker-

nel module and the FUSE library communicate via a file

descriptor obtained by opening a special character de-

vice (/dev/fuse). The obtained file descriptor is sub-

sequently passed to the mount system call, to match up

the descriptor with the mounted filesystem.

FUSE facilitated the development and deployment of

the WheelFS [16] wide-area distributed filesystem on

PlanetLab. WheelFS is implemented as a FUSE mod-

ule that can be instantiated by PlanetLab users via Vsys.

The authors of this work have made it possible for Plan-

etLab users to create their own shared filesystem as well

as share it with other users [20].

Unlike sliceip, the fusemount extension is ac-

cessed via a UNIX domain socket. The caller (i.e., the

user creating the filesystem) first obtains a file descrip-

tor and uses it to populate a virtual filesystem via FUSE.

Since at this point the filesystem has not been mounted,

the operation of obtaining and using the file descriptor

is safe. Next, the user connects to fusemount by

opening the corresponding UNIX domain socket, and

passes the aforementioned file descriptor over this con-

nection. fusemount then performs the mount opera-

tion via the received file descriptor and passes the file

descriptor back to the caller. The ensures the restrictions

of the mount operation, such as by making sure that the

mount point is owned by the caller.

4.3 socketops

socketops is a collection of extensions that lets

users create privileged sockets for operating large

TCP or UDP buffers, viewing low-level packet head-

ers, etc. Rather than granting coarse-grained admin-

istrative access to the network as facilitated by the

CAP NET ADMIN capability on Linux, Vsys allows

users to access these operations selectively. Similar to

fusemount, all of the above operations are accessed

via UNIX domain sockets. Callers open the domain

socket corresponding to the desired extension and pass

parameters, such as a buffer size for bmsocket. The Vsys

extension then returns a socket descriptor with the re-

quested properties, and can be used by the caller inde-

pendent of Vsys.

4.4 vtuntap

vtuntap lets users create and manage virtual devices

without giving them administrative access to the net-

work. This extension is a wrapper around tun/tap, a

popular virtual point-to-point network device on Linux.

On Linux, the tun/tap device is used via a file de-

scriptor obtained by opening a special character device

(/dev/tun). The file opening operation causes the

tun/tap kernel module to create a new network interface.

The device can then be configured using tools such as if-

config. Once configured, the kernel serializes all packets

sent to the device as a raw stream of packet data to the

aforementioned file descriptor, and receives data written

to the file descriptor as packets on the device.

vtuntap arbitrates both steps in this operation via

two extensions. The pl tuntap extension uses the

UNIX socket interface to create the tun/tap file descrip-

tor and send it to the caller. In addition, the vif up

extension lets users configure devices with parameters

such as the MTU, transmit queue length and the IP ad-

dress. vif up is a wrapper around the ifconfig

command and takes the same set of parameters. Through

an ACP, Vsys verifies that the user is restricted to a set of

allowed IP addresses and other authorized parameters.

caller!

uid:xx!

vtuntap! slice ip! ip route!

tun_xx_0!

tun_xx_0! iptables!

4. User requests!

new route!

1. User requests!

new interface!

5. New route 

created for 

caller's intreface!

3. Packet caller 

restricts interface to 

caller traffic!

2. Interface 

tagged with id!

Figure 3: The vtuntap extension

Figure 3 shows how a user can combine vtuntap

with sliceip to create an overlay topology. The user

first calls vtuntap to create a new network interface,

tag it an ID field unique to the user, and restrict the traf-

fic to that interface. This configures the overlay’s data

plane. Then sliceip can add and remove routes on

the control plane of the overlay.

5 Experiences and Lessons

This section articulates some of our experiences building

Vsys and the conclusions to which they have led us.

Creating new OS abstractions is hard. The goal of

the VINI project was to build a new testbed, using Plan-

etLab software, that would combine isolated virtual net-

work topologies and PlanetLab slices [2]. At the start

of the project, we considered two alternatives. The first

was building virtual topologies using existing Linux net-

working primitives (e.g., IP policy routing) and user-

space tools. We initially developed Vsys to explore this

space. The second alternative was to leverage Linux net-

work namespaces (netns), a new abstraction for the

Linux kernel intended specifically for isolating the net-

work subsystem. Over a summer we developed an initial

prototype using netns that satisfied the requirements of



VINI and deployed it on the public VINI testbed [3].

Our subsequent experiences with netns were less

positive. On the VINI testbed, incremental improvement

of our netns-based prototype as well as bug fixes to

netns continued for about two years. By this point

the Vsys-based approach for building virtual topologies,

which we had deployed on PlanetLab, was mature and

had been used extensively by researchers. Most of the

issues we encountered on VINI involved interactions be-

tween netns and other modules. For example, Planet-

Lab and VINI use Linux-Vserver to assign IP addresses

to network slices, but netns would hide network de-

vices from Vservers. The tools associated with netns

unexpectedly also added filesystem and namespace iso-

lation to processes when only network isolation was re-

quested. Upon modifying the tools, we realized that

there were dependencies between these isolations that

required further kernel modifications. Such problems

were hard to diagnose because of the lack of debugging

tools for the new abstractions.

The lesson is that the continued predominance of old

abstractions (e.g., pipes, file descriptors, and sockets)

is no coincidence. Since fundamental OS abstractions

are global and can affect all modules and processes in

the system, changes cause side effects that are very hard

to predict, especially when these side effects cut across

modules. Had we foreseen our problems with netns,

we would probably have focused our efforts on the Vsys

approach from the start.

Flexibility drives innovation in development.

Though we invite the PlanetLab user community to

contribute code, we receive few contributions. Vsys

extensions have been the exception to this rule: all but

one Vsys extension were submitted by developers other

than the authors of the Vsys framework. Vsys is a

success story in our efforts to engage PlanetLab users in

helping to develop the platform. This success is all the

more surprising given that such user contributions are

unusual for security mechanisms.

We attribute this to the use of standard abstractions

and the ability to use the programming language of one’s

choice. In Vsys, an extension is an executable script to

which inputs are passed explicitly as arguments and via

standard input. This explicit and simple data flow adds

developer confidence to the reliability of a script and en-

ables him or her to develop scripts on a standard installa-

tion of Linux even if it does not run the PlanetLab envi-

ronment. The ability to use any programming language

also helps contributors reuse their existing code, regard-

less of the language it is written in.

The lesson is that even security mechanisms can at-

tract external developers if you provide a flexible and

easy-to-learn development environment. In our experi-

ence, skilled developers also have very strong tastes for

using specific programming tools and standard environ-

ments, which it helps to support.

Reusing standard abstractions simplifies interfaces

between components. Despite having been developed

independently by over a dozen individuals, many of

PlanetLab’s Vsys scripts depend on one another. For

instance, the fd tuntap and reserve eth scripts

allocate network endpoints for users, and vifconfig

configures the parameters of these devices and sets

up routes and network address translations. Similarly,

sliceip sets up tunnels and makeswitch connects

the interfaces to virtual OpenFlow switches. The les-

son is that the use of standard primitives—files, file de-

scriptors, pipes, directories, network interfaces, packet

filtering rules, network routes, and sockets—simplifies

interfaces and facilitates program reuse.

6 Related Work

There is a great deal of work related to Vsys; we will

focus on UNIX-centric mechanisms based on processes

and other standard OS primitives. Vsys is similar to ex-

isting sandboxing tools [17, 6, 7, 5, 19, 4] but is novel in

both details and scope. Furthermore, unlike those sys-

tems, Vsys has been deployed and used at scale for sev-

eral years. In the process it has attracted numerous con-

tributions from an active user community, validating our

design goal of flexibility through the use of grassroots

abstractions.

Vsys is similar to the interposition agents introduced

by Jones [9] to insert policy between privileged opera-

tions and untrusted user code. Jones implemented a li-

brary of object-oriented abstractions that could be used

to intercept system calls and modify their behavior, such

as by tracing them or filtering their arguments. Vsys di-

vides policy code between extensions and ACPs. Thus

rather than one, there are two interposition sites, the first

between calling clients and the underlying OS (i.e. the

extensions themselves), and the second between the ex-

tensions and the underlying OS (i.e. the syscall ACPs).

SLIC [6], Janus [7] and Ostia [5] are sandboxing

frameworks that use system call filtering and delega-

tion to grant untrusted processes access to system re-

sources. In Vsys, isolation is implemented in the form

of Vsys extensions, which compose multiple system ab-

stractions such as file descriptors, sockets and packet fil-

tering rules. Like Janus, Vsys uses system call filtering

with the help of ptrace to reinforce the limitations that

the extension developer places on clients. Ostia uses sys-

tem call delegation to protect against time-of-check-to-

time-of-use bugs. The delegation mechanism executes

the system call on the client’s behalf immediately after

authenticating it, eliminating the window of opportunity

for attackers. The Vsys design assumes that extension

developers are not malicious and so such mechanisms



are unnecessary; the goal of system call filtering in Vsys

is to narrow the interface to extensions, as a backup to in-

complete checks by script developers. Jain and Sekar’s

framework [8] also uses system calls for containment.

Finally, Systrace [14] enables administrators to define

system call access policies in much the same way as

UNIX permissions define file access policies. In this

way, fine-grained control can be imposed on processes,

and the privileges of programs can be elevated without

the use of potentially dangerous suid binaries.

The Proper (“PRivileged OPERations”) daemon was

the precursor to Vsys. It let PlanetLab users run priv-

ileged operations by passing file descriptors between

privileged and non-privileged contexts. Users invoked

primitive operations—socket creation, file opening and

closing, execution, etc.—proxied by the Proper daemon.

Vsys inherits Proper’s use of file-descriptor passing from

privileged to non-privileged contexts.

A more advanced form of sudo is sus [18], which

extends the access control list to include predicates on

objects such as files and users. Calife [4] is another vari-

ant of sudo with usability enhancements and privileged

command logging. SSU [19] handles the remote execu-

tion of privileged operations over ssh sessions.

In contrast to these tools and their variants, the goal

of Vsys goes beyond defining ACLs for privileged com-

mands. Vsys is meant to facilitate the composition of

existing tools to build isolated operations. The relation-

ship between sudo scripts and Vsys extensions can be

compared to that between assembly language and high-

level programming languages. The former is a low-level

mechanism and the latter provides convenient abstrac-

tions such as ACPs, context identifiers and file descriptor

transfers making use of the mechanism.

Perhaps the best known OS mechanism for privilege

allocation is UNIX file permissions and setuid bits.

Vsys sets permissions on pipes and sockets so that they

can only be opened by users authorized to access the

corresponding extensions. Vsys is also able to penetrate

chroot jails and filesystem containers, letting users in-

voke functionality that they do not have direct access to

in the filesystem.

7 Conclusion

It has been demonstrated many times over that the rich

library of abstractions available on OSes can go a long

way in solving problems for which dedicated OS exten-

sions were developed. Our experiences with Vsys have

reinforced this belief by showing that simple composi-

tions of existing UNIX tools can be used to implement

powerful isolation. The sliceip and pl tuntap

extensions enable network isolation comparable to that

found in dedicated approaches such as VINI and Linux

network namespaces. The fuse extension lets users

create userspace filesystems in a collaborative manner,

letting other users on the system mount and use deployed

filesystems. Our design choice of grassroots abstractions

and an unconstrained development environment has also

been validated by the continuous contributions of Vsys

extensions by an active user community.

References

[1] BAVIER, A., BOWMAN, M., CULLER, D., CHUN, B., KARLIN, S.,
MUIR, S., PETERSON, L., ROSCOE, T., SPALINK, T., AND WAWRZO-
NIAK, M. Operating System Support for Planetary-Scale Network Ser-
vices. In Proc. 1st NSDI (San Francisco, CA, Mar 2004).

[2] BAVIER, A., FEAMSTER, N., HUANG, M., PETERSON, L., AND REX-
FORD, J. In VINI Veritas: Realistic and Controlled Network Experimen-
tation. In Proc. SIGCOMM 2006 (Pisa, Italy, Sep 2006).

[3] BHATIA, S., MOTIWALA, M., MUHLBAUER, W., MUNDADA, Y.,
VALANCIUS, V., BAVIER, A., FEAMSTER, N., PETERSON, L., AND

REXFORD, J. Trellis: A platform for building flexible, fast virtual net-
works on commodity hardware. In Proc. ACM CoNEXT 2008 (Madrid,
Spain, December 2008).

[4] Calife: how to become root (or another user) with ones own password.
http://www.keltia.net/programs/calife/.

[5] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia: A Delegating
Architecture for Secure System Call Interposition. In Proc. 2004 Sympo-

sium on Network and Distributed System Security (2004).

[6] GHORMLEY, D. P., PETROU, D., RODRIGUES, S. H., AND ANDERSON,
T. E. Slic: an extensibility system for commodity operating systems. In
Proceedings of the annual conference on USENIX Annual Technical Con-

ference (1998), ATEC.

[7] GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A. A
secure environment for untrusted helper applications confining the wily
hacker. In Proceedings of the 6th conference on USENIX Security Sympo-

sium, Focusing on Applications of Cryptography - Volume 6 (1996).

[8] JAIN, K., AND SEKAR, R. User-level infrastructure for system call inter-
position: A platform for intrusion detection and confinement. In In Proc.

Network and Distributed Systems Security Symposium (1999).

[9] JONES, M. B. Interposition agents: transparently interposing user code at
the system interface. In Proceedings of the fourteenth ACM symposium on

Operating systems principles (1993), SOSP.

[10] Filesystem In Userspace. http://fuse.sourceforge.net.

[11] PETERSON, L., BAVIER, A., FIUCZYNSKI, M., AND MUIR, S. Experi-
ences Building PlanetLab. In Proc. 7th OSDI (Seattle, WA, Nov 2006).

[12] PIKE, R., PRESOTTO, D., THOMPSON, K., AND TRICKEY, H. Plan 9
from bell labs. In In Proceedings of the Summer 1990 UKUUG Conference

(1990), pp. 1–9.

[13] Questions on PlanetLab Development Mailing List. http://lists.planet-
lab.org/pipermail/devel/2009-December/004014.html
http://lists.planet-lab.org/pipermail/devel/2009-June/003470.html
http://lists.planet-lab.org/pipermail/users/2010-November/003756.html.

[14] PROVOS, N. Improving host security with system call policies. In In

Proceedings of the 12th Usenix Security Symposium (2002).

[15] SOLTESZ, S., POTZL, H., FIUCZYNSKI, M., BAVIER, A., AND PETER-
SON, L. Container-based Operating System Virtualization: A Scalable,
High-Performance Alternative to Hypervisors. In Proc. EuroSys 2007

(Lisbon, Portugal, Mar 2007).

[16] STRIBLING, J., SOVRAN, Y., ZHANG, I., PRETZER, X., LI, J.,
KAASHOEK, M. F., AND MORRIS, R. Flexible, wide-area storage for dis-
tributed systems with wheelfs. In Proceedings of the 6th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI ’09) (April
2009).

[17] Man page for sudo. http://www.gratisoft.us/sudo/sudo.man.html.

[18] Sus privilege elevation tool. http://pdg.uow.edu.au/sus/.

[19] THORPE, C. Ssu: Extending ssh for secure root administration. In Pro-

ceedings of the 12th USENIX conference on System administration (1998).

[20] WheelFS Installation Instructions for PlanetLab.
http://pdos.csail.mit.edu/wheelfs/doku.php?id=documentation#planetlab nodes.

[21] XAVIER LEROY. The objective caml system, release 1.07, documen-
tation and user’s manual., 1997. http://caml.inria.fr/pub/distrib/ocaml-
1.07/ocaml-1.07-refman.txt.


